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Abstract— We introduce a hypergraph based interference
model for scheduling in wireless networks. As a generalization
of the graph model, hypergraph considers the conflicts caused
by sum interference. We show in an arbitrary network, the
successful transmissions under any graph model can be improved
by a hypergraph. In some networks, a hypergraph can double
the uniform throughput compared to the disk graph. We then
analyze the capacity region of maximal scheduling in the hyper-
graph, where a linear programming (LP) based lower bound is
formulated and proven to be tight. We also show that the maximal
scheduling in hypergraph can guarantee a certain fraction of the
capacity region. Simulation results show that maximal scheduling
in hypergraph can achieve about 40% more uniform throughput
than in graph for random networks.

Keywords: Hypergraph, maximal scheduling, capacity re-
gion, wireless networks, MAC.

I. INTRODUCTION

In wireless networks, user nodes communicate with each
other using a shared wireless spectrum. This resource sharing
introduces co-channel interference, which may cause severe
deterioration to the communication quality of a communica-
tion link. The co-channel interference is often controlled by
appropriate scheduling in the MAC layer, where a scheduler
allocates resources among single hop communication flows so
that there is no “conflict”, which is defined by a specified inter-
ference model and is assumed to correspond to communication
failures in realistic networks.

In past research, a flow contention graph is used to describe
the interference between communication links. In such a graph
Gc = (Vc, Ec), where Vc is the node set consisting of
communication links and Ec is the edge set, two links i, j are
allowed to share the same resource if and only if (i, j) �∈ Ec.
Implicitly it is assumed that interference is “pairwise”, i.e., the
failure of a link can be explained completely by another link.
Thus, any independent set I ∈ Vc can transmit successfully
together. This model is popular due to its simple structure
for analysis and the existence of efficient graph algorithms in
applications. However, a graph is neither accurate nor efficient
in describing the interference: 1) Inaccuracy: the graph gives
no performance guarantee. Although no communication failure
occurs because of a single link, it is still possible because of
the sum interference, i.e., the cumulative interference from
co-channel transmitters. 2) Inefficiency: The resource is not
fully utilized in the case of “conservatively” constructed edges

in a graph, i.e., in order to reduce the sum interference, a
pair of links are not allowed to transmit together even if
they are able to in certain scenarios. In this paper we try
to tackle these problems by generalizing the pairwise model
to the hypergraph, where the sum interference is considered.
A hypergraph has the same the node set as the graph, but
can have hyperedges including 2 or more links. Note that
a hypergraph model has been proposed in [1] for cellular
networks. However, to the best of our knowledge, this is the
first paper that applies a hypergraph model to wireless ad
hoc networks. We show the graph model can be improved
by a hypergraph in both cases mentioned above. First, the
hypergraph is proved to be more accurate than the graph, in
that given an arbitrary network, the throughput achieved by
any scheduler using the graph can be improved by a new
scheduler using an appropriate hypergraph. Second, under
certain scenarios a hypergraph can yield a factor of 2 gain
in terms of uniform throughput over the “disk” graph, where
an edge is formed between two links if and only if the distance
between one link’s transmitter to the other’s receiver is less
than a fixed threshold.

Convinced of the value of the hypergraph, we then analyze
the theoretical capacity region under maximal scheduling in a
hypergraph model. This region is defined as the arrival rate
vector which can be stabilized by any maximal scheduler.
A maximal schedule was defined and analyzed for graph
model in [4], see also [5]. In a hypergraph model, similar
to the previous definition, a maximal schedule corresponds to
the situation where if a link i wants to transmit, either i is
scheduled or there exists a set of scheduled links {i1, . . . , ik}
such that {i, i1, . . . , ik} is not allowed by a hyperedge. Note
the optimal scheduler has been proposed in [2]. However, it is
centralized and can have exponential complexity, and therefore
is not suitable for realistic networks. Maximal scheduling,
although suboptimal, is attractive due to its low complexity and
distributed implementation. In this paper we give an LP based
lower bound of the capacity region under maximal scheduling.
We also show that this lower bound is tight in the sense that
there exists a family of networks, in which for any point
outside the lower bound region, there exists an arrival process
and a maximal scheduler that makes the network unstable. We
also generalize the performance guarantee from [4] by showing
that maximal scheduling in a hypergraph can guarantee a



fraction of the capacity region.
The organization of this paper is as follows: in Section

II we describe the scheduling problem and introduce the
hypergraph model. In Section III we show the improvement
by using hypergraph. Section IV discusses the capacity region
of maximal scheduling in hypergraph. Section V gives the
simulation results and Section VI concludes this paper.

II. HYPERGRAPH MODEL

We consider the scheduling problem in an arbitrary wireless
network. The topology is described by a directed graph G =
(V,E), where V is the set of user nodes and E is the
set of communication links. A link i = (u, v) ∈ E can
exist only if node v is in the transmission range of node u,
which is determined by the transmission power and channel
propagation. We assume a TDMA system. In each time slot,
the transmission of a scheduled link i is successful if and
only if the signal to interference plus noise ratio (SINR) at its
receiver satisfies the following constraint:

pigii∑
j∈Ti

pjgji + N0
≥ γi (1)

where γi is the threshold determined by the modulation and
coding scheme and the detection method, Ti is the set of links
transmitting together with link i, gji is the channel gain from
the transmitter of link j to the receiver of link i, and N0 is the
noise power. Otherwise we say that the transmission of link i
is in outage.

We consider a single hop network where each transmitter is
associated with an external source and an infinite buffer. The
arrival process for the transmitter of link i is modeled as Ai(n),
which is the cumulative number of packets arrived during the
first n slots. The only requirement on the arrival process is that
the strong law of large numbers, i.e., limn→∞ Ai(n)/n = ai

with probability 1 (w.p.1). We assume that the packets arrive
at the beginning of each time slot. In a time slot, a scheduler
chooses a “conflict free” set of links with nonempty buffers
for transmission based on certain interference model. The
dynamics of the queue length at link i can be described as

Qi(n) = Qi(0) + Ai(n) − Di(n). (2)

where Di(n) is the cumulative number of departed packets
in the first n time slots and Qi(n) is the queue length at the
transmitter of link i at the end of slot n.

Usually the interference is modeled as a graph Gc =
(Vc, Ec), where Vc is the set of links and Ec is the set of
conflicts, i.e., (i, j) ∈ Ec means the concurrent transmission
of link i and j is not allowed. We define the neighbor set of
a link i as Ni = {j : (i, j) ∈ Ec} and its interference set as
Ii = {e ∈ Ec : i appears in e}. Note that Ni is the set of
nodes and Ii is the set of edges. In a maximal schedule, a
link i with nonempty buffer is allowed for transmission if and
only if no link in Ni is scheduled.

We propose a directed hypergraph model H = (Vc, EH) for
scheduling. A hypergraph H = (Vc, EH) is a generalization
of the graph, where Vc is the same as in Gc (the set of links)
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Fig. 1. A “star” network with the transmitters of the 6 outside links lying on
a hexagon centered at link 0’s receiver. The squares denote the transmitters,
and the circles deonte the receivers.

and EH is the hyperedge set such that that for any two link
sets S, T ⊆ Vc, (S, T ) ∈ EH only if

1) (Validity) When the links S ∪ T are scheduled all the
links in S fail and none of T fails;

2) (Minimality) If any link in S ∪T is removed, no failure
occurs if only the remaining links are scheduled.

Denote the neighbors of link i as Ni = {j : ∃e ∈
EH such that both i and j appears in e} and the interference
set of link i as Ii = {e ∈ EH : i appears in e}. We define
a hyperedge e = (S, T ) in Ii as “active” if (S ∪ T )\{i}
are scheduled. In a maximal schedule, given any link i with
nonempty buffer, either it is scheduled, or there exists an active
hyperedge e ∈ Ii.

Example: Consider the network in Fig. 1, where the only
failure event is that link 0 fails when all of the links are
transmitting. In this case the hypergraph is H = {Vc, {e}}
where Vc = {0, 1, 2, 3, 4, 5, 6} and e = ({0}, {1, 2, 3, 4, 5, 6}).
Each link has the same neighbor set N = {1, 2, 3, 4, 5, 6}
and interference set I = {e}. Note {0, 1, 2, 3, 4, 5, 6} is
not valid because of hyperedge e. Both {0, 1, 2, 3, 4, 5} and
{1, 2, 3, 4, 5, 6} are maximal schedules, where in the later case
the hyperedge e ∈ I0 is active. If the buffers of link 5, 6 are
empty, {0, 1, 2, 3, 4} is a maximal schedule.

We are interested in the theoretical capacity region under
maximal scheduling in the hypergraph, AM

H , which is defined
as the set of stable arrival rate vectors under any maximal
scheduler. Here the stability corresponds to rate stability [4],
i.e., limn→∞ Di(n)/n = ai for all i. We denote the theoretical
capacity region under the optimal scheduling [2] as AH .
In the next section, we will show that the hypergraph has
better performance than the graph in terms of accuracy and
efficiency.

III. IMPROVEMENTS DUE TO HYPERGRAPH MODEL

A graph model is either inaccurate or inefficient due to its
pairwise nature. First, if the graph is constructed such that
an edge exists only if it is guaranteed to result in outage,
it is inaccurate because the sum interference may still cause
outage even if no pairwise interference does. For example,



consider a star shaped network in Fig. 1 with a center link and
6 peripheral links. All the links have length 0.25 normalized
by the radius of the hexagon. We assume the signal to noise
ratio (SNR) is 20 dB and γ = 10 dB. If all the nodes are
simultaneously transmitting, the SINR at the center receiver
is 9.84 dB, and the minimum SINR among outside receivers
is 12.84 dB, which means the outage occurs only at the
center link. If one of the outside link is silent and all the
others are transmitting, the SINR at the center receiver is
10.55 dB, i.e., successful reception. Thus a graph based on
pairwise conflicts leads to Ec = ∅ because no pairwise
transmission causes outage. This means that a scheduler will
choose all the links with nonempty queues to transmit. In
this case the center fails whenever all the other links have
packets. On the other hand, a hypergraph can prevent this
by adding a hyperedge e = ({0}, {1, 2, 3, 4, 5, 6}). In this
case, a schedule is successful if and only if it is valid in the
hypergraph. Formally, we prove that for an arbitrary network,
the number of successful transmissions can be increased by
adding hyperedge constraints.

Theorem 1: For an arbitrary network, given any graph Gc

and scheduler π, there is a hypergraph H and scheduler π′

such that 1) H has at most one more hyperedge than Gc and
2) the sum of successful transmissions under π′ is not less
than that of π.

Proof: Given a graph Gc, we assume that at least one
independent set in Gc causes outage, since otherwise we let
H = (Gc, EH = Ec), π′ = π and the result holds. Suppose
the set {i1, i2, . . . , ik} causes transmission failure at link i1.
Let H = (Vc, Ec ∪ {e}) with e = ({i1}, {i2, . . . , ik}) be
the hypergraph. Also define the scheduler π′ as follows: in
each time slot, given the schedule π(n), 1) check whether the
links in e are scheduled; if so, remove i1 from π(n); 2) check
whether any links with empty queues are in π(n); if so remove
them.

For any time slot n, if not all the links in e are scheduled
in π(n), no modification is done after (1). Otherwise, by
removing a link in outage, we are not decreasing the number
of successful transmissions in this time slot. Now consider
(2), where any empty queue is the result from at least one
more transmission failure in Gc than in H . Therefore after
removing the links with empty queues, the sum of successful
transmission in H is still not less than in Gc. �

Second, if the graph is constructed conservatively to sup-
press the sum interference, i.e., disallowing concurrent trans-
missions of certain links even if no outage is caused by
pairwise interference, the resource may not be fully utilized.
We will show this by an example. Consider the star network
mentioned above, where an edge is formed whenever the
distance from one link’s receiver to another link’s transmitter
is below a certain threshold. The resulting graph is a star
with 6 edges, whereas the hypergraph consists only one
hyperedge. Therefore the capacity region for the graph is
a1+max7

i=2 ai < 1, and for the hypergraph it is
∑7

i=1 ai < 6.
If we consider the uniform throughput, the hypergraph yields
a uniform rate of 6/7, while the graph only has 1/2. Thus the

hypergraph will have a gain 12/7 over the graph. It can be
verified that under the same physical layer specifications, the
number of peripheral links in the network can be more than
10 with a small modification of link length. Thus hypergraph
can have a gain of approximately 2 over graph in terms of
uniform throughput.

IV. MAXIMAL SCHEDULING IN HYPERGRAPH

Seeing Section III motivated the application of the hyper-
graph model by showing that a) it is never worse than the
graph model and b) it can give a substantial improvement
over the graph model in certain examples, in this section we
will analyze its theoretical capacity region under maximal
scheduling. Note that this is an idealized situation, i.e., we
assume that in any maximal schedule the transmissions are
successful in the network.

The following theorem gives a lower bound on the capacity
region which generalizes the corresponding lower bound for
the graph model in [4] and [5].

Theorem 2: The network is rate stable under an arrival rate
vector a if the following LP in variables {xij} is feasible:

ai +
∑

j∈Ni

ajxij < 1 ∀i ∈ Vc (3)

∑

j∈Ni∩e

xij ≥ 1 ∀i ∈ Vc, e ∈ Ii (4)

xij ∈ [0, 1], ∀i, j ∈ Vc (5)

Note when the hypergraph is a graph, for each edge (i, j), we
have xij = 1 from constraint (4), and the result is the same
as [4].

We first discuss the intuition behind the proof. In any
maximal schedule, either a link i with nonempty buffer is
scheduled or an edge in Ii is active. If there is a weight
assignment in each i’s neighborhood such that, in any time
slot, the weighted sum of departures in Ni ∪{i} is more than
1, and the corresponding weighted sum of average arrivals is
less than 1, the network is stable.

Proof: We will use the fluid limit to prove this theorem. Note
similar proofs have been derived in [3],[4], we only highlight
the changes due to the hypergraph model. For details about the
convergence to the fluid limit and conditions for rate stability
please refer to these papers and the references therein.

Consider a fluid limit {A(t),D(t), Q(t)} of the network.
We claim that if Qi(0) = 0, we have Qi(t) = 0 w.p. 1 for
all t and i. Suppose this is not true, then there exist a time
t1 and i such that Qi(t1) = x > 0, which implies Qi(t1) +∑

j∈Ni
xijQj(t1) = y > 0. Without loss of generality we

assume that Qi(t1) +
∑

j∈Ni
xijQj(t) < y for 0 < t < t1.

Because Qi(t) is continuous, there exists 0 < t0 < t1 such
that Qi(t) > x/2 for every t ∈ (t0, t1], which means for
sufficiently large k we have Q

rnk
i (t) > x/4 and rnk

x/4 > 1
for every t ∈ (t0, t1]. Therefore we have Qi(rnk

t0) > 1, i.e.,
the queue i is not empty, and there exists ε > 0 such that

Qi(t1) − Qi(t0) +
∑

j∈Ni

xij

(
Qj(t1) − Qj(t0)

)
≥ ε. (6)



For k large enough, we have

Q
rnk
i (t1)−Q

rnk
i (t0)+

∑

j∈Ni

xij

(
Q

rnk
j (t1)−Q

rnk
j (t0)

)
� Φ1−Φ2

where

Φ1 =
∑

j∈Ni

xij [A
rnk
j (t1) − A

rnk
j (t0)] + A

rnk
i (t1) − A

rnk
i (t0)

Φ2 =
∑

j∈Ni

xij [D
rnk
i (t1)−D

rnk
i (t0)] + D

rnk
i (t1)−D

rnk
i (t0).

Note in a maximal schedule if the queue in link i is not empty,
either link i will transmit or one of the hyperedges in Ii is
active. From Eqn. (4) and (5), the weighted departure in each
time slot is more than 1. Therefore we have Φ2 ≤ (t1 − t0)
and by taking limit we get

Qi(t1) − Qi(t0) +
∑

j∈Ni

xij

(
Qj(t1) − Qj(t0)

)

≤ ai(t1 − t0) +
∑

j∈Ni

ajxij(t1 − t0) − (t1 − t0)

= (ai +
∑

j∈Ni

ajxij − 1)(t1 − t0)

which is negative and contradicts Eqn. (6). Therefore we have
Qi(t) = 0 w.p. 1 for all t. Therefore the rate stability holds
following the argument in [3],[4]. �

This lower bound region AML
H , i.e., the rate vectors for

which the LP is feasible, is not convex. To show this, consider
a hypergraph H = (Vc, EH) where Vc = {1, 2, 3} and
EH = {({1}, {2, 3})}. In this hypergraph, an outage occurs if
and only if all of the links transmit simultaneously. Consider
the arrival rate vectors a = (1, 1, 0), a′ = (1, 0, 1) and
a′′ = (0, 1, 1). Clearly each of them can be stabilized by any
maximal scheduler. Also it can be verified that all of them are
on the boundary of AML

H . However, their convex combination
â = 1/3(a + a′ + a′′) = (2/3, 2/3, 2/3) does not belong to
AML

H . Actually, this non-convexity is due to the definition of
the capacity region under maximal scheduling, which requires
that the arrival rate be stable under any maximal scheduling.
In this example, if we fix a = (2/3, 2/3, 2/3) and consider
an arrival process where the packets arrive in the first two of
every three times slots for all the links, a maximal scheduler
which gives higher priority to link 2, 3 will make the network
unstable because link 1 only get one time slot for transmission
in every three time slots.

In the following theorem we show the tightness of the
proposed lower bound region. Particularly, we show that there
exists a family of hypergraphs in which the LP feasibility is
both sufficient and necessary for the network to be stable under
maximal scheduling.

Theorem 3: There exists a hypergraph H such that for any
arrival rate vector a outside AML

H , the network is unstable
under certain maximal scheduler π and arrival process with
rate a.

Proof: If the hypergraph purely consists of edges, i.e., the
graph model, we have xij = 1 in the LP for any j ∈ Ni.

This is the same situation as in [4], which has proved it
correct. Now we consider a hypergraph with some hyperedges
of cardinality more than 2. Particularly consider the following
“star” hypergraph with n links and m hyperedges. All the
hyperedges have only one common link, the center link 1.
Thus they are pairwise disjoint if we remove link 1 from each
hyperedge. Now assume that there is an arrival rate vector a
such that the LP is not feasible. Denote the link with minimum
rate except link 1 in hyperedge ek as ik and the set of such
links as M . We claim that a1 +

∑m
k=1 aik

≥ 1 + ε for some
ε > 0. Otherwise we can choose x1ik

= 1, 1 ≤ k ≤ m and
x1j = 0 else, which satisfies Eqn. (4) and (5), then our claim
holds from the assumption that the LP is not feasible.

Consider a maximal scheduler that assigns lowest priority to
link 1. Let the arrival process be such that at most one packet
arrives in at most one of the links in M in each time slot.
Further, in a give time slot, if ik ∈ M gets a packet, then all
links in the hyperedge of k also get at least one packet, so that
link 1 can not transmit. Thus, the fraction of time allocated
for link 1 is 1 −

∑m
k=1 aik

< a1 by our claim, which makes
link 1 unstable. �

Similar to the graph model, the maximal scheduling in
hypergraph gives a guaranteed performance ratio compared
to the optimal scheduling. The following theorem gives an
optimization based formulation which generalizes the theorem
derived in [4] for the graph model:

Theorem 4: For any a ∈ AH , we have a/K ∈ AML
H , where

K = max(K1,K2, . . . ,Kn) with Ki the optimal value of the
following problem (for fixed i):

max xi +
∑

j∈Ni

xj

subject to
∑

j∈e

xj ≤ card(e) − 1 ∀e ∈ EH

xj ∈ {0, 1}

where card(e) means the cardinality of e.
Note when the hypergraph is a graph, the optimal value of

the above problem is the “interference degree” of link i [4],
which is the cardinality of the maximum independent set in
link i’s neighborhood. Also a lower bound is easily computable
by relaxing it to an LP.

Proof: Denote a ∈ AH as any rate vector stable under the
optimal scheduling. We have 0 ≤ aj ≤ 1 for all j. For any
hyperedge e, the number of transmitting links in e in a time
slot should be less than its cardinality, and according to the
optimization formulation above, the number of transmitting
links in Ni ∪ {i} should be less than Ki. By taking the time
average we get ai +

∑
j∈Ni

aj ≤ Ki ≤ K for all i ∈ Vc,

where, by dividing K in both sides we have ai

K +
∑

j∈Ni
aj

K ≤ 1.
It can be seen that the LP in Theorem 2 is feasible for a/K
(choose xij = 1) and hence a/K ∈ AML

H . �

V. SIMULATION RESULTS

In this section, we compare the performance of a graph
based model and a hypergraph based model in a realistic
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Fig. 2. The outage probability in a single time slot with all nodes contending
for transmission.

network using a simulation. Both models are constructed
based on thresholds. For example, in the graph, an edge
(i, j) is formed if and only if gii ≤ γggji, and in the
hypergraph, a hyperedge ({k}, {i, j}) is formed if and only if
gkk ≤ γh(gik + gjk) and no subset forms an edge. To limit
complexity, the hyperedges are constructed only from nodes
in link i’s neighborhood defined by Ni = {j : gii/gij ≤ γn}.
γn, γg, γh are fixed thresholds chosen carefully. We assume
all links have constant length 1, and SNR= 20dB.

A. Outage Probability

We simulated the outage probability in a single time slot
with all the nodes contending for transmission in a network
consists of 100 links. Usually the threshold is chosen based
on heuristics (e.g. [6]), which use global information about
the network (such as density) and various approximations.
In the case where no extra information is known, one can
choose γg = γ as guided by physical layer considerations
(γg = γ is optimum in a sparse network). We show that in
this case the hypergraph can give better performance guarantee
by considering the sum interference. We set γg = γh =
γ = 10dB, γn = 17dB and adjust node density by changing
the network area. Fig. 2 compares the outage probability in
both models. The result is averaged over 1000 time slots and
20 random networks. In the figure, “4-Hypergraph” refers
to a hypergraph whose hyperedge size is at most 4. Thus,
a graph is a “2-Hypergraph”. It can be observed that the
outage probability in the hypergraph model is approximately
30% lower than that of graph. Note that the hypergraph is
constructed locally to reduce the complexity, and by increasing
the γn we can get a lower outage probability. For this locally
formed hypergraph, size 3 hyperedge is sufficient to describe
the interference.

B. Throughput

We simulate the maximum uniform throughput in AML
H

with target outage probability less than 0.1. We generate a
network of 60 nodes in each simulation and assume that
global network topology can be used to change the graph and
hypergraph. We first perform a binary search for the optimal
γg for the graph model, then set γn = γg and search for the
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Fig. 3. The maximum uniform throughput in graph and hypergraph under
outage constraint 0.1.

hypergraph threshold. The maximum uniform throughput is
calculated by solving the LP in Theorem 2. Fig. 3 shows the
average uniform throughput over 40 random networks. It can
be observed that even a 3-Hypergraph is more efficient than
a graph since it can achieve the same outage probability with
significantly larger throughput. For example, in the case of
density 1.8, the 3-hypergraph has about 40% more throughput
than the graph.

VI. CONCLUSION

In this paper, the hypergraph is introduced as a new interfer-
ence model for scheduling in wireless networks. Compared to
the traditionally used graph model, it is shown that hypergraph
can improve the performance by considering the sum interfer-
ence. Also the capacity region under maximal scheduling is
analyzed. A lower bound is obtained and shown to be tight.
It is also proved that in hypergraph, maximal scheduling can
achieve a guaranteed fraction of the capacity region, which
generalizes the “interference degree” defined in the graph.
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