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Abstract

We develop theTime Reversal Adaptive Interference CancglERAIC) time reversal beamformer
(TRBF), a new algorithm to detect and locate targets in rich scattering environments. It utilizes time
reversal in two stages: (Anti-focusing: TRAIC time reverses and then reshapes the clutter backscatter
to mitigate the clutter response; (BHocusing TRBF time reverses the residual backscattefotmusthe
radar image on the target. Laboratory experiments with electromagnetic radar data in a highly cluttered
environment confirm the superiority of TRAIC-TRBF over conventional direct subtraction beamform

imaging.

Index Terms

Time Reversal, Wideband Radar Imaging, Adaptive Interference Cancelation, Waveform Shaping,

Super-Resolution

Edics: SAM-IMGA, SAM-APPL

. INTRODUCTION

Locating and imaging targets buried in high clutter poses considerable challenges. Detection and
imaging algorithms suffer significant performance loss because the channel Green’s function is very
different from the direct path model that these algorithms usually assume. In complex channels, for
example, when the propagation speed profile is spatially varying or due to boundary layers, the use of
numerical codes that integrate the wave equation, like matched field processing (MFP) in underwater
acoustics, e.g., [1], provides the channel Green’s function. But MFP is prohibitively expensive in most

applications and is highly sensitive to accurate knowledge of the environmental conditions. This paper
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explores how time reversal (TR) can be usedldnalizing targets in highly cluttered environments.
References [2], [3], [4], [5], [6] have shown the power of time reversdbtuswith super-resolution on

a source in a highly dispersive medium by time reversing and retransmitting the time dispersed signal
received at an array of sensors. References [7], [8] demonstrate super-resolution focusing in underwater
acoustics and reference [9] demonstrates focusing in the electromagnetic domain. Focusing results from
the time reversibility of the wave equation in a non-absorbing medium: the highly dispersed back-
propagated field is time reversed, resent, and focuses on the radiating source. The more inhomogeneous the
media is, the higher the focusing resolution achieved. Intuitively, time reversal is equivalent to generating a
virtual aperturelarger than its actual physical size, yielding a much higher resolution. Beyond focusing,
recent work on time reversal imaging includes Lehman and Devaney [10], Devaney [11], Prada and
Thomas [12], Borcea et al. [13], [14], and other references [15], [16], [17]. In these works, the Multiple
Signal Classification (MUSIC) algorithm is combined with time reversal for locating well resolved targets,
where the MUSIC spectrum is constructed by eigen-decomposing the so called time reversal matrix. This
approach is applicable only when the number of scatterers in the imaged area is smaller than the number
of antennas since the generalized MUSIC spectrum requires that the number of scatterers be smaller than
the number of antennas.

In [18], we studied detection with time reversal. We showed for the electromagnetic (EM) domain that
time reversal provides significant gains when detecting targets burried in clutter using a single sensor.
In this paper, we consider localization of targets in high clutter for radar (electromagnetic) data, which
we also refer to as imaging. We present a new high resolution time-reversal imaging algorithm, the
Time Reversal Adaptive Interference CancgBRAIC) followed by time reversal beamforming (TRBF).

Unlike time reversal MUSIC based algorithms, TRAIC-TRBF only requires the number of antennas to
be larger than the number of potential targets, regardless of the number of scatterers in the illuminated
region. The TRAIC algorithnreshapeshe time reversed backscatter from the clutter to minimize the
energy returns from the clutter at the array. In contrast waitusing the goal of TRAIC isanti-focusing,

i.e., nulling the EM energy received at the transmit/receive radar backscattered by the clutter. Probing
the cluttered environment with the reshaped time reversed waveform enhances the backscatter from the
target. The second stage, TRBF, time reverses the backscatter from the target and resends it into the
medium to focus on the target. The high resolution achieved at this stage by time reversal generates a
narrow beam, which provides high resolution in localization and imaging.

Physical and mathematical time reversalWe describe time reversal in the paper as if the signals were
physically time reversed and retransmitted. In practice, in many situations, there is no need to actually

physically retransmit the time reversed signals—in this case, the time reversal steps in TRAIC-TRBF
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become algorithmic steps with no need for additional signal retransmission. When time reversal is used
as an algorithmic step, with no physical retransmission of the signals, we refer to it as mathematical time
reversal.

Notation. We use lower case boldface letters to denote vectors and upper case boldface letters to denote
matrices. In addition, we adopt the following conventions throughout the pépefor conjugate;(-)”
for transpose(-) for Hermitian transposeliag[x] for the diagonal matrix whose diagonal is the vector
x; || - || for the vector (matrix) Frobenius norni,, for the identity matrix of ordern; det(A) for the

determinant of matrixA; and the inner product notatiofx,y) = xy.

Il. DATA MODEL

We present in this section the data model that we adopt. Subsection II-A discusses a stepped frequency
synthesis of the transmitted signals, subsection II-B the array configuration, and subsection 1I-C the multi-

static response matrix and the time reversal matrix.

A. Stepped frequency synthesis

The illuminating signals(t), t € [0 T, has Fourier transforn$(w), w € [wo wo + B]. The signal
has duration” and bandwidthB. Time reversal of a real valued signal is simply phase conjugation
in the frequency domain, i.e., the Fourier transforms6ft) is S*(w) (see Oppenheim and Willsky,

[19].) In practice, for realizable signals with finite duratidn the realizable version of the time reversed
signal follows by delaying by the time reversed signal, which introduces a phase shift in the frequency
domain. We ignore this phase shift in the sequel.

Real time synthesis in the time domain of the sigs@) at the radar frequencies of interest requires
expensive instrumentation. In section IV, these cost considerations lead us, instead, to synthesizing by a
stepped frequency approach the transmitted signals, e.g., Wehner [20] and Mahafza [21]. In this paper,
we transmit a series of bursts of narrow band pulses where each burst is a sequ@nuelsis stepped
(shifted) in frequency from pulse to pulse by a fixed frequency step Aize The (¢ monochromatic

signals sample uniformly the wideband signal spect®itw) at the frequencies

V0<g¢g<Q—-1: wy=uwo+qAuw, Q)
where we choose
27 .
wo T(Q - 1)6117 q1 an integer 2)
wE-1 — Wo
Avw = —~———— 3
w 0-1 3)
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which leads to

VO<g<@-1: Wg = 2 )(Q1+q). (4)

TQ -1
Care must be taken when sampling a signal in the frequency domain. Uniformly sampliAg biye

signal bandwidthB, replicates the original signal in the time domain,

~ 1
To avoid overlapping the time domain replicas of durationthe frequency sampling should be dense

enough, i.e., upper bounded as
B 2

Aw=-—2_ <X
YTo-1ST

B. Array configuration

We adopt the multi-static configuration shown on the left of Fig. 1. The scene is [ theplane and
the region of interest is partitioned into a finite number of pixels in range and cross range. The imaging
radar in Fig. 1 has a pair of antenna arraysand B located along thej-axis: A = (Ao, -+, Ap_1)

with P antennas an® = (By,--- , By_1) with NV antennas. The right of Fig. 1 shows the experimental
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Fig. 1. Left: Multi-static array configuration for time reversal imaging. Antenna arragsd B are placed along thg-axis. The

x-axis denotes the range direction; thaxis denotes the cross range direction. Right: Experimental setup used in Section IV for
time reversal measurements. Two horn antennas, mounted on two rails, move to synthesize a uniform linear array. The scatterers
(o) are a mixture of copper and solid dielectric pipes. The targéfsgre copper rods. The scattering and targets are mounted

on a wood platform.

set-up used in Section IV. Two horn antennas are mounted on rails and move to synthesize uniform linear

arrays. The scatterers and the targets are mounted on a platform.
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C. Multi-static Response Matrix and Time Reversal Matrix

We introduce in this section two matrices that play an important role in time reversal techniques: the
multi-static response matrix and the time reversal matrix.

Multi-static Response Matrix K(w,). With respect to Fig. 1, let(w,; B,, — A,) denote the frequency
response of the propagation channel betweep-thetransmit antenna,, and then-th receive antenn#,,
at the discrete angular frequeney. We organize the total oV P channel responses into thé x P
multi-static response matriX (w,) at frequencyw, (e.g., Lehman and Devaney, [10], [22],and Chambers,
[23].) We now determine the structure of this matrix in terms of the Green’s functions characterizing the
media propagation between antennas and scattering centers or targets. We consider first the single target
case in a highly cluttered environment. The case of multiple targets follows by superposition of all the
target reflections, neglecting secondary scattering between targets.

Single targetLet x;, rp,, andr 4, denote the locations of the target, of theh antenna3,, of array B,

and of thep-th antennad,, of array A, respectively. Then, p)-th entry of K(w,) is:
K(wg)lnp = klwg Bp — Ap), (6)
= G(rp,, X we)T(xe;we) G(X¢,Ta,; W), (7)

where: 7(x;;w,) is the complex reflectivity of the point target at locatiap, and G(r,r’;w,) is the
Green’s function of the background medium between locatignand r at frequencyw,. In signal
frequency terms, the Green'’s function is the channel response at loeaioan impulse at location’.

Often, the Green’s function satisfies theeiprocity relation
G(r,r';wy) = G(r',r;wy). (8)

We assume that the medium is reciprocal and that (8) holds. An example of a Green’s function, is the
‘background’ or free space Green’s function, [24], [25],

1

Glr,'swq) = - HY (ol =), 9)

whereHéQ) is the zeroth-order Hankel function of the second kikgd= w,/c is the wavenumber of a
propagating wave with angular frequengy, andc is the medium propagation velocity. In the near field,

the free space Green’s function can be approximated as

’ 1 efjkqu*r/' ’
G(r,r;wq) ~ — %W, fOI’ ’I‘—I" >3)\ (10)

In the far field, the Green’s function is simply a delay

G (r,r’;wq) ~ e Tkalr =], (11)
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The “direct path” Green’s functions hold under the Born approximation, or weak scattering condition,
and in general does not hold when multiple scattering is non-negligible. For a discussion on the Born
approximation and the multiple scattering Foldy-Lax approximation in the context of time reversal
imaging, readers can refer to [15], [16], [17], [26].

We first consider the receiving array to be at points, ¢ = 0,--- , N — 1. Stacking the Green’s
functionsG (rp,, x:;w,) from the targetk, to each of the array elemeni, i =0,--- , N — 1, into an

N-dimensional vector, define the receive array response vector at Arfay a target atx; as:
T
gB (Xt wy) = [G (rBy,Xp;wq), -, G (rBNfl,xt;wq)] . (12)

In the far field, and for a linear equi-spaced argy,(x;; w,) reduces to thévV-dimensional conventional

steering vector
T
—j2m <L sinf —j2m 48 =L sing
S e P (13)

) )

gB (x;wy) = |1,e
where:f is the azimuth angle, andl is the inter-element spacing.
Similar to Eqn. (12), theP-dimensional transmit array response vector is
T
gA (Xt§ wq) = [G (Xt; I'Ao;wq> oG (Xt, I'Ap,ﬁwq)] . (14)
Applying Egns. (12) and (14) to (7) yields a revealing subspace representation &f thé& response
matrix K (w,):
K (w) = 7 (%43 wq) 8 (X5 wq) 84 (Xt wg)- (15)
Multiple targets.In general, if there arel/ well resolved targets, and neglecting in this discussion

the secondary scattering among targets, the target response matrix is the superposition of the individual

target responses given by (15), i.e.,

M

K(wy) = Y 7(Xtm;wq)85(Xe.mi wg)8h (Xem; we), (16)
m=1

= Gp(wg) HG 4 (wg), 17)

wherell is the diagonal matrix of target reflectancgs; .,; wq), and theN x M matrix G (w,) and
the P x M matrix G 4 (w,) collect the array response vectors in (12) and (14) for the arand the

array A, respectively,

11 = diag[r(x¢15wgq), -+, T(Xe, M5 wq)]
Gp(wg) = [gB(Xt,13wg), - ,8B(Xe,013Wq)] s (18)
Ga(wg) = [galxt15wq),  8a(Xt,m5wg)] -
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Time Reversal Matrix T (w,). The time reversal matrixe.g, [5], [4], is
VO<qg<Q—1: T(wy) =K (wy) K (wg).

Clutter and Target Multi-static Response Matrices. In the paper, we distinguish between the
following three multi-static response matrices: the clutter channel multi-static response Kaftix )
when only scatterers are present; the clutter plus target channel multi-static responsekinagt(ix, )

when both scatterers plus target are present; and the target channel multi-static response matrix
Kt (wg) = Kett (wg) — Ke (wg) - (19)

As an abuse of terminology, we will simply refer to these matrices as the scatterers or clutter channel
response, the clutter plus target channel response, and the target channel response, respectively.

The structure oK, (w,) andK; (w,) follows Eqn. (7), i.e.,
(K. (Wq)]n,p = ke(wg; Bn — Ap) (20)

K (wg)l,, = ki(wg; Bn — Ap), (21)

n?p

wherek.(wy; Br, — A,) andk; (wg; B, — A,) are the clutter and target responses between antetynas

and B,,, respectively.

Il. TRAIC-TRBF: MATHEMATICAL DESCRIPTION

In this section, we describe a time reversal based algorithm to image targets in rich scattering scenes—
the time reversal adaptive interference canceler time reversal beamformer (TRAIC-TRBF); see also
preliminary work in [27]. We start by clarifying the terminology. In many radar applications, and in
this paperjmaging means roughly constructing a soft version of an occupancy grid map of a region of
interest (ROI), which is sampled by a finite number of grid cells, or pixels.

To image a target in high density clutter, we could attempt to locate the clutters and then use these data
in the Green’s function of the channel to model the secondary scattering from the clutter to the target
and determine the position of the target—mimicking in a sense matched field processing. This approach
suffers from the burden of having to locate accurately the clutter positions. For example, narrowband
MUSIC requires that the number of sensors in the array be larger than the number of clutters. In heavy
clutter, this is not the case and techniques like these have limited applicability. With TRAIC-TRBF, we
adopt a different strategy. We avoid all together the step of locating the clutters. Instead, we time reverse
the clutter returns and reshape this time reversed waveform so that, after retransmission, we minimize
(null or cance) the clutters’ backscatter received at the array. This strategy mitigates the clutter response

and reinforces the return from the target. The clutter mitigation stage is followed by a second stage of
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time reversal that focuses the retransmitted signal on the target, with little backscatter to the array from
the scatterers. In other words, we first time reverse and reshagetitiocuson the clutter, and then

we time reverse the returns focuson the target. Because the backscatter from the clutter is reduced
by TRAIC-TRBF, we do not need a sophisticated propagation model and a simple direct path is usually
sufficient to locate the target.

We now present formally the time reversal adaptive interference canceler time reversal beamforming
(TRAIC-TRBF) algorithm. It is designed to image (locate) targets in highly dense cluttering environ-
ments. As mentioned, it performs two tasks, clutter mitigation and target focusing, through a series of
transmission and processing steps. There are a total of five steps: clutter channel probing; time reversal
waveform reshaping for clutter cancellation; target channel monitoring; time-reversal target focusing; and,
finally, image formation by beamforming and triangulation. The first three steps constitute TRAIC, while
the two last steps are the TRBF. The first two steps of TRAIC learn the clutter channel and construct
a whitening filter for clutter mitigation. This allows us to subtract out the clutter component in each
of the three subsequent steps. Step 3 monitors the target channel, step 4 time reverses the returns from
the reshaped target waveform to focus on the target, and step 5 uses beamforming and triangulation to
form the image. TRAIC-TRBF uses time reversal twice—first, to adaptiaely-focus null or cancel,
the clutter; second, tibcuson the target.

Subsection IlI-A details TRAIC-TRBF. Subsection IlI-B derives the weight vectors used to beamform
the data in step 4. Subsection 1lI-C presents an alternative imager, the TRAIC-TR MUSIC, where we
combine TRAIC and TR with MUSIC. This algorithm is compared to TRAIC-TRBF in Section IV.

A. TRAIC-TRBF

Time reversal is usually associated with focusing. To mitigate the effect of clutter, we take here the
opposite point of view: We reshape the time reversed signal to achieve anti-focus, i.e., to null or to cancel,
the backscatter from the clutter. Thus, the goal becomes to reshape the time reversed clutter returns to
synthesize a waveform that, once retransmitted through the same medium, minimizes the energy of
the clutter returns. In this subsection, we detail the five steps represented of the time reversal adaptive
interference cancellation (TRAIC) time reversal beamformer (TRBF) algorithm (TRAIC-TRBF). In the
sequelae, we recall that the symb®s (w,), Kci (wq), andK; (w,) represent theV x P response
matrices of the clutter, the clutter plus target, and the target at frequencegspectively.

Step 1. Clutter channel probing (A—B). This is the training step in which there exist only scatterers.

The goal of this step is to estimate very reliably from the received data the clutter channel frequency

responséK.. (w,). This stage assumes that only clutter and no targets are present. This is realistic in many
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applications where one can survey the area of interest before it becomes active. We first consider, without
loss of generality, that the probing signal is transmitted from antehnand received at théV sensors

of array B; by reversing the argument, we obtain similar results when the signal is first transmitted
from the sensors aB and received by thé” sensors atd. Each antennal,, is individually excited and

radiates monochromatic signals with frequencigsg = 0,--- ,Q — 1, one frequency at a time. The
scattered returns from the signal transmitted from antetnat frequencyw, are received at antennas
B,,n=0,---,N —1, and collected in théV-dimensional array3 received signal vectar, (w,). We

assume that the probing step can be repeated several times to average out possible measurement noise,

i.e., we assume that we hawe=1,--- , M noisy snapshots
rpm (wWg) = Ke (wg) €55 (wg) + i (wg) , m=1,---, M, (22)

where e, is the vector whose-th entry is 1 and O elsewhere ang, (w,) is additive noise. From
theseM snapshots, we can estimate accurately the clutter channel frequency response. For example, for
white Gauss noise, taking (wg) =1, ¢ =0,--- ,Q — 1, we get that the-th column ofK. (wg) e, is

estimated by
M

~ 1
K (wg)ep =77 > rpm (wg) & Ke (wg) €. (23)
m=1
We repeat this process for all the antenngs p = 0,--- , P — 1, which leads to estimates of the

P columns ofK. (w,). From this clutter channel probing step, we conclude that

~

K. (wg) = K (wy)

and so the clutter channel frequency response can be safely assumed to be accurately determined by
step 1.

Step 2: Waveform reshaping for clutter cancellation.The signals received by arrdy scattered by
the clutter in step 1 are widely spread in time. Intuitively, if we time reverse these signals and retransmit
them from B, they will focus on the clutters—this is the common goal of time reversal. To image in a
highly cluttered environment, we propose an alternative goal for time reversal. Rather than focusing, we
reshape the time reversed signals so that thayid the clutters, once retransmitted froth We refer to
this as cluttemulling or cluttercancellation This is the goal of step 2 and we explain it now.

We first time reverse the backscattered signals at aBfa\s mentioned before, apart a time delay,
this corresponds to phase conjugation in the frequency domain. Then, we reshape and energy normalize
the time reversed backscatter. This is achieved by a reshaping filter, which at freqyenagpresented

by the N x N matrix W (w,). The reshaped signal vector transmitted from atBais
VO<p<P-1: x(wg) =W (wg) K¢ (wg)S™ (wg)ep. (24)
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The clutter backscatter received at antenna asxdg

VO<p<P—-1: y,(wg) = KZ (wq) Xp, (25)

= K (W) W (wg) KZ (wg) S (wy) €p- (26)

Stacking theP vector signals received by all the antennas of arrayl given by (26), we get

¥o (wq)
y (wg) = . (27)

yr-1(wg)

Stacking these vectory (wg)} for all the @@ frequencies into the single vectgryields

y (wo)
y = : : (28)

y(wo-1)

We design the reshaping filtefsW (w,),q = 0,--- ,Q — 1} by minimizing the total energy of the

vectory (given by its squared norm or Frobenius norm)

IylF = ¢ IKE (wq) W (wq) K (wq) 1S (wq) [ (29)

Given the additive nature of this cost function, we minimize each of its terms, which leads to

W () gt = arg min [ K (wg) W (wg) K (wq) |17 (30)

opt

We solve this design problem subject to the following constraints:

1)

2)

3)

Unit norm: |[W (w,) |% = 1,Vw,. This avoids the trivial solutiorW (w,) = 0 and biasing it
towards any of th&) frequenciesy,.

Symmetry: W (wy) = W (wq)H > 0,Vw,, i.e., W (w,) is Hermitian and positive definite (or semi-
definite if K. (w,) is rank deficient.) The time reversal matd&’ (w,) K} (w,) becomes now the

time reversalnti-focusingmatrix
KcT (wg) W (wq) K7 (wg)

To preserve the Hermitian positive definiteness (or semi-definitendgs ifv,) is rank deficient) of

the time reversal anti-focusing matrix, we choose our solu¥¥ifw,) to be symmetric and positive
definite.

Constant vqume:Hf\L1 wy; (wq) is constant. Geometrically, for a matrk, |det [A] | is the volume

of the n-dimensional parallelepiped whose generating edges are given by the rows (or columns) of

then x n matrix A. This volume is the largest when the generating edges are orthogonal, and, in this
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case, the volume is the product of the lengths of the edges, [28], [29]. By Hadamard’s inequality,
[29], W (wq) | < Hi]L wi; (wq), WhereW (w,) = [w;; (wg)]. We consider this as an alternative
constraint to constraining diV (w,)]. We will see that this condition facilitates the derivation of
the reshaping filter.
Condition (1) constrains the reshaping to have finite, nonzero, normalized energy. Condition (3) is more
subtle, it is like an entropy based design. While the goal is to avoid the clutters, because we do not know
where they are, we still want to illuminate uniformly as much as possible the space where the target may
possibly be, and that is precisely what an entropy design accomplishes—maximum uncertainty, like with
a uniform distribution.
The following two results determine the reshaping fiN€r(w,): Result 1 is forN < P, while Result 2
is for N > P.
Result 1: AssumeN < P andK. (w,), Vg, is full rank. Let

K. (vy) = UA,VE (31)

be the singular value decomposition (SVD)Isf. (w,), where

Ay = [Aq 0N><(P7N)j|7 (32)

A, = diag[Ag1, -, AgN]- (33)
The optimal reshaping filter (30) under conditions (1) through (3) above is

W (@o)opt = kUiA?UL, (34)

= kg [K2 (W) KT (wg)] (35)

wherek, is
1 -1
2
- () @
) q

— (H (K (wg) KT (w,)) H2 >_1 . (37)
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Proof: From the SVD (31) ofK. (w,) it follows successively

~ ~ 2
IKT (@) W @)K (o)l = ||VaAUTW () UsA V]| (38)
2
= ||[A;UIW (w)) Ui A,|| (39)
—_———
F F
= HA FA, |7, (40)
= Z/\ z|fu|2 +Z Z AgiNg ,J fw‘Q + ‘f]z’ ) (41)
i J,1<g

SinceF is Hermitian and positive definite, this implies that
VI<i<N: fi; > 0, (42)
Vit Agj > O. (43)
Hence,|AFA,||% is minimized by{f;; = 0,4 # j}, which yields
F = diag[fi1, -, fnn]- (44)

Next, we determine the values @f. Recall the inequality between the arithmetic and geometric means

Zn:ai >n | [T (45)
=1

=1
wheneveray, - - - ,a, > 0, with equality holding wheru; = ap = -+ = a,, and[[;", a; is a constant.

Using now condition (3), we derive that for (41) and using (45)

||AQFA(1||%' = Z)‘4,z i) (46)

Vv

N ¥ H)\ 12, (47)

= NY¥ <H)\ )det wy)]- (48)

The equality holds when
. . 4 2 _ 12
VI<i<N: M\, fa=k, (49)

or
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By condition (1), we have

kg - (i )\}l)_ - (H[K: (we) K¢ (Wq)]_lH;) _1- (51)

This leads to the solution

W (wq)opt = kgUyA, 2 UG . (52)

If we allow an arbitrary unitary transform matrix in the above equation, we then find that this solution

can be further written in a compact and revealing form as

-1

W (wq) kq [Ki (wq) KcT (Wq)] . (53)

opt —

[
Result 2: Assume thatV > P or thatK, (w,) is rank deficient, i.e.] <r = rank[K. (w,)] < P. Let

K. (Wq) = Uqﬁqu

be the singular value decomposition Kf. (w,), where

_ I 0, (p_

Hq _ q x(P—N) : (54)
ON—rxr ON—r)x(P-N)

II, = diag[Ag1, -, Agr)- (55)

Then, under conditions (1) through (3),

W (@) opt kU2 U (56)
=k [K2 () KT (wg)] ", (57)
where{ denotes pseudo-inverse, and
®,, — diag |- L 0.0 (58)
q,m g >\q,1’ 7)\(177“7 } ) )
(N=-1)
r 1 -1 2 —1
* T
K = (Z%) =<H(Kc<wq>KZ () HF) - (59)
=1 4
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Proof: From
T « 2 o T e |12

HKC (wq)W(Wq) Kc (Wq)HF = VquUqW(wq) UquVq HFv (60)

2
= ||, UTW (w,) U3 IL,| . (61)

F F

~ ~ 2
- HqFHqHF, (62)
= D AlflP D0 Agiday (il + 1) - (63)
i=1 i i<y

Notice thatF is Hermitian and positive semi-definite. Minimizing the left hand side of Eqn. (63) and

using condition (3) and inequality (45) yields

Vi<i<r: fi=—-. (64)

Therefore, the shaping filter takes the form:

1
W (w,) k,U*diag | ——,--,——,0,---,0| UL, (65)
q/)opt a>~q )\371 )\377“ . , q
(N-7)
= ky [K2 (wg) KT (wy)]", (66)
which is Egn. (59) in Result 2. ]

We now interpret the solutions (35) or (57) in the next Result. First, recall the projection operator on the
column space of matriA
Pa=AATA)TAH,

Result 3: The reshaped signal, (w,) and the clutter returng, (w,), p=0,--- , P —1, given by (24)
and (26), respectively, when the reshaping fiN®r(w,) is given by Result 2, see (57), are

o (w) -+ xpr ()] = g [ () KT ()] K () 7 (). (67)
Yo (wg) - yp-1(wg)] = kgPrr(w,)S (wg)- (68)

In particular, if P = N andK. (w,) is full rank, see Result 1 and (35), we have
[0 () -+ xpo1 (wo)] = kKT (wq) S7 (wq) (69)

[yo(wg) - yp-1(wg)] = kglS (wg). (70)
Proof: By direct substitution of (57) in (24) and (26), Eqgns. (67) and (68) follow.
WhenP = N andK. (w,) is full rank, Eqn. (69) follows directly from (67). Also, we have that

KZ (wq) W (wg) KT (wq) = kI, (71)
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which leads to (70). [ |
Result 3 shows that the reshaped time reversed signal designed for clutter mitigation unscrambles the
clutter channel response: note that, in the first step, we transmit from a single antenna from, aagy
antenna 1, and receive the clutter returns at all antennas at Brraye then, time reverse the signal
received at each antenna in arrByand retransmit simultaneously from all these antennas at @rafy
the clutter is very rich, these signals should focus at antenna 1 at arfagm which it was transmitted
initially. The filter W (w,) forces this to happen—the signal refocus at antenobarray A and is zero
at every other antenna at. The clutter response can then be subtracted out in succeeding processing
steps. Intuitively, the filterV (w,) , Vg, after the clutter response is subtracted out, reduce the imaged
area to an open field, i.e., with no clutter, so that subsequent processing can assume that target only is
present. We can then image the area using a simple Green’s function, without requiring knowledge of
the position of the scatterers.

Step 3: Target channel monitoring. (B—A) In this step, the environment is probed with the sig-
nal (67). Targets may be present or absent. The “signal plus clutter components” in the received signal

(if a target is present) are

Z;; (wg) = (Ki(wg) +Ke (wq))T xp (Wq) 5 (72)
= 2, (wg) + 2 (wy), (73)
= kg (KtT (wq) KJT (wq) + I) epS™ (wg) (74)

where in (74) we assumed that = P and K, (w,) is full rank. We subtract out the known component

z;, (wg) due to the clutter. The resulting data mat#xw,) is

Z (wlZ) = [26 (WQ) 7Z)i (WQ) )T 7th71 (wq)] ) (75)

= kK] (w) Ko (wy) S* (wy) - (76)

Step 4: Time reversal target focusing. (A~B) The returns from step 3, received at the antennas
in array A, after the whitened clutter has been subtracted out, are either noise or target response plus
noise. The target response may be smeared out by the complex environment, e.g., multiple scattering
from clutter to target. The goal of step 4 is to obtain focused returns from the target by time reversing the

returns from step 3, retransmitting them into the environment, and collecting back the returns &.array
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The “signal plus clutter components” of the received signdBatre (again, assuming a target is present)
P, (wg) = [Ki(wg) +Ke(wy)] [zp (wg)]" (77)
= [Ki (wg) + Ko (wg)] kK7 (wq) Ko (wg) €5 (wg) (78)
= kK (wo) Ki' (wg) Ko (wg) €5 (wg)
+hgKe (wg) K (wq) Ko (wg) €S (wq) (79)
= pp (wg) + P} (wy) (80)

where the target component is given by

PZ (Wq) = p;, (wq) - P;f) (Wq> ) (81)
= kgKi (wq) Kfl (wq) K;H (wq) €pS (wq) - (82)
Groupingp§7 (wg),p=0,---,P—1,into anN x N matrix M7, yields the clutter focused target response

matrix measured at arrak

M7 (wg) = [Pf(wq), Pl (wg), Py (wy)], (83)

= kKi (wo) Ki' (w) Ko (wg) S (wg) (84)

Note thatM? (w,) collects the returns resulting from the two steps, target channel monitoring (step 3)
and time reversal target focusing (step 4), when we start from a&ray step 3.
Similarly, if we repeat steps 3 and 4 but starting initially from the antennas in &vraye obtain the

clutter target response matrix measured at artagiven by theP x P matrix
M~ (wg) = qu? (wq) Ki (wq) Ko™ (wg) S (wg) - (85)

Step 5: Image formation. This final step forms the image by scanning the area of interest with two
focused beams, one at arr&yand the other at array. The beam a3 is when we start aB and end
at B; similarly, the beam a#d is when we start a#l and end atA.

Start with the returnd1? (w,) andM4 (wq). Letw,g(x;wyq), WeB(X;wq), Wra(X; wy), aNdwy 4 (x; wy)
denote the receive and transmit beams for arrByand A, respectively, at frequency,,Vq. Their
structures are presented in the next Subsection IlI-B. The complex output of the beamfBrizuedsA

are
vy (x; wq) = WEB (x; ‘*’q) M” (Wq) wip (X; ‘Uq) ) (86)

YA (wg) = whl () M () Wi (350y) (87)
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We now combine the outputs of these two beamformers by triangulation, i.e., we multiply the outputs
of the two beamformers at each frequency to form the final infage as the spatial distribution of the

total energy at each pixed

I(x)=3 [V (x09) Y (x50 (88)

Eqn. (88) implements thenergy detecto.

B. Weight vectors

We design the imaging weight vectors introduced in Subsection IlI-A by maximiZirggiven in (88)
subject to unit norm constraints on the weight vectors as explained here. Using the subspace revealing

representation (15) for the response matrices, and from Eqgns. (84), (85), and (88), we obtain

Q-1
Ix) = 3 [wh (x0q) MP (wq) Wi (xswq) | [wh (x5 0q) MA (wg) wea (35 wg) | (89)
q=0
Q-1 )
= N (W (x3wg) 88 (5wq)) P lga (x5 w00) 1P [ (Wi (x5 w0) K2 (wg) 85 (3 w4))]
q=0

X (W (3 g) 84 (5 0q) | 185 (6 0) 17 [(Wea (35 ) KT () 84 (x50)) |
xkig |5 (wg)|* 7 (% 0)* (90)

In (90), we indicate explicitly the target reflectivity(x;w,). Given the additivity of/(x) in (90), the
weight vectors, which are frequency dependent, can be calculated frequency by frequency. For a unit

target impulse response & = x, the optimal weights are obtained by the following optimization

{WrB (X§ Wq) , WtB (X; wq) y WrA (X; wq) ) WtA (X§ wq)} ‘Opt = arg V\Iléli%?](tsl(x) ‘xt:x s (91)

subject to the constraints
Iwrs (x;wq)|I” = [lwis (x500) [ = [[Wra (x5 w00)[I* = [[Wea (35w00)[|* = 1. (92)

The solution is promptly found as an application of Schwartz inequality and is in the following Result.

1The energy detector is a generalized likelihood ratio test for this problem, see [18]. The matched filter is not applicable since
the target channel response is assumed to be unknown.
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Result 4: The optimal weights (91) under the unit norm constraint (92) are

g5 (X;wq)

win (X5a) = e gl ®3)
ey — Ko (@i 8B (X5wy) o4
R ) e o
W (x: _ _8a (XSWQ)

ra 5w = e (99)
wia (X;wg) = K™ (wg) ga (6 w0) . (96)

KT (wg) ga (xiw0)|
Proof: As noted before, from the additivity df(x), we can perform the optimization term by term.

Also, given that each term in the sum in (90) is a product of several non negative factors, optimizing
each term is equivalent to optimizing each of its factors. It follows then that we optimize each transmit
and receive weight vector for each arrdyand B independently of each other. We consider explicitly

the optimization with respect to, 5 (x;w,). The optimization is

w I(I;?‘X)”_l I(x) = arg Iw I(I)lcai()”_l |(wB (X; wq) ,8B(Xt = Xx; wq)>|2 . (97)
By Schwartz inequality, (93) follows. Similarly, we obtain (94)-(96). [ ]

C. TRAIC-TR MUSIC

The TRAIC-TRBF forms the images by beamforming the returns from step 4 at adaysd B,
and then by triangulation of the two resulting beams. In section 1V, we will compare the TRAIC-TRBF
imager with other alternative imagers. One of these combines TRAIC-TR with a wideband version of
the subspace based location estimation algorithm Multiple Signal Classification (MUSIC). We describe
this algorithm now. The motivation to consider TRAIC-TR with MUSIC is the following: in a highly
cluttered environment, where there are a large number of scatterers, MUSIC is not directly applicable.
Since, intuitively, TRAIC clears the field of view by minimizing and subtracting out the clutter, it should
be possible to use MUSIC after TRAIC to localize targets as long as the number of targets is smaller
than the number of array elements. Because we are using wideband signals, we compute the MUSIC
spectrum by combining the spectrum at all frequencies through simple multiplication of the spectrum at
each frequency. We detail the method.

We perform singular value decomposition of the matridd$ (w,) in (84) andM“ (w,) in (85) to
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obtain
B w
ME () = (0 (o) UG (00, oy VG VEG)" e
A w
M (wg) = (Uf (wg) Uy (wy)) Et e EA o) (Vi (wy) Vi)™, (99)

where: theN x r, matrix U (w,) and theP x r, matrix U2 (w,) are the left null subspaces of matrices
M? (w,) andM“ (w,), respectively; and, is the effective rank oM? (w,) or M (w,), i.e., the number
of the dominant singular values ®&¥” (w,) or M4 (w,). For example, we may define the number of
dominant singular values for matrixI” (w,) as the minimum number of singular values whose sum
exceeds

7Tr [M” (w,)]

where0 < 7 < 1 is close to unity (e.g.7 = 0.85.) The MUSIC spectrum is computed as follows:
19
Itrmu(x) = 3 [ P? (x5wq) P2 (x5w,) (100)
q=0

where the factod /@ is for normalization purposes. The MUSIC spectra, at pieind frequencyw,,
{PB (x;w,)} and {P4 (x;w,)} are given by

PB (x;w,) ! , (101)
YT 8 () UE ()| llgs () I
'PA (X;wq) 1 (102)

- :
lgh (x:wq) Ust (wo)||”/ llga (3 wo)I”
IV. EXPERIMENTAL RESULTS

This section studies the performance of the TRAIC-TRBF imager, comparing it to TRAIC-TR MUSIC
and to a conventional imager obtained by direct subtraction, as will be explained in subsection IV-B. We
first measure real electromagnetic (EM) backscatter from clutters placed in the imaging area with no target,
and then the EM backscatter when there are clutiatstarget(s). From these measurements, we extract
the clutter channel and the clutter plus target channel frequency respddsés,),q¢ =0,--- ,Q — 1}
and{K..; (wy),q=0,---,Q— 1}, respectively. From these we compyt&; (w,),q=0,--- ,Q —1}.

The data in steps 2 through 5 in Subsection IlI-A are then computer generated usind<thesg
and K, (w,) channel responses. In other words, TRAIC-TRBF is achieved as an algorithm, with no
actual retransmission of the reshaped signals. We refer to thimmtdsematicatime reversal rather than

physicaltime reversal, which is when we actually retransmit the time reversed signals.
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We start by describing the experimental set-up and physical measurements in subsection IV-A. Subsec-
tion IV-B presents a conventional imaging method using direct subtraction (DS) beamforming (DSBF).
Subsection IV-C compares the performance of four imagers for different clutter/target configurations:
TRAIC-TRBF, TRAIC-TR MUSIC, DSBF, and DS MUSIC. Finally, Subsection IV-C analyzes the results

to confirm that time reversal and TRAIC-TRBF improve imaging in high clutter environments.

A. Physical measurements

In this subsection, we describe successively the scattering environment, the experimental set-up, and
finally the sequence of actual measurements at discrete frequencies- 0, - -- , @ —1 to get the clutter
and the clutter plus target channel frequency response makicés,) and K., (w,), from which we
getK; (wy).

Scattering environment. The scattering environment is illustrated in Fig. 1. It contains a number of
scattering rods placed in a wood platform. The rods are a mixture of the following four types of scatterers:
(1) 1.27 cm diameter @.5"”) copper pipe; (2) solid dielectric pipe with outer diameter3af cm, with
dielectric constan8.7; (3) dielectric rod with copper-patches to cause frequency dependent radar-cross
section; and (4) extended objeef x 10 cm aluminum box. The targets aie3 cm diameter copper
rods.

Experimental set-up. We conducted a series of electromagnetic measurements i thé GHz
frequency range, [30], uniformly sampled lgy = 201 frequencies. The corresponding total waveform
time length is then

T.= (201 — 1) x 5 =100 x 10~%s.

2 x 10
This signal is generated by an Agileg®@610A vector signal analyzer. Both, the in-phase (I channel)

and gquadrature phase (Q channel) streams of the received signals are captured. Two horn antennas, both

with operational bandd — 6 GHz, are used as transmit and receive antennas. Each horn antenna is

mounted on a rail and moves physically to computer controlled positions to synthesize two uniform

linear arrays. In our experiments, the baseline of these arrays is limited by two factors: (1) The physical

dimensions of the horn antennas set a minimum inter-element spacing of 10.16 cm; and (2) the size of

the absorbing wall limits the maximum length of the transmit or receive array. This limited the two arrays

to P = N = 10 antennas. The device noise level is set belo¥) dB relative to the received signal.

Measurements.A sequence of measurements were carried out:

1) Calibration. The equipment, I-Q modulators, network analyzer, and horn antennas were carefully

calibrated by an initial set of measurements.
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2) Clutter channel.With the scatterers placed in their controlled positions, we measure with the I-
Q modulators the response of the channel to 2b& monochromatic signals at frequencies,
g = 0,---,Q — 1. The data is organized into the clutter channel frequency response matrices
K. (wg), q=0,++,Q— 1

3) Clutter plus target channel responsélith the scattereraind target placed in their locations, we
measure the total clutter plus target channel frequency response madicesv,) ¢ =0, - ,Q —
1.

B. Conventional Imaging: Direct Subtraction (DS)

In conventional imaging, direct subtraction is commonly used to eliminate the contributions of the
background and focus on objects of interest. Since from the measurements, we have both the clutter only

K. (w,) and the clutter plus targé ., (w,) channel frequency responses, by direct subtraction
K; (wq) =Kett (wq) - K. (wq) : (103)

In practice, noise and other distortions mdKe (w,) to be different from the target channel response.

Using the subspace revealing representation (15), the target responselpdtriy) is modeled as
K (wg) = 85 (X1;wq) 84 (X1;wy) (104)

Direct subtraction beamformer (DSBF). The direct subtraction (DS) beamformer (DSBF) correlates

the target response matrK; (w,) with normalized weight vectors

g5 (X;wy)
) — _ 105
WB 05 = g (i (109

g4 (x;wq)

. — _ 1
WA = g G [ (109
at each frequency,, which yields the DSBF image
Q-1 H * 2
gp (x;wq) Kt (wg) g (X5 wyg)

1 X) = 107
0527() = 2 | Xy (o wol Tea G (on

Direct subtraction MUSIC (DS MUSIC). We can also apply MUSIC to the direct subtraction
approach. By singular value decomposition
Ft (wq) 0

. _— (Vi(wg) Valwg)™,  (108)

Kips(wg) = (Ug(wg) Uy (wyg))

whereU,, (wq) andV,, (w,) define the null subspaces of mati (w,) with r, being its estimated rank.

The DS-MUSIC spectrum is given by

Q-1
Ipsmu(x) = (012 [T 77w TP (x;wg), (109)
q=0
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where1/Q is for normalization, and

1
TB(x;w,) = : (110)
! & (x:wq) U (w)|* / llgs (x5 )|
T (xwg) = ! (111)

&4 (33 wq) Vi (wo)||° / llga (6 wq) I

C. Test results

We now contrast the performance of thenaging algorithms: (i) TRAIC+TRBF (ii) DSBF (iii)) TRAIC+TR
MUSIC (iv) DS MUSIC.

As mentioned at the beginning of this Section, we perfonathematicaltime reversal, rather than
physicaltime reversal. In physical time reversal the data in steps 3 and 4 described in Subsection IlI-A
are actually physically generated, transmitted, and measured. However, this is not necessary to image the
target, and we can simply perform mathematical time reversal where the data in these steps is generated
numerically using the channel respond€s(w,) and K. (w,) for ¢ =0,---,Q — 1.

We performed a battery of 11 tests with different number and configuration of clutters and targets.
We report in this section the results for case 8 (17 scatterers and single target) and case 6 (6 scatterers
and two targets.) Lack of space prevents detailed discussion of the other cases. Table | will summarize
relevant resolution results for all 11 cases.

We show for cases 8 and 6, the imadé¢s) at the output of the beamformers, see Figs. 2 through 5.
These figures show the scattering configuration. For example, with respect to Fig. 2, the 17 numbers on
each plate indicate the position of the scatterers. The correct position of the target is at the, evbde
the peak of the imagé(x) is at the circleo. The closer the circle to the cross is, the better the localization
accuracy is. The cross-range and range are in the vertical and horizontal directions, respectively, with
the physical dimensions as indicated in cm along each axis. To calibrate these distances, we recall that,
at the center frequency, GHz, the wavelength in free spaceGsm. The color bar on the side shows
the dB scale starting from O dB at the top (dark blue in color printing.) For each image, the total range
of the color bar shows the dynamic range of the imager. For visual comparison purpose, the images in
Figs. 2 and 4 are properly scaled to the same range in dB. The sharper high contrast images provide
better details, and thus better resolution.

17 Scatterers and 1 target.The templates in Fig. 2, from top to bottom, left to right, show the
TRAIC+TRBF, DSBF, TRAIC-TR MUSIC, and DS MUSIC images. Fig. 3 shows the projections along
the cross-range (left template) and range (right template) of thd (I for the TRAIC-TRBF (heavy
trace with x) and the DSBF (lighter trace).
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Fig. 2. Time Reversal imaging with7 scatterers and target. Numbers indicate locations of the scattergrgndo indicate
the exact location of the target and the peak value of the image, respectively. Top left—-TRAIC+TRBF. Top right—-DSBF. Bottom
left-TRAIC+TR MUSIC. Bottom right-DS MUSIC. All images are plotted within the same rafge (34 dB).
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Fig. 3. The projection onto cross range and range for the images in Fig. 2. Left-Cross range; Right-Range. TRAIC shows a

narrower main lobe, deeper null, and lower sidelobes relative to direct subtraction imaging.
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Fig. 4. Time Reversal imaging with scatterers and targets. Numbers indicate locations of the scattererando indicates the
exact location of the target and the peak value of the image, respectively. Top left-TRAIC+TR beamforming. Top right-Direct
subtraction beamforming. Bottom left-TRAIC+TR MUSIC. Bottom right-Direct subtraction MUSIC. All images are plotted

within the same range)(~ —45 dB).

There are a number of important remarks from Figures 2 and 3 that demonstrate the higher cross-range

and range resolution provided by TRAIC-TRBF over all the other alternative algorithms. The first is the
dynamic range that is about 35 dB for TRAIC-TRBF, 10 dB larger than for DSBF, and about 20 dB
larger than for the MUSIC based algorithms. The higher resolution of TRAIC-TRBF is also apparent

from Figure 2, where the lobe around the target is narrower in both (cross-range and range) directions.

Both points are also well made with Figure 3: the higher resolution is apparent from much narrower

main lobes and the dynamic range is a result of smaller sidelobes. Furthermore, in this case, the number

of antennas=£ 10) is smaller than the number of scatterets (7). The resulting images using TRAIC

demonstrate that TRAIC successfully mitigates the clutters’ response and focuses on the intended target.

6 Scatterers and 2 targetsFig. 4 depicts the images formed by the same 4 algorithms now using

case 6 with a total of scatterers and targets. The top left panel shows that the TRAIC-TRBF mitigates
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Image Projection on Cross Range Image Projection on Range

Magnitude [dB]
Magnitude [dB]

DS BF

DS BF

] ———— TRAIC+TR BF ) ——<— TRAIC+TR BF
-30f ’.\\\ug . TRAIC+TR MUSIC 1 ! TRAIC+TR MUSIC
i

~ — — DSMUSIC f‘ — — — DSMUSIC

-35 i i i i i i i -15 i i i i i i i i i
-80 -60 -40 -20 0 20 40 60 80 200 220 240 260 280 300 320 340 360 380 400

Cross Range [cm] Range [cm]

Fig. 5. The projection onto cross range and range for the formed image in Fig. 4. Left—-Cross range projection. Right-Range
projection. TRAIC+TRBF yields two lobes corresponding to two target locations.

the clutter (scatterer® 15,27, 23, 36 are placed in deep nulls) and focuses on both targets. The dynamic

range is aboutt5 dB, compared with abowd0 dB dynamic range for the DSBHR,1 dB for TRAIC-TR

MUSIC and22 dB for DS MUSIC. Both, the DSBF and the DS MUSIC, miss the target at raggem.

Fig. 5 shows the projection of the TRAIC-TRBF and DSBF images onto cross-range and range. The left

image clearly shows two high peaks for TRAIC+TR beamforming. We observé dB null between

the two peaks. For the direct subtraction beamforming, the second peak misses the target completely.
Resolution. We consider the two dimensional point spread function (PSF) of the imager, which is its

output when the targets are pointwise. The PSF is

O

_ - _ 2 _ 2
I(x,X)= }wgg (x;wyq) MP (X, wq) WiB (x;wq)| ‘WEL‘ (x;wyq) M4 (X, wq) Wia (x;wq)’ , (112)
q
whereX is the actual source location amds the pixel location on which the transmit and receive beams

Il
o

focus. DefineAx = x — %, and

~ 1 1 8 (8 T
Second order Taylor’'s series expansion aboutf the PSF leads to
[(,%) ~1— % (Ax)" T (x) (Ax), (114)

The diagonal elements of the inverdéx)~!, i.e., J-' (x),, andJ~! (x), , evaluated at the peak of

vy’
the beamformed images are a measure of how narrow or wide the main lobe is. In other words, these
values provide a quadratic description of the main lobe of (112). The analytical expression (113) is hard

to obtain due to its complexity. We resort to numerical means by finite difference replacement of the
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TRAIC+TRBF | DSBF TRAIC+TRBF | DSBF TRAIC+TRBF | DSBF
(T C (I s (I e (T Yy (I )y
Case-1 12.4 23.1 144.4 246.0 7.2 19.2
Case-2 12.5 27.2 129.5 278.4 15.3 35.2
Case-3 34.5 96.0 339.4 359.7 —42.8 —103.2
Case-4 13.3 21.0 131.0 194.2 4.6 6.0
Case-5 22.3 33.2 233.8 354.6 31.7 62.8
Case-6 19.5 36.0 218.5 421.3 22.5 79.6
55.6 88.4 766.2 1186.7 138.3 101.8
Case-7 85.5 121.8 1225.8 1103.7 256.4 —163.0
108.2 52.5 1273.4 780.0 —333.7 —138.8
Case-8 16.0 45.0 289.7 759.1 —17.6 —-94.9
Case-10 15.1 22.9 150.6 200.0 6.3 5.9
Case-13 24.9 29.8 256.9 338.3 43.5 55.1
165.2 258.2 2271.8 4395.4 430.9 770.8
Case-14 22.8 39.5 199.6 403.8 44.8 91.1
TABLE |

RANGE RESOLUTION(z) AND CROSS RANGE RESOLUTIONy) FOR TRAIC+TRBFAND DSBF

second derivativeg’, |

I(x)]

defined as follows: [31]

%I,
Ox?
%I, ;
Oy?
%I,

0xdy |,

i’j! 8y2

2 [T (x)];; and the mixed derivativgZs- [I (x)], ; as approximations,

liv1j =20+ 1i1,j

Ao + O(A?) (115)
Lijyr — 215 + 1 j—
s A +0(AY) (116)

1
IAD {83 Liv1 41 + Licrj—1) — Lim1,j+1 + Lig1,j—1]

~2[Liy1+ Lijy1r + Licaj + Lijo1 — 2L ]} + O(A?) (117)

where; ; = I (x;,y;). Eqn. (117) uses a nine point numerical approximation to the cross second order

derivative. Becauseé\ = 0.75 cm, the grid size is sufficiently small to ensure the smoothness of the

numerical solution. Table | shows these quantities for all 11 cases studied. They show that, except for

one of the targets in case 7, the main lobe of the TRAIC-TRBF image is consistently narrower than the

main lobe of the DSBF along both the range and cross range directions.

DiscussionThe proposed TRAIC+TR BF algorithm images a target scene using mathematical time
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reversal twice. The first time reversal step nulls the clutter; the second time reversal step focuses on
the target. The target data matrix defined in (19), in dense scattering, contains both the direct reflection
between the target and the receive areay the secondary reflections between the scatterers, the target,

and the receive array. The clutter nulling step suppresses the clutter refleatitth®, secondary scattering
between the target, the scatterers, and the receiver. The target focusing step back propagates the wave field
and focuses on the target. After the target focusing step, the measurements contain the energy focused
wavefield; then, we apply a beamformer weight vector to locate the target.

Because the focused wavefield contains direct and secondary scattering, ideally, the weight vector, i.e.,
the field Green’s function, should combine the direct reflection from the target to the receiver, and the
secondary scattering due to the presence of the surrounding scatterers. In our algorithm, we use only
the direct path Green’s function, which, in a sense, is equivalent to the Born approximation [16]. This
avoids having to locate the scatterers, which is challenging in high scattering environments. But, high
scattering environment is exactly where time reversal makes a difference, and so, our method of nulling
the scatterers before focusing on the targets, avoids having to resolve the scatterers, still providing good
target imaging performance. This simplification, however, may explain why, in the experiment with 17
scatterers and 1 target, reported in Fig. 2, some local maxima are close to the global maxima.

The effect of multiple scattering on time reversal imaging has been studied in [15], [16], [17], where
the Foldy-Lax model [32] is employed. For example, references [16], [17] show that, despite the presence
of non-negligible multiple scattering, the time reversal imaging with MUSIC works well in predicting the
scatterers’ locations. However, MUSIC is limited by the condition that the number of antennas is larger
than the number of scatterers, which is common in heavy scattering environments. Another example of
using the Foldy-Lax model is the maximum likelihood estimation of point scatterers reported in [15],
where the locations of the scatterers and their reflectivity coefficients are estimated iteratively through the
maximum likelihood approach. That is, starting from an initial estimate of the target location and updating
the estimates iteratively by optimizing a chosen non-linear cost function, the algorithm in [15] generates
an image of all the scatterers. However, all the examples shown in [15] use a number of antennas that
is significantly larger than the number of scatterers plus targets, for example, 40 antennas or 8 antennas
and 3 scattering objects (scatterers plus targets). Other than MUSIC, [26] implements a high dimensional
signal subspace localization method. In contrast, our proposed algorithm does not attempt to estimate
the locations of the clutters (i.e., the unwanted scatterers) explicitly, rather it suppresses the clutter and
then focuses on the targets. This strategy avoids the problem of directly estimating the parameters of the
clutter, which may be an impossible task when the number of clutters is very large. For example, we

show results when using 10 antennas and 17 scatterers.
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In terms of the computational complexity, our proposed TRAIC+TR BF algorithm is comparable to
the conventional DS BF algorithm. For simplicity, we assume that the number of antennas in array A
and B are the same\( = P), and that we do not consider the unit normalization constraint in the weight
vectors (93)-(96) and (105)-(106) for the moment. Using the Big-O notation, we can show that the DS
BF algorithm has the computational complexi®(.J, J,Q(2N? + 2N)) = O(J,J,QN?), where N is
the size of the weight vectors and the data matricgss the number of frequencies, and.J, are
the number of pixels in range and cross range, respectively; similarly, the TRAIC+TR BF algorithm has
the computational complexit)(J,.J,Q16N? + QcN?3), where the factotV? results from inverting the
matricesK.(w,), andc is a small constant. In our experiments, we chodse= 10,Q = 201, .J, =
256,J, = 200, so the numbers), J,, J, are dominant with respect t&/. Thus, the computational
complexity of the TRAIC+TR BF is still comparable to that of the DS BF for a laf@pe/,, J,, and
smaller N. This conclusion still holds when the computation of the unit normalization constraint is taken
into account in that the number of operations of carrying out the unit normalization for both algorithms
is on the order oD(J,J,QN).

Another important question is the effect of measurement noise. In this paper, we rely on experimental
data for algorithm verification. The noise power in the collected experimental data is low relative to the
signal and clutter power. The device noise is measured experimentally to be bdlbwB relative to
the received signal. The analysis of the noise effect on the time reversal imaging algorithm proposed
here will be reported elsewhere. Interested readers can refer to [33] where the impact of noise on time

reversal detection is analyzed.

V. CONCLUSION

In this paper we present a new high resolution radar imaging system to detect and locate targets
using time reversal in rich scattering environments, where the number of scatterers is significantly
larger than the number of antennas. The proposed imaging system performs two major tasks by time
reversal: clutter mitigation and target focusing. Clutter mitigation is accomplished Tisne@ Reversal
Adaptive Interference CanceldRAIC) through waveform reshaping to null out the clutters. After
clutter is suppressed and subtracted out, a second time reversal for target focusing is performed. A final
image is then obtained by beamforming. A series of experimental tests in electromagnetic domain have
demonstrated the good performance of the proposed imaging algorithm over conventional approaches. In
future research, we intend to pursue performance analysis studies of the TRAIC time reversal beamformer
and find ways of handling explicitly the secondary scattering between scatterers and targets, while avoiding
resolving the individual scatterers. We are also currently extending our imaging algorithm to synthetic

aperture monostatic and bistatic radar, see [34] for some preliminary results.
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