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ABSTRACT

We bound the number of sensors required to achieve a de-
sired level of sensing accuracy in a discrete sensor network
application (e.g. distributed detection). We model the state
of nature being sensed as a discrete vector, and the sensor
network as an encoder. Our model assumes that each sen-
sor observes only a subset of the state of nature, that sensor
observations are localized, and that sensor network output
across different states of nature is neither identical nor in-
dependently distributed. Using a random coding argument
we prove a lower bound on the ‘sensing capacity’ of a sen-
sor network, which characterizes the ability of a sensor net-
work to distinguish among all states of nature. We compute
this lower bound for sensors of varying range, noise models,
and sensing functions. We compare this lower bound to the
empirical performance of a belief propagation based sensor
network decoder for a simple seismic sensor network sce-
nario. The key contribution of this paper is to introduce the
idea of a sharp cut-off function in the number of required
sensors, to the sensor network community.

1. INTRODUCTION

How many sensors are required to sense an environment
to within a desired accuracy? In this paper, we explore
this question in the context of discrete sensor network ap-
plications such as distributed detection and classification.
The number of sensors required to achieve a desired per-
formance level depends on a large number of characteristics
such as the noise, range, and sensing function of the con-
stituent sensors, as well as resource constraints such as the
power, computation, and communications available at each
sensing node. Resource constraints such as communications
and power are important to consider in the design of sen-
sor networks due to the limitations they impose on, among
other things, network lifetime and sampling rate. However,
even if these resource constraints were eliminated, many ba-
sic questions about the theoretical design limitations of sen-
sor networks are not yet adequately addressed. The sens-
ing capabilities of the sensors and the required accuracy of
the sensing task imposes sharp limitations on the number
of sensors required to achieve a desired performance level.
In this paper we seek to elucidate this purely sensing based

limitation by demonstrating a lower bound on the minimum
number of sensors required to achieve a desired sensing per-
formance, given the sensing capabilities of the sensors.

In our discrete sensor network application, we model
the state of nature as a discrete vector and the sensor net-
work as a “channel encoder.” For ease of discussion, we
assume that the discrete state of nature represents a spatial
configuration of targets. Our model assumes that each sen-
sor observes only a subset of target positions, and that sensor
observations are localized (i.e. a sensor observes adjacent
target positions). Viewing the sensor network as a channel
encoder allows us to use ideas from Shannon coding the-
ory. However, as we will show, the “codebook” obtained
has codewords which are neither independent nor identical,
thus requiring a novel analysis and a novel concept of ‘sens-
ing capacity’ ������� . ���	��� characterizes the ability of the
sensor network to distinguish among all spatial target con-
figurations to within a given distortion � . � is the max-
imum tolerable fraction of spatial positions which may be
erroneously sensed. For a given � , ������� represents the
maximum ratio of the total number of target positions under
observation to the number of sensors, such that below this
ratio, there exist sensor networks whose maximal probabil-
ity of error goes to zero as the number of possible target po-
sitions and sensors goes to infinity. In previous work [1], we
introduced the concept of a sensing capacity and provided a
lower bound on this quantity for a rather restricted family of
sensor networks. This previous model assumed that sensors
can sense all targets with uniform probability, and that the
sensors output a noise corrupted sum of the targets which
they observe. Such a model is not well suited to many ap-
plications of interest, such as seismic sensor networks and
networks of cameras. Therefore, in this paper we relax both
of these assumptions, and demonstrate a lower bound for
sensing capacity for a sensor network model with localized
sensor observations and arbitrary sensing functions.

Research on the theoretical performance limits of sen-
sor networks typically considers how system performance
scales with the number of sensors. The first set of results can
be broadly categorized as the constraints that resources such
as communication, computation, and power impose on the
sensor network when the number of sensors increases. [2]
extends the results in [3] to account for the different traffic



models that arise in a sensor network. [4] studies network
transport capacity for the case of regular sensor networks.
[5] studies the impact of computational constraints on the
communication efficiency of sensor networks. Another set
of results considers the effect of the number of sensors on
accomplishing a sensing task, given resource constraints.
[6] studies the effect of transport capacity on approximat-
ing a set of continuous random processes. [7] considers the
estimation of parameters of a set of underlying random pro-
cesses. [8] considers a decentralized binary decision prob-
lem with noisy communication links to obtain error expo-
nents.

In contrast to the aforementioned results, we explore a
notion of a ‘sensing capacity’ inherent purely to the sens-
ing task of distinguishing among discrete states of nature to
within a desired distortion. Section 2 introduces and moti-
vates our sensor network model. Section 3 states a lower
bound on sensing capacity for the model. Section 4 extends
the result to heterogeneous sensors and non-binary target
vectors. Illustrative calculations of the sensing capacity are
presented in Section 5. We apply our model to a seismic
sensor network scenario, and compare empirical detection
performance to our bound in Section 6. Section 7 concludes
the paper.

2. SENSOR NETWORK MODEL

We denote random variables by upper-case letters and in-
stantiations or constants by lower-case letters. Bold-font
denotes vectors, and bold-font upper-case letters denote ran-
dom vectors. ����� ��� � has base-2.

We considered discrete sensor applications with spatially
localized sensing in formulating our model. Examples in-
clude a target counting protocol using a seismic sensor net-
work implemented by [9]. A multi-camera network was de-
signed to count the number of people in a crowd [10] and
to localize moving objects in a grid [11]. [12] performs
distributed vehicle classification using acoustic and seismic
sensor data. [13] formulated distributed robot exploration
as a discrete sensing task, using belief propagation to fuse
robot observations. In all these applications, each sensor
views a contiguous region of space (i.e. spatially localized
observations).

[14] proposed an abstract sensor network model for de-
tecting discrete target locations. This work introduces the
idea of viewing sensor networks as encoders, and uses alge-
braic coding theory to design highly structured sensor net-
works, but no notion of capacity is discussed. There exists
a large body of work in distributed detection [15], but we
are not aware of the existence of any ‘sensing capacity’ re-
sults. [16] studies algorithms for distributed classification,
but does not explore a notion of capacity.

Our sensor network model is motivated by the follow-

ing specific discrete sensing scenarios. Before we present
the details of our model, we review these scenarios and dis-
cuss how to model them as a discrete sensing tasks. In a
seismic sensor network, sensors detect the intensity of tar-
get induced vibrations. We can model the environment as
a grid world where each block represents the presence or
absence of a target. A sensor is affected by targets in a
localized region, whose extent is defined by random varia-
tions in soil composition and the limits of the sensor’s range.
The intensity of vibration is dependent on the target’s dis-
tance from the sensor, and therefore the sensor observes the
weighted sum of target vibrations. In a camera-based mo-
tion mapping scenario, the area under observation can be
viewed as a grid. Each grid block contains a one or a zero,
corresponding to motion or lack of motion in the grid block.
If we assume that the cameras are calibrated, each camera
observes a known subset of grid squares in its field of view.
Due to the geometry of the scenario the observations are lo-
calized, and the sensing function of each camera produces
an estimated motion map in the subsection of the grid un-
der observation. Such a system combines multiple localized
overlapping camera observations to obtain a single motion
map of the environment. One can model distributed robotic
mine detection [17] as a discrete classification task where
the environment is modeled as a non-binary grid such that
each block contains either nothing, a landmine, or metallic
clutter. Each robot samples a localized subset of the grid at
a time, and produces a noisy estimate of the grid contents
under observation. The robots can cooperatively map the
contents of the grid.

The model we present attempts to abstractly character-
ize various discrete sensor network applications with local-
ized sensing, as motivated by the above scenarios. Figure
1 shows an example of our sensor network model. There
are � discrete spatial positions that need to be sensed. Each
position may represent an actual region in space. In our
initial exposition, each discrete position may contain no tar-
get or one target, though extensions to non-binary targets
is straightforward as shown in Section 4. A � -bit ‘target
vector’ � represents the target configuration in these � po-
sitions. Our figure contains �
	 ��������������������� � , indi-
cating 3 targets among the 7 positions. The possible tar-
get vectors are denoted ��� , ������������������ �! . We say that
‘a certain � has occurred’ if that vector represents the true
target configuration in the spatial positions. The sensor net-
work has " identical sensors. Sensor # is connected to (i.e.,
senses) exactly $ contiguous positions out of the � spatial
positions. In contrast, our original model [1] did not ac-
count for localized sensor observations since each sensor
could sense any $ (not necessarily contiguous) spatial posi-
tions. Each sensor senses a value %&�&' that is an arbitrary
function of the targets bits to which it is connected, %(	) �+*-,�������.�*-,+/10�243 � . For example, a linear sensing function,



such as a seismic sensor, would sense the weighted sum of
the target bits which the sensor observes, % 	 � 0�2 3������� � *-,+/ � .
In our previous model [1], the sensing function was restricted
to be an un-weighted sum of the observed spatial positions.
Our figure illustrates this sensing function for a specific sen-
sor network, set of weights, and target vector. Thus, the
‘ideal output vector’ of the sensor network 	 depends on
the sensor connections, sensing function, and on the target
vector � that occurs. However, we assume that each sensor
output 
 ��� is corrupted by noise, so that the conditional
p.m.f. ���� � ��
�� % � determines the observed output. Since
the sensors are identical, ���� � is the same for all the sen-
sors (we extend our result to heterogeneous sensors in Sec-
tion 4). Further, we assume that the noise is independent
in the sensors, so that the ‘sensor output vector’ � relates
to the ideal output 	 as ���� � ����� 	 � 	���� � 3 ��!� � ��
  � %  � .
Observing the output � , a decoder (described in detail be-
low) must determine which of the �  target vectors � � have
actually occurred.

We define the sensor network " � � �" �$ � as a bipartite
graph, as shown in Figure 1. The figure shows the connec-
tions between the sensors and the � spatial positions, for
sensors whose sensing function outputs a weighted sum of
the observed targets. We assume a simple model for ran-
domly constructing such sensor networks, where each sen-
sor randomly chooses $ contiguous spatial positions with
equal probability among the set of possible contiguous blocks
of length $ . This would occur, for example, if sensors were
randomly dropped on a field, or robots moved randomly
over a region. This model represents an improvement over
our previous model for the discrete sensor network applica-
tions described above because it accounts for the fact that
sensor observations are localized, and allows for arbitrary
sensing functions.

3. SENSOR NETWORK CAPACITY THEOREM

For a sensor network, randomly generated as explained ear-
lier, the ideal output 	 is a function of the sensor network in-
stantiation # � � �" �$ � , the sensing function

)
, and the occur-

ring target vector � . Denote $ � as the random vector which
occurs when ��� is the target vector (where $ � is random
because of the random generation of the sensor network
" � �4�" �$ � ). Since each sensor independently forms connec-
tions to a subset of targets,  �&% �'	 � � 	 � � � 3  ��( ��%*)  � .
However, it is important to note that the random vectors
$ � and $,+ , associated with a pair of target vectors � � and
�-+ respectively, are not independent, since the sensor net-
work configuration produces a dependency between them.
i.e. similar target vectors are likely to produce a similar
sensor network output. Thus, the ‘codewords’ �.$ � ��&	
�� � ������. �� �! of the sensor network (one corresponding to
each ��� ) are non-identical and dependent on each other, un-

Fig. 1. Sensor network model with � 	0/ �" 	21��$ 	
1 , spatially dependent connections, and a sensing function
corresponding to the weighted sum of the observed targets.

like channel codes in classical information theory.
Given the noise corrupted output � of the sensor net-

work, we estimate the target vector � which generated this
noisy output by using a decoder 3 �4� � . We allow the de-
coder a distortion of � �65 ����87 . i.e., if 9 H �+������ + � is the
Hamming distance between two target vectors and if we
define the tolerable distortion region of � � as :�)�	 �<;>=3
 9 H �+������ + �@? � ! , then given that ��� occurred, the prob-
ability of error is�ACBn 	error� �



The statement of the main result requires an explana-
tion of c-order types and c-order joint types [19]. We de-
fine the c-order type of a sequence of binary symbols as a
� 0 dimensional vector, � , where each entry in the vector
corresponds to the frequency of occurrence of one of the
possible subsequences of length $ . The total number of sub-
sequences of length $ that can occur in a sequence of length
� is ��� $�� � . For example, for a binary target vector and
$ 	 � , � 	 ��� �E� �� � 3-���3 � ���3�3 � .

We denote the set of all c-order types over the alpha-
bet � ���� ! 0 for target vectors of length � as �  � � ���� ! 0 � .
Since each sensor independently chooses a block of $ con-
tiguous spatial positions, the distribution of its ideal output	 ) (which is sensed when the � ,�
 target vector ��� occurs)
depends only on the c-order type � of � � . i.e., for a sensing
function

)
and a target vector � � of type � ,

 ��( � 	 ) 	 % � 	 ����������� �������� � B 3 � ���� � � ����� � ��� ���
� ��������� ��� �	 ! ��% �

Thus,  ��% �'	 � � 	   B � �'	 � � 	 � � � 3   �+%*)  � for all ���
of type � .

Next, we note that the conditional probability ��#"�� � %
depends on the c-order joint type $ of the � ,�
 and ; ,�
 target
vectors ���.�� + . $ is the vector of % � � � ����� � �&� �(' � ����� ' �&� , the frac-
tion of positions in ������ + where ��� has a bit subsequence) 3 ����� ) 0 while � + has a bit subsequence * 3 �����+* 0 . For ex-
ample, when $ 	 � , $ 	 �,% � �C� � � �E� � ��������% � 3�3 � � 3�3 � � . We
denote the set of all c-order joint types over the alphabet
� ���� !.- 0 for target vectors of length � as /  � � ���� !0- 0 � . We
denote % � ���21�1�1 � �3' ��1�1�1 � 	 � ��24������ ���5�2�� � B 3 � �&6���  ' 42����� ' �5���� � B 3 � �76�� % � ���2����� ��� � �(' �+����� ' � � . Since each sensor de-
pends only on the $ contiguous targets bits which it senses,
 � " � ��% depends only on the joint type $ . i.e. for target
vectors ��� , � + of c-order joint type $ ,

 � ( �98 � 	 ) 	 % )  	;: 	 % : � 	 ����������� �������� � B 3 � � ' �+����� ' ������ � B 3 � ��<� � � ����� � �&� ��� (�<�3' � ����� ' �&� �=� 8
% � �>�+����� ��� � �3' �+����� ' � �

�	 @? ��% ) �% : � 	L@? �+% : � % ) �   ��% ) �
Thus, J�A"�� � % �'	 + � 	 � � 	  ? B � �'	 + � 	 � � 	
� � � 3  ? �+% :  � % )  � for all �  ; of the same joint type $ .

For example, for binary target vectors and $ 	 � , vec-
tors ���������������������������� ��� ���� ������� ��� have � 	 � ���������� ��
� ��B /  �CB / ��DB / ��CB / �. ������������ � respectively. Table 1 con-
tains the 2-order joint type of two target vectors. Consider a
sensor network where each sensor is randomly connected
to $ 	 � contiguous spatial positions. We assume that)

outputs the sum of the target bits which the sensor ob-
serves. Thus, each sensor has an ideal output alphabet '
	
� ����� � ! . For target vectors of type � ,  � 	 ) 	 � � 	

% � � ' � � 0&E � $89 	 ��� $89 	 ��� $89 	 ��� $89 	(���) * 	 ��� 0 0 0 2/7) * 	 ��� 1/7 1/7 0 0) * 	 ��� 1/7 1/7 0 0) * 	 ��� 0 0 1/7 0

Table 1. $ with $ 	 � for ��� 	 ��������� ����� and � + 	
��������������� .
� �C� C � 	 ) 	 � � 	F� � 3 �G� 3 � C � 	 ) 	 � � 	F� 3�3 respec-
tively. Given two target vectors ������ + of joint type $ , a
sensor will output ‘0’ for both target vectors only if both
of its connections see a ‘0’ bit in both target vectors. This
happens with probability % � �E� � � �C� � . Table 2 lists the joint
p.m.f.  � ( �98 �+% ) �% : � 	   ��% ) �  ? �+% : � % ) � for all output
pairs % ) �% : corresponding to joint type $ . The table shows
that

	 )  	;: are not independent, in general.
We specify two probability distributions which we will

utilize in the main theorem. The first is the joint distribution
of the ideal output 	 � when ��� occurs and the noise cor-
rupted version � of 	 � . i.e.,  �&% � �'	 �. � � 	
� � � 3  ��('� �+%*)   
  � 	 � � � 3  �J( �+%*)  � ��Z� � ��
  � %*)  � . The
second distribution is the joint distribution of the ideal out-
put 	 � corresponding to � � and the noise corrupted output
� generated by the occurrence of a different target vector
�-+ . We can write this joint distribution as H � : ��&% � �'	 �  � � 	
� � � 3 H �

: �
� ( � ��%*)  E
  � 	 � � � 3 � �0�CI  ��( ��%*)  �  �98.� � ( �+% : 	) � %*)  � ��Z� � ��
  � % : 	 ) � . Note that $ �.�J are dependent

here, although J was produced by $ + because of the de-
pendence of $ �.C$ + . This is unlike Shannon codes, where
the codewords are independent.

Since each sensor in the sensor network depends only
on the $ contiguous targets which it observes,  � % � �4	 �  � �
depends only on the type � of � � . Thus, we write
 � % � �'	 �  � � 	 � � � 3   �J( � ��% )  E
  � where   �J( � ��% )  
 � 	
  �+% ) � ��Z� � ��
�� %*) � . Similarly, H � : �� % � �4	 ��E� � depends only
on the joint type $ of ������ + and can be written as
� � � 3 H ?�J('� ��%*)  E
  � where H ?�J('� ��%*)� 
 � 	 � �0�CI   ��%*) �
�  ? �+% : 	 ) � %*) � ���� � �4
�� % : 	 ) � . We are now ready to
state the main theorem of this paper.

Denoting � �'I� � H � as Kullback-Leibler distance and K �' �
as entropy, the sensing capacity at distortion � satisfies,

Sensing Capacity Theorem.

�������AL ��MON �	��� 	 KQP3R KSP3R?TDU�V�W W W XYU � W W W X /TDU � W W W X3U�V�W W W X5Z\[
�^]   ��( �!_ H ?� ( �a`K �b$ �<�cK �d� �

(1)
where � �e� � � ���� ! 0 � and $(�f/ � � ���� !.- 0 � are in the set
of c-order types and c-order joint types respectively.

From the definition of H ?� ( � , we notice that if the ‘code-
words’ $ � were independent, the Kullback-Leibler distance
in (1) would reduce to the mutual information between $ �



 ��(4� 8 	 : 	 � 	 : 	 � 	 : 	 �	 ) 	 � % � �C� � � �C� � % � �C� � � � 3 � � % � �C� � � 3 � � % � �C� � � 3�3 �	 ) 	 � % � 3 � � � �C� � �e% � � 3 � � �C� � % � � 3 � � � 3 � � % � � 3 � � 3 � � � % � 3 � � � � 3 � � % � 3 � � � 3 � � % � 3 � � � 3�3 � � % � � 3 � � 3�3 �	 ) 	 � % � 3�3 � � �C� � % � 3�3 � � � 3 � � % � 3�3 � � 3 � � % � 3�3 � � 3�3 �
Table 2. Joint distribution of

	 :
and

	 ) in terms of the joint type $ of � + and ��� , with $ 	 � .

and its noisy version J . Further, the denominator in (1) ac-
counts for the non-identical distribution of the codewords.
The minimization over the joint type appears, because the
closest pair of codewords dominates the error probability.
Thus, the ‘sensing capacity’ is similar to classical channel
capacity, with differences arising due to non-identical, de-
pendent codeword distribution. If we specialize this result
to the case of $ 	 � and restrict the sensing function to be
a simple sum, this theorem provides a bound that coincides
with our original result [1] for the case of $ 	(� .

Proof. We assume a maximum-likelihood decoder 3 ML ��� � 	
M � � KNMPO :  ��� � �4�Y� 	�+ � . For this decoder, we consider �ACB max 	
KNMPO )� ACB ) , where  ACB ) is averaged over the random sensor
network. We seek to bound  ACB ) , which we write out below.

 ACB ) 	 �� % �CI�� �� �����  � ( �4	 � �  ��� � �4��� 	 � � Pr 5 error � ��C	 �� ��7
(2)

We bound Pr 5 error � � C	 ��E��7 by defining events 	U) : 	(�.	 + =
 � � � �4�Y� 	 + ��L J��� � ���Y� 	 � �J����C	 �� � ! and using the union
bound. Since decoding to a ; F� : ) results in error,

Pr 5 error � � E	 ��E��7�
  �� :����� ( 	 ) : ��
 �:����� (  ��	 ) : � (3)

We proceed to bound  ��	 ) : � . For any #.) : L � :

 �	 ) : � 	 �� " ��� ( 8  �#"�� � % �4	 + � 	 � �

 �� " �CI��  � " � ��% �4	�+ � 	 � � J��� � ���Y� 	 + �

D ( 8
 � � � �4��� 	 � � D ( 8 (4)

Using (3) and (4) in (2),

 ACB )�
 �� % �CI � �� ��� �  � ( �'	 � � J��� � �4��� 	 � ���
�:����� ( �� " �CI��  � " � ��% �4	�+ � 	 � � J��� � ���Y� 	 + �

D ( 8
 ��� � �4��� 	 � � D ( 8 (5)

The bound (5) has an exponential number of terms. How-
ever, it was argued earlier that in our sensor network,  ��( �4	 � � 	
  B � �'	 � depends only on the c-order type � of the � ,�
 tar-
get vector, while J� " � ��% �4	 + � 	 � � 	  ? B � �'	 + � 	 � � depends
on the c order joint type of the � ,�
 and ; ,�
 target vectors.
Thus, we can rewrite (5) by grouping terms according to

their c-order joint type $ .

�:����� ( �� " �CI�� J� " � ��% �4	�+ � 	 � �  � � � ����� 	 + �
D ( 8

J��� � �4��� 	 � � D ( 8 
 (6)

�
? ��� ( �Y[ �

� ��� �$�� � �^�� " �CI��  ? B � �4	 + � 	 � � J��� � ����� 	�+ �
D��

 � � � ����� 	 � � D��
where "�) ����� is the set of c-order joint types that result in an
error.1 i.e.,

" ) ��� � 	 �D$ =�$ � /  � � ���� ! - 0 �.% � � 1�1�1 � � 3 1�1�1 � �e% � 3 1�1�1 � � � 1�1�1 ��� � ! (7)

and where we choose # ) : 	L# ? for all ���  ;�! of c-order joint
type $ . Here

� ����+$ ��� � is the number of vectors � + that
have a joint type $ with respect to � � . To obtain (6), we
used the fact that % � � 1�1�1 � � 3 1�1�1 � � % � 3 1�1�1 � � � 1�1�1 � 
 9�! �+������ + �"
% � � 1�1�1 � � 3 1�1�1 � � % � 3 1�1�1 � � � 1�1�1 � � 0�243

 . For large � , equality is
achieved in (6).

� ��� �$ ��� � is bounded as,� ����+$���� � 
 �  
� ! � ? � 2�! �  �d� (8)

Combining equations (5),(6), and (8),

 ACB )�
 �� % �CI�� �� ���#�   B � �4	 � � J��� � ����� 	 � �.�
�

? ��� ( �Y[ � �  
� ! � ? � 2#! �  �d� �� " �CI��  ? B � �4	 + � 	 � �  � � � ����� 	�+ �

D��
 ��� � �4�Y� 	 � � D��

We now use the independence of the sensor outputs. Fur-
ther, since we are bounding a probability, the following bound
holds for $ ? ��5 ���� 7 and # ? 	 33�/&% � .

�ACB ) 
 �
? ��� ( �Y[ � �

% �  � ! � ? � 2�! �  �d� � ' �� ( �CI �' ��� J��� � �b* � ) ) �
��(�) �

�S  � ) ) �+*, �� 8 �CI  ? �
) : � ) )	� ���� � �,* � ) : �

���(�) ��-. % ��/ � (9)

We define the following quantity.

G��0$ ? +$ � 	 � � ���
'
�� ( �CI �' ���   � ) ) � J�Z� � �,* � ) ) �

��(�) �
� *, �� 8 �CI  ? �

) : � ) ) � ���� � �,* � ) : �
���(�) ��-. % �1/ (10)

1Technically 2�3547618 is a bit larger than that set, but the bound still holds.



Since the number of types of $ is upper bounded by � �S�
� ��� � , and � 	 R "�QUT , (9) is bounded as,

 ACB ) 
 K M O? ��� ( �Y[ � KSPYR��� % � � 3 � 2 � � 6��
��� 	�
 U �� (C4 X� �

� � 2 � � 2 � 3�/ ���� � % ��� � ! � ? � 2#! �  �d� /�� � % � B ? � �
We seek to bound KNMPO )� A<B ) . However,  A<B ) only depends
on the type � of ��� . Thus, we have the bound,

 ACB max 
 � 2 �
� 2�� � � � � /���� � �JB [ � �

G�� �'Q  ����	 KSP3R KSP3R? ��� �Y[ � KNM O��� % � � 3 G �0$ ? �$ �2�1$ ? Q���K �,$ � � K �d� � �
where � � �  � � ���� ! 0 � , and " ����� is as in (7), with � . Note
that ��3 �+" � V � as " V W , so we have not included it in the
error exponent G�� �'Q  ��� . Observing that G � ��+$ � 	 ���S$ ,
we let $ ? go to zero, rather than optimizing it, thus resulting
in a lower bound on G�� �4Q  � � . In the above expression,
this implies that in order for Q to be achievable

� � % � B ? �% � �
Q���K �,$ � � K ��� � � must be positive for all � �$ , even as$ ? V � . But this implies that the derivative of G��0$ ? �$ �
with respect to $ ? at $ ? 	 � must be greater than Q���K �b$ �>�K �d� � � . But it can be easily shown that,� G �0$ ? �$ �� $ ?

����� % � ��� 	 � �'  ��( � _ H ?�J('� � (11)

Using this derivative in the analysis above, and relaxing the
conditions $ � /  � � �����! - 0 � by dropping the restriction
that target vectors are restricted to length � in the definition
(7) of " �	��� (thus, weakening the bound), we see that the
sensor network can achieve any rate Q bounded as below.

Q 
 KSP3R KSPYR?TDU V�W W W XYU � W W W X /T.U � W W W XYU V�W W W X�Z [
�^]'  ��('� _ H ?� ( ��`K �b$ �9� K �d� � (12)

Therefore the Right Hand Side is a lower bound on ���	��� .

4. SENSOR NETWORK MODEL EXTENSIONS

We consider two straight-forward extensions to our sensor
network model. The first extension considers non-binary
target vectors. Binary target vectors indicate the presence or
absence of targets at the spatial positions. A target vector
over a general finite alphabet may indicate, in addition to
the presence of targets, the class of a target, or the intensity
or concentration of each target. Assuming a target vector
over alphabet � , we obtain the capacity bound below.

���	����L � M N ��� � 	 KSP3R KSPYR?�! #"$&% TDU  W W W XYU % W W W X�Z [
�^]'  ��('� _ H ?� ( ��`K �b$ �9� K ��� �

where � � �  �'� 0 � and $ � /  �'� - 0 � .
A further extension considers the case of heterogenous

sensors, where each class of sensor has a different sensing
function

)
and noise model ��Z� � . Let the sensor of class (

be used with a relative frequency )+* . Then,

�������AL � MON �	��� 	 KQP3R KSPYR?�  �"$,% TDU  W W W XYU % W W W X�Z\[
� * )-* �/..  B *�J( � _ H ? B *��(4�10

K �b$ �<� K �d� �
where � � �  �'� 0 � and $ � /  �'� - 0 � .

5. CAPACITY BOUND EXAMPLES

We compute the capacity bound �#MON �	��� for various sensor
network models. In Figure 2, we compare �#M N ��� � for sen-
sor networks with localized and non-localized [1] sensing.
We assume that the sensing function

)
is an un-weighted

additive function. The sensor noise model used throughout
this section assumes that the probability of error decays ex-
ponentially with the error magnitude. In the figures, ‘Noise
= 2 ’ indicates that for a sensor,  �43 F	 	 � 	52 , with
� 	 ' assumed. Figure 2 demonstrates � MON ����� for local-
ized and non-localized sensing, at two sensor noise levels,
and a fixed sensing range $ 	 1 . Sensor localization causes
a significant reduction in sensing capacity. We conjecture
that this effect is similar to the inferior performance of a
channel code which has a finite memory, such as convolu-
tional codes, as opposed to LDPC codes which have large
memory.

Figure 3 shows �AMON ��� 	 ��� � � for a weighted sum
sensing function and compares this to an un-weighted sum
sensing function. We assume a range $ 	 � with weights
5 ��� 6���87 . The weighted sum sensing function has a higher
bound across all sensor noise levels. Intuitively, this oc-
curs because the weighted sum distinguishes between its
two connections, resulting in less ambiguity.

Figure 3 also demonstrates that sensor cooperation is
more efficient than the commonly used strategy of simple
sensor replication. For example, a rate of ��� �&6 1 targets/sensor
is achievable for sensors with a noise level of ��� � and the
weighted sum sensing function. If instead, each sensor is
replicated thrice (thus, requiring three times as many sen-
sors, while also reducing the noise level to 117 � ��� � �5-�7 ��� 8\�
����� � �:9 	 ��� � due to majority-decoding), then the resulting
rate reduces to ��� �,;�<�B 1 	 ��� � 1 � targets/sensor.

6. SEISMIC SENSOR NETWORK

We compare our bound to the performance of a practical
sensor network decoding algorithm. We consider an ideal-
ized seismic sensor network (Figure 1), where each block
in a grid contains a target or nothing. Seismic sensors are
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sum sensing function.

randomly dropped on this grid. Each sensor senses $ con-
tiguous blocks, and outputs the weighted sum of vibration
amplitudes caused by each target in the sensed blocks.

Inspired by its success in decoding LDPC codes, we
used the belief propagation algorithm [20] to fuse the obser-
vation of seismic sensors to obtain an estimate of the spatial
target configuration in the grid. Borrowing from [20], we in-
troduce the following notation in order to describe the belief
propagation algorithm for our sensor network model. We
denote the set of targets sensed by sensor # by � � # � . Anal-
ogously, we define / ��� � as the set of sensors that sense the
target � . We denote the set � � # � with target � excluded
by � � # ����� , and similarly we denote the set / ��� � with
sensor # excluded by / ��� ��� # . Let 2��� 	  �+* � 	 * � be the
prior probability of the target bits. The algorithm consists
of two parts, where two sets of quantities, 	 �  and 
 �  , are
iteratively updated. We now proceed to describe the belief
propagation algorithm for our sensor network model.

We initialize the algorithm by letting 	���  	 2��� . In the
sensor step of the algorithm we compute the 
 �  quantities

using the following expressions.


 ��  	 �' �CI J��� � ��
  � * � �
�� �� ��� ��� � � ��� �  ��� � ��<� �� B � � � '

�
� � ��� �  ��� � 	 ���

�� �  

The target step computes 	 �  values from the computed

 �  values as below (where ) �  	�	 ��  ��	 3�  ).

	 ��  	 ) 243�  2 �� �
 � ��� � � ���  
 ��  �

After a fixed number of iterations one can halt the algorithm
and compute the probabilities of each target bit as shown
below (where ) � 	�	 �� ��	 3� ). These probabilities can be
used to decode the target vector.

	 �� 	 ) 243� 2 �� �
 ��� � � � 
 ��  

Using this decoding algorithm we empirically examined
seismic sensor network performance as a function of rate.
We generated sensor networks of various rates by setting the
number of targets, and varying the number of sensors. We
chose the number of connections to be $ 	 � (with weights
��� 6 and ��� � ), the distortion level to be ����� , and the noise
level to be ��� � (i.e.  �'3 F	 	 �&	 ��� � , with � 	 ' ).
As in the previous section, we assume that the probabil-
ity of error decays exponentially with error magnitude. We
empirically evaluated (using belief propagation) the maxi-
mum error rate averaged over a set of randomly generated
sensor networks. We plotted the maximum error rate over
all sampled target vectors for each rate value, and for vari-
ous numbers of targets as shown in Figure 4. The capacity
value ��MON for the model used in this experiment is ��� ��; / .
Since belief propagation is suboptimal for graphs with cy-
cles, and given that the error curves converge to zero at rates
above ��� �,;-/ , it appears that our capacity lower bound is not
tight. As the number of targets increases, the decay in error
becomes sharper, which indicates an information theoretic
capacity effect. Unfortunately, belief propagation worked
poorly as a practical decoder for more than two connections.
We conjecture that this occurs because sensing is localized
in our model, and thus the number of short cycles is quite
large and the graph does not appear tree-like. Therefore, the
loopy belief propagation approximation performs poorly. In
future work, we hope to overcome this difficulty by using
generalized belief propagation.

7. CONCLUSIONS

We explored a notion of sensing capacity for sensor net-
works with localized sensing and arbitrary sensing func-
tions. We proved a lower bound � MON ����� to the sensing ca-
pacity and computed it for illustrative examples. Our bound
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can be extended to account for non-binary target vectors and
heterogeneous sensors. We conclude that � MON ����� for sen-
sors with non-localized observations is significantly higher
that for sensors with localized observations. We also show
that one can significantly vary the sensing capacity by choos-
ing different sensing functions. By examining � MON �	��� , we
concluded that simple sensor replication is inefficient com-
pared to sensor cooperation. We derived a belief propaga-
tion algorithm for decoding our sensor network model. Us-
ing this algorithm, we empirically evaluated capacity for an
idealized seismic sensor network and compared the result to
��MON �	��� .
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