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Abstract

This paper derives a near optimal distributed Kalman filter to estimate a large-scale random field monitored by a

network of N sensors. The field is described by a sparsely connected dynamical system of high-dimensionality, n. The

main contributions of the paper are: (1) distribute the high-dimensional model into N coupled sensor-based reduced

models of dimension nl � n using a graph-theoretic approach; (2) implement local Kalman filters on the reduced

models; (3) fuse the observations and estimates that are common among the local Kalman filters using bipartite fusion

graphs and consensus averaging algorithms; (4) invert the error covariances and information matrices of the local filters

with a generalized distributed matrix Jacobi algorithm that we introduce and an L−banded matrix inversion theorem.

These inversion algorithms compute the submatrices of interest with only local variables of dimension nl, hence,

performing the Riccati and Lyapunov equations with only local communication and local computation. The algorithm

presented here achieves full distribution of the Kalman filter. Nowhere storage, communication, or computation

of n−dimensional vectors and matrices is needed; only nl � n dimensional vectors and matrices are communicated

or used in the computation at the sensors.
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I. INTRODUCTION

Direct implementation of the Kalman filter [1], [2], for sparse large-scale dynamical systems monitored by

sensor networks is unfeasible because of both intensive computation and inordinate communication requirements

that challenge the limited resources at the sensors. To account for the processing, communication, and power

constraints at the sensors, the Kalman filter implemented at each sensor, l, should only involve computations and

communications with local quantities, i.e., vectors and matrices of low dimensions, nl � n, where n is the dimension

of the state vector. This paper presents a fully distributed Kalman filter for sparse large-scale dynamical systems

with only local communication and reduced-order computation at each sensor—no sensor computes, communicates,

or stores any n−dimensional quantity.

Efforts to decentralize the Kalman filter date back to at least [3], [4]. The work in [3], [4], decentralizes the Kalman

filter equations by replicating at each sensor an nth order version of the dynamical system. These n−dimensional

Kalman filters are then fused over all-to-all communication networks to achieve the global performance. A decentral-

ized linear-quadratic-Gaussian control problem for an all-to-all sensor communication network is addressed in [5],

with, again, a complete state-space replication at each sensor. Current research on distributed Kalman filters has

focused mainly on the communication aspects at the sensors. Decentralized Kalman filters with local communication

over arbitrary communication networks is discussed in [6], using consensus protocols in [7]. References [8], [9]

incorporate packet losses, intermittent observations, and communication delays in the decentralized implementation

of the Kalman filter. Although these solutions work well for low-dimensional dynamical systems, e.g., target tracking

applications considered in [4], [8], [9], [10], they implement a replication of the n−dimensional Kalman filter at

each sensor, hence communicating and inverting n × n matrices, which, in general, is an O(n3) operation. In

contrast, in the problems we consider, the state dimension, n, is very large, for example, in the range of 102 to 109,

and so the nth order replication of the global dynamics in the local Kalman filters is not an option.

Early attempts to reduce the computational burden at the sensors were made in [11], [12]. They use the Information

filter [13], format of the Kalman filter, which iterates the information matrices (inverse of the error covariance

matrices) at each time step. To reduce the computational load, these references decouple the state dynamics and hence

force the model matrix to be block diagonal; they do not take into account the structure of the large-scale systems

of interest to us. Ignoring the coupling between different reduced models can lead to highly inaccurate results. In

[11], a fully connected communication network is required adding undesirable long distance communication links

between the sensors.

We are motivated by problems where the large-scale systems, although sparse, cannot be decoupled, and where,

due to the sensor constraints or the high-dimensionality of the application, the communication and computation

should both be local. Examples of sparse large-scale systems include networks of loosely connected dynamical

systems, spatially distributed random fields, weather systems, or earthquake monitoring systems, [14], [15], [16],

[17], [18], [19], [20], [21]. We exploit the local structure on the system dynamics, motivated by the fact that, in

practice, the correlations between the states farther apart in the state vector often decay rapidly. This occurs in a large
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set of interesting applications, e.g.: system dynamics with banded model matrices arise naturally when the spatially

correlated random fields are discretized by partial differential or difference equations (PDEs) [22]; in images, the

field at a pixel depends usually on neighboring pixel values [23], [24]; power grid models exhibit commonly

banded structures, [25], [26]. Systems with local or sparse structure (including banded matrices as a special case)

are not decomposed into decoupled components; rather, they usually correspond to the system state being spatially

Markovian. Even if the system local structure is not apparent, several algorithms exist in the literature, specially in

the field of parallelizing iterative solvers for multiprocessor systems, to convert unstructured sparse matrices into

sparse structured matrices. These algorithms apply matrix bandwidth reduction methods such as Reverse Cuthill

Mckee (RCM) and Approximate Minimum Degree (AMD) reorderings [27], [28], [29]. So, the approach presented

in the paper can apply to sparse, not necessarily banded, dynamical systems.

We exploit the inherent sparse/localized structure in the large-scale system in order to distribute the n−dimensional

global dynamical system into several, possibly many, coupled nlth−dimensional reduced-order local dynamical

systems, one at each sensor, l, where nl � n. Distributing the model is not the whole story needed to distribute the

Kalman filter. The local Kalman filters corresponding to the local reduced order models have states of dimension nl,

but are coupled. This leads to the need of fusing observations of common states by different sensors, which we

achieve by bipartite fusion graphs and average consensus techniques, and fusing correlated estimates of the same

states, for which we use a variant of Durbin’s formula [30]. Still, the major problem is to propagate the nl × nl

error covariance matrices (or the corresponding nl × nl blocks in the information matrices) of the local state

estimation errors. This requires inversion of the full n × n covariance or information matrices, a global O
(
n3
)

computation rather than a local O
(
n3

l

)
computation. To localize and distribute these inversions, we introduce a

simplifying assumption, namely, we assume that the estimation error in the Kalman filter is a Gauss-Markov field of

order L. This implies that the information matrices are L−banded, [31], [32]. We use this assumption to develop a

distributed generalization of the Jacobi algorithm, [33], and use an L−banded matrix inversion theorem, [32], [34],

to fully localize the inversion of the covariance and information matrices and, as a consequence, fully distribute the

Kalman filter. Our generalized distributed matrix Jacobi algorithm solves matrix inversion (n coupled linear systems

of n equations each, i.e., solves AX = B for X , where A, X , and B are all n × n matrices) with only local

communication and reduced computations, O(n3
l ). This contrasts with and extends the distributed Jacobi algorithm

in [35], which essentially solves Ax = b for x, where A is a matrix, x and b are vectors.

In summary, the paper distributes the Kalman filter avoiding at every sensor the storage, computation, or

communication of vectors or matrices of dimension n. Our distributed implementation has only local communication

and local computation with vectors and matrices of reduced dimensions, nl � n. We achieve this by: (1) distributing

the global field into nl−dimensional sensor-based reduced-order models through digraphs and cut-point sets;

(2) fusing the observations and the estimates of the states common across more than one reduced-order model

through bipartite fusion graphs and consensus averaging algorithms; and (3) by avoiding the direct inversion

of n−dimensional covariance and information matrices. This is achieved by a generalized distributed matrix Jacobi

(GDMJ) algorithm that we introduce and an L−banded matrix inversion theorem, [32]. These algorithms compute
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the nl−dimensional principal blocks in the inverses of the n−dimensional covariance and information matrices

without the need to store or invert these n−dimensional matrices.

We describe the rest of the paper. Section II covers the background topics on state-space representation of

a discrete-time dynamical system, centralized Information filters, and centralized L−banded Information filters.

Section III covers the model distribution step detailing the formulation of reduced sensor-based models using system

digraphs and cut-point sets. We introduce the local Information filters in section III-B along with the necessary

notation. Section IV gives the observation fusion and the estimate fusion steps of the local Information filters,

and section V presents the generalized distributed matrix Jacobi (GDMJ) algorithm. The filter step of the local

Information filters is provided in section VI, and the prediction step of the local Information filters is provided in

section VII. We conclude the paper with results in section VIII and conclusions in section IX. Appendix I discusses

the L−banded inversion theorem, [32].

II. BACKGROUND

In this section, we present the global state-space model of a sparse and localized large-scale dynamical system,

see subsection II-A. This large-scale system is monitored by a sensor network and hence the observations of the

field are distributed across the sensors. State estimation is achieved using the Information filter. To fix notation,

subsection II-B presents the centralized version of the Information filter.

A. Global Model

The object of study is a large-scale discrete-time and discrete-space dynamical system that is sparse and localized,

e.g., discrete-time random fields. We choose a scanning order so that the values of the field at the spatial lattice

nodes at time k are collected in the column vector, xk. This is a standard procedure, e.g., in image processing

the vector, xk, stacks the grey levels at every pixel in the image, or, when the large-scale system under study is

described by partial difference equations, where the space indexing variables are then discretized by a lattice.

The state-space representation of the system is given by

xk+1 = Fxk + Guk, k ≥ 0 (1)

where k is the discrete time index, xk ∈ Rn is the state vector, x0 ∈ Rn are the initial state conditions, F ∈ Rn×n

is the model matrix, uk ∈ Rj is the state noise vector and G ∈ Rn×j is the state noise matrix. When the system

is sparse, the model matrix, F, captures this localized and sparse structure of the system dynamics. Without loss

of generality, we can add external inputs in (1), which are known for all time k. Specifically, we may add a term

Bψk, where ψk ∈ Rm is the external known input vector, and B ∈ Rn×m is the input matrix. The results below

can be easily adjusted to account for this term, so we ignore it in the sequel.

This random field (1) is monitored by a network of N sensors. Observations at sensor l and time k are given by

y(l)
k = Hlxk + w(l)

k , (2)
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where Hl ∈ Rpl×n is the local observation matrix for sensor l, pl is the number of observations made by sensor l,

and w(l) ∈ Rpl is the local observation noise.

We stack the observations at all N sensors in the sensor network to get the global observation model as follows.

Let p be the total number of observations, adding the observations at all the sensors. Let the global observation

vector, yk ∈ Rp×1, the global observation matrix, H ∈ Rp×n, and the global observation noise vector, wk ∈ Rp×1,

be

yk =


y(1)

k

...

y(N)
k

 , H =


H1

...

HN

 , wk =


w(1)

k

...

w(N)

 . (3)

Then the global observation model is given by

yk = Hxk + wk. (4)

We adopt standard assumptions on the statistical characteristics of the noise. The state noise sequence, {uk}k≥0,

and the observation noise sequence, {wk}k≥0, are both zero mean Gaussian white noise sequences with

E[ukuH
j ] = Qδij and E[wkwH

j ] = Rδij , (5)

where ‘H’ denotes the Hermitian, the Kronecker delta δij = 1, if and only if i = j, and zero otherwise. The noise

sequences are independent of the initial condition, x0, which is a zero mean Gaussian random vector with

E[x0xH
0 ] = S0. (6)

Since the observation noise vectors at different sensors are independent, we can partition the global observation

noise covariance matrix, R, with Rl ∈ Rpl×pl being the local observation noise covariance matrix at sensor l, as

R = blockdiag[R1, . . . ,RN ]. (7)

Equations (1) and (4) complete what we refer to as the global model of the system. We next provide the centralized

Information filter for the global model.

B. Centralized Information Filter

We introduce the following notation for the centralized Information filter (CIF) for the global model (1) and (4).

Let Sk|k and Sk|k−1 be the filtered estimate error covariance matrix and the predicted estimate error covariance ma-

trix, respectively, and their inverses be the information matrices, Zk|k and Zk|k−1, respectively. Let x̂k|k and x̂k|k−1

be the filtered estimate and the predicted estimate of the state vector, xk, based on all measurements up to time k

and time k − 1, respectively. We have the following relations.

Sk|k = Z−1
k|k (8)

Sk|k−1 = Z−1
k|k−1 (9)

ẑk|k−1 = Zk|k−1x̂k|k−1 (10)

ẑk|k = Zk|kx̂k|k (11)
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Define the n−dimensional global observation variables as

ik = HT R−1yk, (12)

Ik = HT R−1H, (13)

and the n−dimensional local observation variables at sensor l as

il,k = HT
l R−1

l y(l)
k , (14)

Il,k = HT
l R−1

l Hl. (15)

When the observations are distributed among the sensors (39), the CIF can be implemented by collecting all the

sensor observations at a central location. Another way of implementing the CIF is to fuse the distributed observations

by realizing that the global observation variables in (12)−(13), can be written as the sum of the local observation

variables (14)−(15), see [4], [6], [12]. Using (39), (3) and (7), in (12)−(13) we have,

ik = HT R−1yk

= HT
1 R−1

1 y(1)
k + · · ·+ HT

NR−1
N y(N)

k

=
N∑

l=1

HT
l R−1

l y(l)
k

=
N∑

l=1

il,k. (16)

Similarly,

Ik =
N∑

l=1

Il,k. (17)

The filter step of the CIF is given for k ≥ 0 as

Zk|k = Zk|k−1 +
N∑

l=1

Il,k, (18a)

ẑk|k = ẑk|k−1 +
N∑

l=1

il,k. (18b)

The prediction step of the CIF is given for k ≥ 1 as

Zk|k−1 = S−1
k|k−1 = (FZ−1

k−1|k−1F
T +GQGT )−1

, Z0|−1 = S−1
0 , (19a)

ẑk|k−1 = Zk|k−1

(
FZ−1

k−1|k−1ẑk−1|k−1

)
, ẑ0|−1 = 0. (19b)

The CIF needs: (i) the knowledge of all the observations, yk, at a central location to implement, e.g., (16),

a non-trivial communication task when the number of sensors, N , is large; and (ii) global filter computations,

e.g., (19), an infeasible challenge when the number of states, n, is large. Further, the CIF has the disadvantages of

large latency and a single point of failure.
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C. Centralized L−Banded Information filters

To avoid the O(n3) computations of the global quantities in (19), e.g., the inversion, Z−1
k−1|k−1, we develop an

approximation assuming that the information matrices, Zk|k and Zk|k−1, are L−banded. We refer to the CIF with

this approximation as the centralized L−banded Information filter (CLBIF). Simulations in [34], show that, under

reasonable conditions, CLBIF gives virtually indistinguishable results when compared to the CIF.

This L−banded approximation of the information matrices is equivalent to approximating the Gaussian error

processes,

εk|k = xk − x̂k|k, (20)

εk|k−1 = xk − x̂k|k−1, (21)

to be Gauss-Markovian of Lth order [31]. Reference [32], shows that this approximation is optimal in Kullback-

Leibler or maximum entropy sense. With this approximation, and using the algorithms provided in [32], the O(n3)

matrix inversions in equations (19), can be achieved using O(n2) computation complexity.

The CLBIF with the L−banded approximations on the information matrices, Zk|k and Zk|k−1, is given by the

filter step in (18a)−(18b) and the prediction step in (19a)−(19b), but the L−banded information matrix, Zk−1|k−1,

is inverted using a forward-backward recursion algorithm [32], with O(n2) computation complexity. The inversion

of the prediction error covariance matrix, Sk|k−1, to get the L−banded information matrix, Zk|k−1, is achieved

with O(n2) computation complexity, using the L−banded inversion theorem provided in appendix I, see [32],

for details. Although, this L−banded approximation reduces the computation to O(n2), it is still is a centralized

algorithm as it deals with the n−dimensional state. To distribute the CLBIF, we start by distributing the global

model (1)−(4) in the following section.

III. DISTRIBUTING THE MODEL

Although CLBIF reduces the computational complexity of the CIF from O(n3) to O(n2), it still involves

operations with vectors and matrices of the dimensions, n, of the state vector. These operations are practically

infeasible for the large-scale systems of interest here, since n is very large. Instead of implementing CLBIF based

on the global model, we implement local Information filters at each sensor based on sensor-based reduced models.

To obtain the reduced models, we distribute the global model into sensor-based models, i.e., each reduced sensor-

based model captures the local dynamics of the large-scale system at that sensor. This is done by exploiting the

sparse and localized structure of the model matrix, F.

A. Distributing the Model: Reduced Models at Each Sensor

In this subsection, we show how to distribute the global model (1) and (4), in order to get the reduced order

models at the sensors; parts of this procedure are also presented in [36]. We illustrate the procedure with the help
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of a simple example. Consider a five dimensional system with the global dynamical model

xk+1 =



f11 f12 0 0 0

f21 f22 0 f24 0

f31 0 f33 0 0

0 0 f43 0 f45

0 0 0 f54 f55


xk +



0 0

0 0

0 g32

0 0

g51 0


uk (22)

= Fxk + Guk.

The system has two external noise sources uk = [u1k, u2k]T . We monitor this system with N = 3 sensors, having

local observation vectors, y(l)
k , at each sensor l. The global observation vector, yk, stacks the local observation

vectors, y(l)
k , corresponding to each sensor. The global observation model is

yk =


y
(1)
k

y
(2)
k

y
(3)
k

 =


1 1 1 0 0

0 1 1 1 0

0 0 0 1 1

xk +


w

(1)
k

w
(2)
k

w
(3)
k

 (23)

= Hxk + wk,

where H = [HT
1 ,H

T
2 ,H

T
3 ]T . Equations (22) and (23) comprise the global model of our example system that we

distribute by formulating reduced order models.

Subsection 1 provides a graphical representation of the global model using the concept of systems digraphs, and

subsection 2 distributes this global model into reduced models by using the concept of cut-point sets on the system

digraph.

1) Graphical Representation using System Digraphs: A system digraph helps us in visualizing the dynamical

interdependence of the system. A system digraph, [37], or the state-dependency graph, J = [V,E], is a directed

graphical representation of the system, where V is the vertex set that contains the state set, X = {xi}i=1,...,n, and

the noise input set, U = {ui}i=1,...,j , of the system, and E is the edge matrix or the interconnection matrix of

the system. The interconnection matrix, E, is the binary representation (having a 1 for each non-zero entry) of the

model matrix, F, and the state noise matrix, G, concatenated together, E = [F|G], where the overbar indicates the

binary representation. The interconnection matrix, E, for the system in (22) is,

E =



1 1 0 0 0 0 0

1 1 0 1 0 0 0

1 0 1 0 0 0 1

0 0 1 0 1 0 0

0 0 0 1 1 1 0


. (24)

The system digraph is shown in figure 1(a).

2) Reduced Models from Cut-sets: We have N = 3 sensors monitoring the system (figure 1(a)) through the

observation model (23). We associate to each sensor l a cut-point set, V (l), where V (l) ⊆ X . If a sensor observes a

linear combination of several states, the cut-point set at that particular sensor, V (l), includes all these states; see [38],
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x4

x2

x1

x3

x5

u2

u1

(a) Digraph representation of the 5 dimensional sys-

tem, (22)−(23). The circles represent the states, x,

of the system and the squares represent the input

noise sources, u.

x4

x2

x1

x3

x5

u2

u1

s1

s2

s3

(b) The cut-point sets associated to the 3 sensors

(4) are shown by the dashed circles.

Fig. 1. System Digraph and cut-point sets.

for an alternative definition of the cut-point sets. The cut-point sets provide a natural procedure for selecting the

local states involved in the local dynamics at each sensor. From (23), we have the following cut-point sets,

V (1) = {x1, x2, x3} , (25)

V (2) = {x2, x3, x4} , (26)

V (3) = {x4, x5} . (27)

The cut-point sets corresponding to the three sensors are shown in figure 1(b). For simplicity of the presentation,

we chose here that each state variable is observed by at least one sensor. If this is not true, we can easily account

for this by extending the cut-point sets, V (l), to V
(l)

, such that

N⋃
l=1

V
(l)

= X. (28)

The local states at sensor l, i.e., the components of the local state vector, x(l)
k , are the elements in its associated

cut-point set, V (l). The directed edges coming into a cut-point set are the inputs required by the reduced model.

In the context of our running illustration (22)−(23), we see that the local state vector for sensor 1 is, x(1)
k =

[x1,k, x2,k, x3,k]T , and the inputs to the local model consist of a subset of the state set, X , (at sensor s1, x4,k is

the input coming from sensor s2) and a subset of the noise input set, U , (u2,k at sensor s1).
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F(1) D(1)

f11 f12 0 0 0
f21 f22 0 f24 0
f31 0 f33 0 0
0 0 f43 0 f45

0 0 0 f54 f55

F1

F(3)D(3)

F3

Fig. 2. Partitioning of the global model matrix, F, into local model matrices, F(l), and the local internal input matrices, D(l), shown for

sensor 1 and sensor 3, from the example system, (22)−(23).

For the local model at sensor l, we collect the states being required as input in a local internal (we use the word

internal to distinguish from the externally applied input, ψk, which might be a part of (1)) input vector, d(l)
k , and

the noise sources being required as input in a local noise input vector, u(l)
k . We can collect the entries corresponding

to the local state vector, x(l)
k , from the model matrix, F, in a local model matrix, F(l), the entries corresponding

to the local internal input vector, d(l)
k , from the model matrix, F, in a local internal input matrix, D(l), and the

entries corresponding to the local noise input vector, u(l)
k , from the state noise matrix, G, in a local state noise

matrix, G(l). Figure 2 shows this partitioning for sensors s1 and s3. We have the following local models for (22).

x(1)
k+1 =


f11 f12 0

f21 f22 0

f31 0 f33

x(1)
k +


0

f24

0

x4,k +


0

0

g32

u2,k,

= F(1)x(1)
k + D(1)d(1)

k + G(1)u(1)
k (29)

x(2)
k+1 =


f22 0 f42

0 f33 0

0 f43 0

x(2)
k +


f21 0

f31 0

0 f45


 x1,k

x5,k

+


0

g32

0

u2,k,

= F(2)x(2)
k + D(2)d(2)

k + G(2)u(2)
k (30)

x(3)
k+1 =

 0 f45

f54 f55

x(3)
k +

 f43

0

x3,k +

 0

g51

u1,k,

= F(3)x(3)
k + D(3)d(3)

k + G(3)u(3)
k (31)

We capture the above extraction of the local states by the cut-point sets, with the following procedure. Let the

total number of states in the cut-point set at sensor l, V (l), be nl. Let Tl be an nl × n selection matrix, such that
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it selects nl states in the cut-point set, V (l), from the entire state vector, xk, according to the following relation,

x(l)
k = Tlxk. (32)

For sensor 1, the selection matrix, T1 is

T1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 . (33)

We establish a reduced local observation matrix, H(l), by retaining the terms corresponding to the local state

vector, x(l)
k , from the local observation matrix, Hl. We may write

H(l) = HlT
#
l , (34)

where ‘#’ denotes the pseudo-inverse of the matrix. In the context of the running illustration, the reduced local

observation matrix H(1) = [1, 1, 1] is obtained from the local observation matrix H1 = [1, 1, 1, 0, 0]. Note that Hl

picks the states from the global state vector, xk, whereas H(l) picks the states from the local state vector, x(l)
k . The

reduced local observation models are given by

y(l)
k = H(l)x(l)

k + w(l)
k . (35)

We now make some additional comments. For simplicity of the explanation, we refer to our running exam-

ple, (22)−(23). We note that the reduced models at the sensors overlap, as shown by overlapping cut-point sets

in figure 1(b). Due to this overlap, observations and estimates corresponding to the shared states are available at

multiple sensors. For this reason, the observations and estimates corresponding to the overlapped states must be

fused. For example, sensor 1 and sensor 2 share the state variables x2,k and x3,k in their local models, and, hence,

share the observations and estimates corresponding to these states, which should be fused. We further note that

the reduced model (29) at sensor 1 is coupled to the reduced model (30) at sensor 2 through the state x4,k. The

state x4,k at sensor 1 does not appear in the local state vector, i.e., x4,k /∈ x(1)
k . But it is still required as an internal

input at sensor 1 to preserve the global dynamics. Hence, sensor 2 will communicate the state x4,k, which appears

in its local state vector, i.e., x4,k ∈ x(2)
k , to sensor 1. Since the value of the state itself is unknown, sensor 2

communicates its estimate, x̂
(2)
4,k|k, to sensor 1. This allows sensor 1 to complete its local model and preserve global

dynamics, thus, taking into account the coupling between the local reduced-order models. This process is repeated at

all sensors. Hence, the local internal input vector, d(l)
k , is replaced by its estimate, d̂(l)

k|k. From the above discussion,

we derive the reduced model at an arbitrary sensor l to be

x(l)
k+1 = F(l)x(l)

k + D(l)d̂(l)
k|k + G(l)u(l)

k . (36)

B. Local Information Filters

To estimate the global state vector, xk, in a distributed fashion, we implement local Information filters (LIFs)

at each sensor l, which are based on the sensor-based reduced models (36) and (35). For complete distribution,
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Initialize
VI-A

Observation Fusion
IV-A

Local Filter Step
VI-B

Distributed Matrix 
Inversion

V

Estimate Fusion
IV-B

Local Prediction 
Step
VII

Fig. 3. Block Diagram for the LIFs: The steps involved in the LIF implementation are shown. The ovals represent the steps that require local

communication.

nowhere at any sensor should we compute, store, or communicate any global variable, an n−dimensional matrix

(or a vector) involved in CLBIF. Each LIF computes local objects (matrices and vectors of dimension nl), which

are then updated (if required) by exchanging information among the neighbors using only local communication.

Some of the update procedures are iterative. If the iterative algorithms converge, the local variables over the entire

sensor network possess the global knowledge in the CLBIF. Of course, in most applications nowhere in the network

is there the need for this global knowledge — so, the global knowledge is known only in distributed fashion. The

LIFs asymptotically guarantee the performance of the CLBIF.

The LIFs consist of initial conditions, a local filter step (including observation fusion and distributed matrix

inversion) and a local prediction step (including estimate fusion), see figure 3. The LIFs are presented in the next

four sections. Section IV discusses the observation fusion (section IV-A) and estimate fusion (section IV-B), which

are required due to the overlapping state vectors in the reduced-order models. Section V discusses a distributed

matrix inversion technique, which we call the generalized distributed matrix Jacobi algorithm, required in the local

predictions step (section VII). Section VI contains the initial conditions and the local filter step. The local prediction

step is then presented in section VII.

To proceed with the next sections, we provide notation in the following subsection.

1) Notation: The superscript (l) refers to a local reduced-order variable (nl × 1 vector or nl × nl matrix) at

sensor l. We define the reduced observation vector, i(l)k , and the reduced observation matrix, I(l)
k , as

i(l)k = (H(l))T R−1
l y(l)

k , (37)

I(l)
k = (H(l))T R−1

l H(l). (38)

The local error covariance matrices, S(l)
k|k and S(l)

k|k−1, are the overlapping diagonal submatrices of the global

error covariance matrices, Sk|k and Sk|k−1. Let Z(l)
k|k and Z(l)

k|k−1 be the local information matrices. These local

information matrices are overlapping diagonal submatrices of the global L−banded information matrices, Zk|k

and Zk|k−1. These local matrices overlap because the reduced sensor-based models (36) have overlapping state

vectors, x(l)
k . Global information matrices and global error covariance matrices are related by (8) and (9). Figure 4

captures the relationship between the local error covariance matrices and the local information matrices, when we
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== =

Fig. 4. Relationship between the global error covariance matrices, S and its inverse, the global information matrices, Z, with L = 1−banded

approximation on Z. The figure also shows how the local matrices, S(l) and Z(l), constitute their global counterparts. Since this relation holds

for both the estimation and prediction matrices, the figure removes the subscripts.

implement LIFs on our example system (22)−(23) with reduced models (29)−(31). We remove the subscripts from

the variables, S and Z, since figure 4 holds for both estimation and prediction matrices.

We note here that the local information matrices correspond to the local state vectors, e.g., in the context

of (22), x(1)
k has a local information matrix, Z(1)

k|k, spanning the portion of the global information matrix, Zk|k,

that corresponds to the state variables {x1,k, x2,k, x3,k} in x(1)
k , as shown in figure 4. A necessary condition for

the LIFs to achieve the performance of the CLBIF is that the L−band of the global information matrices, Zk|k

and Zk|k−1, is preserved among the local information matrices, Z(l)
k|k and Z(l)

k|k−1, i.e., with a slight abuse of notation

the following should hold, see figure 4,

N⋃
l=1

Z(l)
k|k ⊇ L-band

[
Zk|k

]
. (39)

Hence, if (39) is not satisfied, we again extend the cut-point sets at each sensor, as shown in (28), so that each

local model has at least that many state variables in the local state vector that preserve the L−band of the global

information matrices and (39) holds.

IV. OVERLAPPING REDUCED MODELS

After the model distribution step introduced in section III, the reduced models among the sensors may share

states, as shown by the overlapped cut-point sets in figure 1(b). Since the sensors sharing the states have independent

observations of the shared states, observations corresponding to the shared states need to be fused. Since each sensor

implements a separate LIF, the estimates corresponding to the shared states also need to be fused across the LIFs

containing those states. We present observation fusion in subsection IV-A and estimate fusion in subsection IV-B,

with the help of bipartite fusion graphs, [39].
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Fig. 5. Bipartite Fusion graph, B, is shown for the example system, (22)−(23).

A. Observation Fusion

Since the local filter step involves local observations, y(l)
k , and sensors having common states in their reduced

models have different observations corresponding to these common states, we require observation fusion. Equa-

tions (16) and (17) show that the observation fusion is equivalent to adding the corresponding n−dimensional

local observation variables, (14)−(15). In CLBIF, we implement this fusion directly because each local observation

variable in (14)−(15) corresponds to the full n−dimensional state vector, xk. Since the nl−dimensional reduced

observation variables, (37)−(38), correspond to different local state vectors, x(l)
k , they cannot be added directly.

To achieve the observation fusion we introduce the following undirected bipartite fusion graph, B. Let SN =

{s1, . . . , sN} be the set of sensors and X the set of states. The vertex set of the bipartite fusion graph, B, is SN

⋃
X .

We now define the edge set, EB, of the fusion graph, B. The sensor si is connected to the state variable xj , if si

observes the state variable xj . In other words, we have an edge between sensor si and state variable xj , if the local

observation matrix, Hi, at sensor si, contains a non-zero entry in its jth column. Figure 5 shows the bipartite graph

for the example system in (22)−(23). Note that there are no edges within the state set, X , or within the sensor

set, SN , in the bipartite fusion graph, B.

We now further provide some notation on the communication topology. Let G denote the sensor communication

graph that determines how the sensors communicate among themselves. Let K(l) be the subgraph of G, that contains

the sensor l and the sensors directly connected to the sensor l. For the jth state, xj , let Gj be the induced subgraph

of the sensor communication graph, G, such that it contains the sensors having the state xj in their reduced models.

Note here the difference between the state-dependency graph, J , that captures the dynamic behavior of the system

given by model matrices, F and G, the sensor communication graph, G, that captures how the sensors communicate

with each other, and the bipartite fusion graph, B, defined above.

The set of vertices in the graphs Gj come directly form the bipartite fusion graph, B. For example, from figure 5,

we see that G1 contains s1 as a single vertex, G2 contains s1, s2 as vertices, and so on. The interconnection matrix of

the sub-graph Gj comes from the sensor communication graph, G. States having more than one sensor connected to
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them in the bipartite fusion graph, B, are the states for which fusion is required, since we have multiple observations

for that state. Furthermore, figure 5 also gives the vertices in the associated subgraphs, Gj , over which the fusion

is to be carried out.

With the help of the above discussion, we establish the fusion of the reduced observation variables, (37)−(38).

The reduced model at each sensor involves nl state variables, and each element in the nl × 1 reduced observation

vector, i(l)k , corresponds to one of these states, i.e., each entry in i(l)k has some information about its corresponding

state variable. Let the entries of the nl × 1 reduced observation vector, i(l)k , at sensor l, be subscripted by the nl

state variables modeled at sensor l. In the context of the example given by system (22)−(23), we have

i(1)k =


i
(1)
k,x1

i
(1)
k,x2

i
(1)
k,x3

 , i(2)k =


i
(2)
k,x2

i
(2)
k,x3

i
(2)
k,x4

 , i(3)k =

 i
(3)
k,x4

i
(3)
k,x5

 . (40)

For each state xj , the observation fusion is carried out on the sensors attached to this state in the bipartite fusion

graph, B. The fused observation vectors denoted by i(l)f,k are given by

i(1)f,k =


i
(1)
k,x1

i
(1)
k,x2

+ i
(2)
k,x2

i
(1)
k,x3

+ i
(2)
k,x3

 , i(2)f,k =


i
(2)
k,x2

+ i
(1)
k,x2

i
(2)
k,x3

+ i
(1)
k,x3

i
(2)
k,x4

+ i
(3)
k,x4

 , i(3)f,k =

 i
(3)
k,x4

+ i
(2)
k,x4

i
(3)
k,x5

 . (41)

Generalizing to the arbitrary sensor l, we may write the entry, i
(l)
f,k,xj

, corresponding to xj in the fused observation

vector, i(l)f,k as

i
(l)
f,k,xj

=
∑
s∈Gj

i
(s)
k,xj

, (42)

where i
(s)
k,xj

is the entry corresponding to xj in the reduced observation vector at sensor s, i(s)k .

Since the communication network on Gj may not be all-to-all, an iterative weighted averaging algorithm [40],

is used to compute the fusion in (42) over arbitrarily connected communication networks with only local commu-

nication. A similar procedure on the pairs of state variables and their associated subgraphs can be implemented to

fuse the reduced observation matrices, I(l)
k .

B. Estimate Fusion

For each state xj , the LIF at each sensor s ∈ Gj provides an estimate of this state, x̂
(s)
j,k|k. If Gj contains more

than one sensor, there are multiple correlated estimates of the same state, which should be fused in order to obtain

an estimate with smaller variance, a problem considered by Durbin [30]; its vector extensions can be found in [41],

[42], [43]. At each sensor s ∈ Gj , let π
(s)
j be the variance of the jth state estimate, x̂

(s)
j,k|k, where π

(s)
j is a diagonal

element in the local estimation error covariance matrix, S(s)
k|k, at sensor s. We fuse the estimates using the parallel

fusion of estimates formula, which for scalar quantities can be derived by using Lagrange multipliers and is given

by

x̂j,k|k =

∑
s∈Gj

(
π

(s)
j

)−1

−1∑
s∈Gj

(
π

(s)
j

)−1

x̂
(s)
j,k|k

 . (43)
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Each of the sums in (43) is carried out using the weighted averaging algorithm [40], and then combined to

compute (43) at each sensor s ∈ Gj .

V. DISTRIBUTED MATRIX INVERSION WITH LOCAL COMMUNICATION

As we will show in the local prediction step (section VII), a crucial step in distributing the CLBIF computations

is to compute the local prediction information matrix, Z(l)
k+1|k, from the local estimation information matrix, Z(l)

k|k,

since this computation involves the local error covariance matrices, S(l)
k|k.

Consider the example model (22)−(23), when we employ LIFs on the distributed models (29)−(31). The local

estimation information matrices, Z(1)
k|k, Z(2)

k|k, and Z(3)
k|k, correspond to the overlapping diagonal submatrices of the

global 5 × 5 estimation information matrix, Zk|k, see figure 4, with L = 1−banded assumption on Zk|k. These

overlapping submatrices are denoted by a superscript (l) for the lth sensor, Z(l)
k|k and S(l)

k|k, as shown in figure 4. It

will be shown (see section VII-A) that the local prediction information matrix, Z(l)
k+1|k, is a function of the local

error covariance matrices, S(l)
k|k, and hence we need to compute S(l)

k|k from the local filter information matrices,

Z(l)
k|k, which we get from the local filter step, see section VI. As can be seen from figure 4 and (8), for these local

submatrices,

S(l)
k|k 6=

(
Z(l)

k|k

)−1

, (44)

since the inverse relation (8) is on their global counterparts, Sk|k and Zk|k.

Collecting all the local information matrices, Z(l)
k|k, at each sensor and then carrying out an n×n matrix inversion is

not a practical solution for large-scale systems (where n may be large), because of the large communication overhead

and O(n3) computational cost. Using the L−banded structure on the global estimation information matrix, Zk|k, we

present below a generalized distributed matrix Jacobi (GDMJ) algorithm1. For notational convenience, we disregard

the time indices in the following development.

We present the centralized Jacobi algorithm for solving a linear system of n equations and its generalization

to solve matrix inversion in section V-A. We then present the GDMJ algorithm with the help of an example in

section V-B.

A. Centralized Jacobi Algorithm

The centralized Jacobi algorithm for vectors [33], solves a linear system of n equations, iteratively by successive

substitution. It can be easily extended to get the centralized Jacobi algorithm for matrices that solves

ZS = T, (45)

1Forward-Backward Recursion Algorithm: For an L−banded matrix, Zk|k , a forward-backward recursion algorithm to invert Zk|k using only

the submatrices in its L−band is provided in [32]. This algorithm computes the local error covariance matrices, S
(l)
k|k , from the local information

matrices, Z
(l)
k|k . The problem in implementing this in a multisensor environment is that it is sequential: involving a forward recursion to start

from the first sensor and reach the last sensor, and a backward recursion that proceeds in the opposite direction. Since, the iterations involve

serial communication of the local matrices among all the sensors, the associated latency is impractical, besides requiring an inordinate amount

of communication.
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for the unknown matrix, S, where the matrices Z and T are known. Let M = diag(Z), then

St+1= M−1(M− Z)St+M−1T, (46)

converges to S, giving us the centralized Jacobi algorithm for matrices, solving n coupled linear systems of

equations (45). Putting T = I, we can solve for

ZS = I⇒ S = Z−1. (47)

Hence, if Z is known, (48) converges to its inverse, Z−1,

St+1= PSt+M−1, (48)

where

P = M−1 (M− Z) . (49)

Equation (48) is a centralized algorithm as it requires the complete n× n matrices involved. This requires global

communication and an nth order computation at each iteration of the algorithm. We distribute below the centralized

Jacobi algorithm given by (48) with the help of a GDMJ algorithm, with only local communication and reduced-

order computations.

B. Generalized Distributed Matrix Jacobi (GDMJ) Algorithm

We present here the GDMJ algorithm with the help of an example in the context of the 5−dimensional sys-

tem, (22)−(23), we presented in section III-A. This is done for illustration purposes. The general case is easy to

grasp from this example. With the sensor-based reduced models (29)−(31) and L = 1 banded approximation, the

local estimation information matrices are shown in figure 4. We mention here that the matrix P in (49), being

a product of a diagonal matrix and an L−banded matrix, is always L−banded. The submatrices, P(l), in P, at

sensor l can be computed by

P(l) =
(
M(l)

)−1 (
M(l) − Z(l)

)
, (50)

where M(l) = diag
(
Z(l)

)
. Note that equation (50), does not require any communication and can be computed at

each sensor directly from the local information matrix, Z(l). This is because the matrix M is diagonal, and its local

submatrix, M(l) in (50), is the exact inverse of Z(l).

Using the L−bandedness of the global matrix, P in (48), we can partition the computations in (48). These

partitions are coupled due to the bandedness of P. This is shown for sensor 3 as follows. Let pij denote the ij−th

element of the 5× 5, L = 1−banded matrix, P. At sensor 3, the computation of each element of the 2× 2 local

error covariance matrix (see figure 4), S(3), can be written from (48) as

s44,t+1 = p43s34,t + p44s44,t + p45s45,t (51)

s55,t+1 = p54s45,t + p55s55,t (52)

s45,t+1 = p43s35,t + p44s45,t + p45s55,t (53)
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Note that we are not iterating on s54, since S is symmetric and s54 = s45. All the elements involved in (51)−(53),

except p43, s34,t, and s35,t, are the elements of the local matrices, P(3) and S(3)
t , at sensor 3. The elements, p43

and s34,t, in (51), are the elements of the local matrices, P(2) and S(2)
t , at sensor 2, respectively. Sensor 2, therefore,

communicates these elements to sensor 3.

The element s35,t does not lie in the L−band of S, and, hence, does not belong to any local error covariance

matrix, S(l), see figure 4. On the other hand, this element is required, since it is involved in the iterations on s45,t+1

in (53). Since s35 lies in the non L−band, iterating on it requires further elements in the non L−band of S, and

we end up spanning the entire matrix, S. This can be seen by writing out the equation for s35,t, from (48),

s35,t+1 = p32s25,t + p33s35,t + p34s45,t. (54)

The computation in (54), involves s25,t, iterating on which, in turn, requires another off L−band element, s15,t,

and so on. Computing the elements outside the L−band, thus, requires iterating on all the elements in a single row

of S, at the sensor corresponding to that row. Hence, a single iteration of the algorithm, although distributed and

requiring only local communication, sweeps the entire rows in S, which is not feasible when n is large.

To address this problem, we assume that St is the inverse of an L−banded matrix and use the results in [34], to

compute the off L−band element of St from its in band elements. Instead of iterating on s35 as in (54), since s35

lies in the non L−band of S, it can be computed from the elements in the L−band2,

s35,t = s34,ts
−1
44,ts45,t, (55)

where s34,t is already communicated to sensor 3 by sensor 2. Combining (51)−(53) with (55) and appropriate

communication from sensor 2 finishes the iterations at sensor 3 for the local error covariance matrix, S(3), with

local computation and local communication.

We refer to the equations (51)−(53) and (55), along with appropriate communication from neighboring sensors,

the generalized distributed matrix Jacobi (GDMJ) algorithm. The GDMJ, presented here with the help of the above

example, can be easily extended to any arbitrary sensor l monitoring an n−dimensional system. The only step to

take care of is going from L = 1−band to L > 1−band, since (55) holds only for L = 1. The appropriate formulae

to replace (55), when L > 1, are provided in [34].

1) Convergence: Using (55) for the non L−banded elements, instead of the iterations of the exact Jacobi

algorithm (48), has the following implications. When Z is L−banded, the iterations in (48) converge to the inverse

of an L−banded matrix. The Jacobi algorithm in (48) does not ensure that at each iteration St is the inverse of

an L−banded matrix, but only that St is converging to S, which is the inverse of an L−banded matrix. Using (55)

in the GDMJ algorithm, we require that, at each iteration, the matrix that results from the iteration, St be the

2If S is the inverse of an L−banded matrix, then the submatrices that do not lie in the L−band of S, can be computed from the submatrices

in the L−band of S, [34]. So, to compute the inverse, S = Z−1, of an L−banded matrix, Z, we just compute the submatrices that lie in

the L−band of its inverse, S; the remaining submatrices will be derived from these.
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inverse of an L−banded matrix, which is not true. Hence, the convergence of GDMJ algorithm is not implied by

(48). We show the convergence of GDMJ algorithm, numerically, as follows.

We first discuss the convergence of the Jacobi algorithm, (48). Let S be the stationary point of the iterations

in (48), and let S̃t+1 denote the iterations of (48). The error process, Ẽt+1, for the Jacobi algorithm (48), can be

written as

Ẽt+1 = S̃t+1 − S

= M−1 (M− Z)
(
S̃t − S

)
= PẼt, (56)

which dies out if the spectral radius, ||P||, of the matrix, P, i.e., the absolute value of its maximum eigenvalue is

less than 1.

The convergence of the GDMJ algorithm is shown numerically through figure 6. Let Ŝt denote the iterations of

the GDMJ algorithm. The error process, Êt+1, of the GDMJ algorithm is given by

Êt+1 = Ŝt+1 − S. (57)

Figure 6 plots the difference, 4Et+1, between the error process of the exact Jacobi algorithm, (56), and the GDMJ

algorithm, (57),

4Et+1 = Êt+1 − Ẽt+1 (58)

and since S̃t+1 converges, Ŝt+1 also converges if the difference in the error processes, 4Et+1, goes to 0. We

plot 4Et+1 for different spectral radii, ||P||, of P in figure 6.

VI. LOCAL INFORMATION FILTERS: INITIAL CONDITIONS AND LOCAL FILTER STEP

The initial conditions and the local filter step of the LIFs are presented in the next subsections.

A. Initial Conditions

The initial condition on the local predictor is

ẑ(l)
0|−1 = 0. (59)

The relationship (19a) on the global initial conditions implies that

Z(l)
0|−1 6=

(
S(l)

0

)−1

. (60)

To obtain the initial condition on the prediction information matrix from the local matrices, S(l)
0 , in S0, introduced

in (6), we use the L−banded inversion theorem [32], provided in appendix I. This step may require a local

communication step further elaborated in section VII-A.

Z(l)
0|−1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L−Banded Inversion Theorem S(l)

0 (61)
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Fig. 6. Trace of 4Et+1 in (58) plotted against the number of iterations of the GDMJ algorithm for several different spectral radii of the

matrix P.

B. Local Filter Step

In this section, we present the local filter step of the LIFs. The local filter step is given by

Z(l)
k|k = Z(l)

k|k−1+I(l)
f,k, (62a)

ẑ(l)
k|k = ẑ(l)

k|k−1+i(l)f,k, (62b)

where I(l)
f,k and i(l)f,k denote the fused observation variables. Fusion of the observations is presented in section IV-

A. The distribution of the addition operation, ‘+’, in (18) is straightforward in (62). Recall that the observation

fusion, (42), is carried out using the iterative weighted averaging algorithm. The convergence of this iterative

algorithm is guaranteed under certain conditions, e.g., connected sensor communication sub-graph, Gj , see [40], for

further details. Hence, with the required assumptions on the sub-graph, Gj , the observation fusion algorithm, (42),

converges, and hence,

i(l)f,k ⊆ ik and I(l)
f,k ⊆ Ik. (63)

This, in turn, implies that the local filter step of the LIFs converges to the global filter step, (18), of the CLBIF.

Furthermore, if the local variables involved in (62) are combined over the entire sensor network as shown in figure 4,

we will get their corresponding global CLBIF variables at each time index k.

Once the local filter step is completed, the GDMJ algorithm is employed on the local information matrices, Z(l)
k|k

obtained from (62a), to convert them into the local error covariance matrices, S(l)
k|k.
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Finally, to convert the estimates in the information domain, ẑ(l)
k|k, to the estimates in the Kalman filter domain,

x̂(l)
k|k, we specialize the GDMJ algorithm to matrix-vector product. (The estimates in the Kalman filter domain, x̂(l)

k|k,

are required in the estimate fusion step, (43), and as local internal inputs, d̂(l)
k|k in (36), to the local reduced-order

models.) This special case is to solve a linear system of n equations, (11), the variables of which are distributed

across the sensor network. Since the GDMJ algorithm solves n coupled linear systems of n equations, solution

of (11) can be easily extracted from the GDMJ algorithm.

VII. LOCAL INFORMATION FILTERS: LOCAL PREDICTION STEP

This section presents the distribution of the global prediction step, (19), into the local prediction step at each

LIF. This section requires the results of the GDMJ algorithm for the L−banded matrices, introduced in section V.

A. Computing the local prediction information matrix, Z(l)
k|k−1

Because of the coupled local dynamics of the reduced sensor-based models, each sensor may require that some

of the estimated states be communicated as internal inputs, d̂(l)
k|k, to its LIF, as shown in (36). These states are the

directed edges into each cut-point set in figure 1(b). Hence, the error associated to a local estimation procedure is

also influenced by the error associated to the neighboring estimation procedure, from where the internal inputs are

being communicated. This dependence is true for all sensors and is reflected in the local prediction error covariance

matrix, S(l)
k|k−1, as it is a function of the global estimation error covariance matrix, Sk−1|k−1. Equation (64) follows

from (19a) after expanding (19a) for each diagonal submatrix, S(l)
k|k−1, in Sk|k.

S(l)
k|k−1 = FlSk−1|k−1FT

l + G(l)Q(l)G(l)T , (64)

where

Fl = TlF. (65)

The matrix Tl is introduced in (32). The assumptions on the model matrix, F, being sparse and localized help us

in computing (64), as shown below.

The matrix, Fl, is an nl × n matrix, which relates the state vector, xk, to the local state vector, x(l)
k . Figure 2

shows that the matrix, Fl, is further divided into F(l) and D(l). With this sub-division of Fl, the first term on the

right hand side of (64), FlSk−1|k−1FT
l , can be expanded, so that (64) is given by

S(l)
k|k−1 = F(l)S(l)

k−1|k−1F
(l)T + F(l)Sx(l)d(l)

k−1|k−1D
(l)T

+
(
F(l)Sx(l)d(l)

k−1|k−1D
(l)T
)T

+ D(l)Sd(l)d(l)

k−1|k−1D
(l)T + G(l)Q(l)G(l)T , (66)

where

S(l)
k−1|k−1 is the local error covariance matrix, which is available from (62a) and the GDMJ algorithm at sensor l;

Sd(l)d(l)

k−1|k−1 is the local error covariance matrix, which is available from (62a) and the GDMJ algorithm at the

sensors having the states, d(l)
k , in their reduced models;

Sx(l)d(l)

k−1|k−1 is the error cross correlation between the local state vector, x(l)
k , and the local internal input vector, d(l)

k .
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The non L−banded entries in this matrix can be computed from the equation (55), see [34]. Since the model

matrix, F, is sparse, we do not need the entire error covariance matrix, Sk−1|k−1, only certain of its submatrices.

Since the model matrix, F, is localized, long-distance communication is not required, and the submatrices are

available at the neighboring sensors.

We illustrate this for the example system (22)−(23). We show a sample computation for the local prediction

error covariance matrix at sensor 3, S(3)
k|k−1. Let sij denote the ijth element in the global error covariance

matrix, Sk−1|k−1, see figure 4.

S(3)
k|k−1 =

 0 0 f43 0 f45

0 0 0 f54 f55




s11 s12 s13 s14 s15

s12 s22 s23 s24 s25

s13 s23 s33 s34 s35

s14 s24 s34 s44 s45

s15 s25 s35 s45 s55





0 0

0 0

f43 0

0 f54

f45 f55


+ G(3)Q(3)G(3)T ,

= F(3)

 s44 s45

s45 s55

F(3)T + F(3)

 s34

s35

D(3)T

+

F(3)

 s34

s35

D(3)T

T

+ D(3) [s33]D(3)T + G(3)Q(3)G(3)T . (67)

From (31), at sensor 3 the local state vector has the states x4,k and x5,k and the internal input vector consists of

the state x3,k. Matching the terms in the equation (67), with (66), we note that:

S(3)
k−1|k−1 is the local error covariance of the local state vector, x(3)

k , which is available from (62a) and the GDMJ

algorithm at sensor 3;

Sd(3)d(3)

k−1|k−1 is the error covariance of the local internal input vector input, d(3)
k = x3,k, which is available from

(62a) and the GDMJ algorithm at sensor 2. Hence, only local communication is required from sensor 2 to sensor 3;

Sx(3)d(3)

k−1|k−1 is the error cross correlation between the local states x4,k and x5,k and the local internal input x3,k.

The term s34 lies in the L−band of Sk−1|k−1 and is available at sensor 2, see figure 4. Finally, the term s35, which

lies in the non L−band of Sk−1|k−1, is computed at sensor 3 from (55).

Once we have calculated the local prediction error covariance matrix, S(l)
k|k−1, we can compute the local prediction

information matrix, Z(l)
k|k−1, using the L−banded Inversion Theorem [32], in appendix I. The local matrices Z(l)

k|k−1

and S(l)
k|k−1 are not related by inversion, but they are diagonal blocks of the matrices that are inverses of each other,

see figure 4. We compute Z(l)
k|k−1 as

Z(l)
k|k−1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L−Banded Inversion Theorem S(l)

k|k−1. (68)

As evident from (73) in appendix I, to calculate the local prediction information matrix, Z(l)
k|k−1, we only need

the S(l)
k|k−1 from sensor ‘l’ and some additional neighboring sensors. Hence Z(l)

k|k−1 is again computed with only

local communication and nlth order computation.
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B. Computing the local predictor, ẑ(l)
k|k−1

We illustrate the computation of the local predictor, ẑ(1)
k|k−1, for the five dimensional system, (22)−(23), with

L = 1. The local predictor, ẑ(1)
k|k−1, at sensor 1 follows from the global predictor, (19b), and is given by

ẑ(1)
k|k−1 = Z(1)

k|k−1

(
F(1)x̂(1)

k−1|k−1 + D(1)d̂(1)
k−1|k−1

)
+


0

0

z34

(
f43x̂

(2)
3,k−1|k−1 + f45x̂

(3)
5,k−1|k−1

)
 , (69)

where z34 is the only term arising due to the L = 1−banded (tridiagonal) assumption on the prediction information

matrix, Zk|k−1. Note that f43x̂
(2)
3,k−1|k−1+f45x̂

(3)
5,k−1|k−1 is a result of f4x̂k−1|k−1, where f4 is the fourth row of the

model matrix, F. A model matrix with a localized and sparse structure ensures that f4x̂k−1|k−1 is computed from

a small subset of the estimated state vector, x̂(Q)
k−1|k−1, communicated by a subset Q ⊆ K(l) of the neighboring

sensors, which are modeling these states in their reduced models.

Generalizing, the local predictor in the information domain, ẑ(l)
k|k−1, is given by

ẑ(l)
k|k−1 = Z(l)

k|k−1

(
F(l)x̂(l)

k−1|k−1 + D(l)d̂(l)
k−1|k−1

)
+ f1

(
Z(V)

k|k−1,F
(V), x̂(Q)

k−1|k−1

)
(70)

for some V,Q ⊆ K(l), where f1(·) is a linear function and depends on L.

VIII. RESULTS

A. Summary of the LIFs

We summarize the distributed local Information filters. The initial conditions are given by (59) and (61).

Observation fusion is carried out using (42). The fused observation variables, i(l)f,k and I(l)
f,k, are then employed

in the local filter step, (62a) and (62b), to obtain the local information matrix and the local estimator, Ẑ(l)
k|k and

z(l)
k|k, respectively. We then implement the GDMJ algorithm (51)−(53) and (55) to compute the local error covariance

matrix, S(l)
k|k, from the local information matrix, Z(l)

k|k. The GDMJ algorithm is again employed to compute the local

estimates in the Kalman filter domain, x̂(l)
k|k, from the local estimator, ẑ(l)

k|k, as a special case. Estimate fusion, (43), is

then carried out on the local estimates in the Kalman filter domain, x̂(l)
k|k. Finally the prediction step is completed by

computing the local prediction error covariance matrix, Ŝ(l)
k|k−1, from (66), the local prediction information matrix,

Ẑ(l)
k|k−1, using the L−banded inversion theorem in appendix I, and, the local predictor, ẑ(l)

k|k−1, from (70).

B. Simulations

We simulate the 5−dimensional system of (22)−(23). Figure 7 plots the sum of the squared errors, SSE, averaged

over 1, 000 Monte-Carlo trials, for several Information filters

SSE = tr
[
E
(
xk − x̂k|k

) (
xk − x̂k|k

)T ]
(71)

versus the number of iterations, k = 1, . . . , 500. The results for the CIF are shown in red/dashed, for the CLBIF

with L = 1−banded approximation are shown in green/solid, for the CLBIF with L = 2−banded approximation

are shown in grey/dash–dot, and for the LIFs with L = 1−banded approximation are shown in black/dotted (this
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Fig. 7. Simulation Results: The sum of squared errors is plotted against the number of iterations of the several Information filters. The LIFs

with L = 1 (black/dotted) tracks the CLBIF with L = 1 (green/solid), both of them having exact overlap. The CLBIF with L = 2−banded

approximation (grey/dash-dot) is virtually indistinguishable from the CIF (red/dashed).
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Fig. 8. Simulation Results: The original states are shown in blue/solid, with their estimates using the CIF shown in red/dashed and their

estimates with the LIFs with L = 1 shown in black/dash-dot.
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curve is exactly on top of the CLBIF with L = 1 curve in green/solid.) We further plot the trace of the solution of

the Riccati equation, inverse of (18a), in blue/solid. These results show that, for the L = 1−banded approximation,

there is a noticeable steady state error (top curve in figure 7, notice the zoomed up vertical axis.) This steady state

error is considerably reduced when we increase the band from L = 1 to L = 2.

Several remarks are in order. First of all, the LIFs (black/dotted) with L = 1 track the results of the CLBIF

with L = 1 (green/solid), see figure 7. This suggests that the iterative algorithms, GDMJ algorithm and weighted

averaging algorithms, have converged and GDMJ does converge to the centralized Jacobi algorithm as shown in

figure 6. Secondly, if we compare the performance of the CLBIF (L = 1 in green/solid and L = 2 in grey/dash-dot)

with the performance of the CIF in red/dashed, we verify that as L ↑, the performance is virtually indistinguishable

from that of the CIF, as pointed out in [34]; this is in agreement with the fact that the approximation is optimal in

Kullback-Leibler sense, as shown in [32]. Also notice that if we increase the number of Monte Carlo simulations

the variations in the CIF (red/dashed) reduce, and the filters eventually follow the theoretical value of tr[Sk|k], in

blue/solid.

Figure 8 shows the estimates for a single trial over 200 iterations, with the original states in blue/solid, its

estimates with the CIF in red/dashed and its estimates with the LIFs in black/dash-dot. The agreement between

the two estimates suggests the robustness of the L−banded approximation. Hence, we can see a near optimal

performance of the L = 1−banded LIFs. We further note that the discrepancy is removed almost completely when

we approximate the information matrices to be penta-diagonal, L = 2, instead of being tridiagonal, L = 1.

We next discuss the computational advantage of the LIFs over some of the existing methods.

C. Complexity

We regard the multiplication of two n× n matrices as an O(n3) operation, inversion of an n× n matrix also as

an O(n3) operation and multiplication of an n× n matrix and an n× 1 vector as an O(n2) operation. For all of

the following, we assume N sensors monitoring the global system, (1).

1) Centralized Information Filter, CIF: This is the case where each sensor sends its local observation vector

to a centralized location or a fusion center, where the global observation vector is then put together. The fusion

center then implements the CIF, with an O(n3) computation complexity for each time k, so we have the complexity

as O(n3k), with inordinate communication requirements (back and forth communication between the sensors and

the central location).

2) Information Filters with Replicated Models at each sensor and Observation Fusion: In this scheme, the local

observation vectors are not communicated to the central location, but are fused over an all-to-all communication

network, [4], or an arbitrary network, [6]. Recall that the arbitrary communication network requires an iterative

algorithm.

Computational complexity at each sensor is O(n3k) in [4]. In [6], let the complexity of the iterative algorithm

be O(f(n)) and let t be the number of iterations required by the iterative algorithm to converge. Each sensor

implements a CIF after fusing the observations. For each time index, k, each sensor requires O(n3) operations plus
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the operations required for the iterative algorithms, which are O(f(n)t); so the total computation complexity is

O((n3 + f(n)t)k) at each sensor. Communication requirements are global in [4], and local in [6].

3) Distributed Kalman Filters: Local Information Filters, LIFs: The distributed Kalman filter presented in this

paper has three iterative algorithms. In all the other steps the computation complexity is dominated by O(n3
l )

operations, where nl � n. Let to be the iterations required by the weighted averaging algorithm, where at each

step of the iterative algorithm the computations are dominated by an O(n2
l ) operations. Let tJ1 be the iterations

required by the GDMJ algorithm for vectors, where at each step of the iterative algorithm the computations are

dominated by an O(n2
l ) operations. Let tJ2 be the iterations required by the GDMJ algorithm, where at each step of

the iterative algorithm the computations are dominated by an O(n3
l ) operations. The total computation complexity

will be O((n3
l + n2

l to + n2
l tJ1 + n3

l tJ2)k). Let t = max(to, tJ1 , tJ2), then the computation complexity is bounded

by O(n3
l tk) at each sensor for the LIFs, which is much smaller than the computational cost of the solutions

in VIII-C.1 and VIII-C.2. In this example, typical values for tJ1 , tJ2 and to (we used local degree weights for

observation fusion in [40], with a sensor communication network 1↔ 2↔ 3, other techniques e.g., semi-definite

programming [40], can be used to decrease to significantly) are 6, 7 and 9 respectively. The convergence rate of the

iterative algorithms can be increased by optimizing the sensor communication graph, G, [44]. The communication

requirement in the LIFs is always local.

IX. CONCLUSIONS

In conclusion, we presented a distributed implementation of the Kalman filter for sparse large-scale systems

monitored by sensor networks. In our solution, the communication, computing, and storage is local and distributed

across the sensor network, no single sensor processes n−dimensional vectors or matrices, where n, usually a

large number, is the dimension of the state vector representing the random field. We achieve this by solving

three linked problems: (1) Distributing the global state variable model representing the random field into sensor

based reduced-order models. These reduced-order models are obtained using a graph-theoretic model distribution

technique that decomposes the random field model into coupled low-order models; (2) Fusing, through distributed

averaging, multiple sensor observations and multiple estimates of the state variables that are common across reduced-

order models; and (3) Inverting full n−dimensional matrices, with local communication only, by deriving an

iterative generalized distributed matrix Jacobi (GDMJ) algorithm. The GDMJ algorithm only requires matrices

and vectors of the order nl of the reduced state vectors. The GDMJ algorithm preserves the coupling among the

local Kalman filters. Our solution contrasts with existing Kalman filter solutions for sensor networks that either

replicate an n−dimensional Kalman filter at each sensor or reduce the model dimension at the expense of decoupling

the field dynamics into lower-dimensional models. The former are infeasible for large-scale systems and the latter

are highly sub-optimal.

Simulations show that the distributed implementation with local Kalman filters implemented at each sensor

converges to the global Kalman filter as the number of bands in the information matrices is increased.
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APPENDIX I

L−BANDED INVERSION THEOREM

Let Z = S−1 be L−banded. We apply the algorithm, given in [32], to obtain Z from the submatrices in

the L−band of S, as . We use the following notation, in (72), to partition matrix addition and subtraction in terms

of its constituent submatrices. Also Si
j represents the principal submatrix of S spanning rows i through j, and

columns i through j. 
a1 a2 0

a3 x+ y + z a4

0 a5 a6

 =

 a1 a2

a3 x + y + z a4

a5 a5

 (72)

The inverse of S, when Z = S−1 is L−banded, is given by (73), taken from [32], in terms of the L−banded

submatrices of S. Note that, to compute a principal submatrix in Z, we do not need the entire S, or even all

the L−banded submatrices in S. Instead, we only require three neighboring submatrices in the L−band of S. For

proofs and further details, the interested reader can refer to [32].

Z =



S1
L+1

−1

− S2
L+1

−1

+
S2

L+2

−1

−
·
·
·

+
SN−L−1

N−1

−1

− SN−L
N−1

−1

+
SN−L

N

−1

0

0


(73)
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