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Abstract

We develop theTime Reversal Adaptive Interference Canceler(TRAIC) time reversal beamformer

(TRBF), a new algorithm to detect and locate targets in rich scattering environments. It utilizes time

reversal in two stages: (1)Anti-focusing: TRAIC time reverses and then reshapes the clutter backscatter

to mitigate the clutter response; (2)Focusing: TRBF time reverses the residual backscatter tofocusthe

radar image on the target. Laboratory experiments with electromagnetic radar data in a highly cluttered

environment confirm the superiority of TRAIC-TRBF over conventional direct subtraction beamform

imaging.

Index Terms

Time Reversal, Wideband Radar Imaging, Adaptive Interference Cancelation, Waveform Shaping,

Super-Resolution

Edics: SAM-IMGA, SAM-APPL

I. I NTRODUCTION

Locating and imaging targets buried in high clutter poses considerable challenges. Detection and

imaging algorithms suffer significant performance loss because the channel Green’s function is very

different from the direct path model that these algorithms usually assume. In complex channels, for

example, when the propagation speed profile is spatially varying or due to boundary layers, the use of

numerical codes that integrate the wave equation, like matched field processing (MFP) in underwater

acoustics, e.g., [1], provides the channel Green’s function. But MFP is prohibitively expensive in most

applications and is highly sensitive to accurate knowledge of the environmental conditions. This paper
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explores how time reversal (TR) can be used inlocalizing targets in highly cluttered environments.

References [2], [3], [4], [5], [6] have shown the power of time reversal tofocuswith super-resolution on

a source in a highly dispersive medium by time reversing and retransmitting the time dispersed signal

received at an array of sensors. References [7], [8] demonstrate super-resolution focusing in underwater

acoustics and reference [9] demonstrates focusing in the electromagnetic domain. Focusing results from

the time reversibility of the wave equation in a non-absorbing medium: the highly dispersed back-

propagated field is time reversed, resent, and focuses on the radiating source. The more inhomogeneous the

media is, the higher the focusing resolution achieved. Intuitively, time reversal is equivalent to generating a

virtual aperturelarger than its actual physical size, yielding a much higher resolution. Beyond focusing,

recent work on time reversal imaging includes Lehman and Devaney [10], Devaney [11], Prada and

Thomas [12], Borcea et al. [13], [14], and other references [15], [16], [17]. In these works, the Multiple

Signal Classification (MUSIC) algorithm is combined with time reversal for locating well resolved targets,

where the MUSIC spectrum is constructed by eigen-decomposing the so called time reversal matrix. This

approach is applicable only when the number of scatterers in the imaged area is smaller than the number

of antennas since the generalized MUSIC spectrum requires that the number of scatterers be smaller than

the number of antennas.

In [18], we studied detection with time reversal. We showed for the electromagnetic (EM) domain that

time reversal provides significant gains when detecting targets burried in clutter using a single sensor.

In this paper, we consider localization of targets in high clutter for radar (electromagnetic) data, which

we also refer to as imaging. We present a new high resolution time-reversal imaging algorithm, the

Time Reversal Adaptive Interference Canceler(TRAIC) followed by time reversal beamforming (TRBF).

Unlike time reversal MUSIC based algorithms, TRAIC-TRBF only requires the number of antennas to

be larger than the number of potential targets, regardless of the number of scatterers in the illuminated

region. The TRAIC algorithmreshapesthe time reversed backscatter from the clutter to minimize the

energy returns from the clutter at the array. In contrast withfocusing, the goal of TRAIC isanti-focusing,

i.e., nulling the EM energy received at the transmit/receive radar backscattered by the clutter. Probing

the cluttered environment with the reshaped time reversed waveform enhances the backscatter from the

target. The second stage, TRBF, time reverses the backscatter from the target and resends it into the

medium to focus on the target. The high resolution achieved at this stage by time reversal generates a

narrow beam, which provides high resolution in localization and imaging.

Physical and mathematical time reversal.We describe time reversal in the paper as if the signals were

physically time reversed and retransmitted. In practice, in many situations, there is no need to actually

physically retransmit the time reversed signals—in this case, the time reversal steps in TRAIC-TRBF
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become algorithmic steps with no need for additional signal retransmission. When time reversal is used

as an algorithmic step, with no physical retransmission of the signals, we refer to it as mathematical time

reversal.

Notation. We use lower case boldface letters to denote vectors and upper case boldface letters to denote

matrices. In addition, we adopt the following conventions throughout the paper,(·)∗ for conjugate;(·)T

for transpose;(·)H for Hermitian transpose;diag[x] for the diagonal matrix whose diagonal is the vector

x; ‖ · ‖ for the vector (matrix) Frobenius norm;Im for the identity matrix of orderm; det(A) for the

determinant of matrixA; and the inner product notation〈x,y〉 = xHy.

II. DATA MODEL

We present in this section the data model that we adopt. Subsection II-A discusses a stepped frequency

synthesis of the transmitted signals, subsection II-B the array configuration, and subsection II-C the multi-

static response matrix and the time reversal matrix.

A. Stepped frequency synthesis

The illuminating signals(t), t ∈ [0 T ], has Fourier transformS(ω), ω ∈ [ω0 ω0 + B]. The signal

has durationT and bandwidthB. Time reversal of a real valued signal is simply phase conjugation

in the frequency domain, i.e., the Fourier transform ofs(−t) is S∗(ω) (see Oppenheim and Willsky,

[19].) In practice, for realizable signals with finite durationT , the realizable version of the time reversed

signal follows by delaying byT the time reversed signal, which introduces a phase shift in the frequency

domain. We ignore this phase shift in the sequel.

Real time synthesis in the time domain of the signals(t) at the radar frequencies of interest requires

expensive instrumentation. In section IV, these cost considerations lead us, instead, to synthesizing by a

stepped frequency approach the transmitted signals, e.g., Wehner [20] and Mahafza [21]. In this paper,

we transmit a series of bursts of narrow band pulses where each burst is a sequence ofQ pulses stepped

(shifted) in frequency from pulse to pulse by a fixed frequency step size∆ω. The Q monochromatic

signals sample uniformly the wideband signal spectrumS (ω) at the frequencies

∀0 ≤ q ≤ Q− 1 : ωq = ω0 + q∆ω, (1)

where we choose

ω0 =
2π

T (Q− 1)
q1, q1 an integer (2)

∆ω =
ωQ−1 − ω0

Q− 1
, (3)
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which leads to

∀0 ≤ q ≤ Q− 1 : ωq =
2π

T (Q− 1)
(q1 + q). (4)

Care must be taken when sampling a signal in the frequency domain. Uniformly sampling by∆ω the

signal bandwidthB, replicates the original signal in the time domain,

s̃(t) =
1

∆ω

∑
n

s

(
t− 2π

∆ω
n

)
. (5)

To avoid overlapping the time domain replicas of durationT , the frequency sampling should be dense

enough, i.e., upper bounded as

∆ω =
B

Q− 1
≤ 2π

T
.

B. Array configuration

We adopt the multi-static configuration shown on the left of Fig. 1. The scene is in the(x, y)-plane and

the region of interest is partitioned into a finite number of pixels in range and cross range. The imaging

radar in Fig. 1 has a pair of antenna arraysA and B located along they-axis: A = (A0, · · · , AP−1)

with P antennas andB = (B0, · · · , BN−1) with N antennas. The right of Fig. 1 shows the experimental
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Fig. 1. Left: Multi-static array configuration for time reversal imaging. Antenna arraysA andB are placed along they-axis. The

x-axis denotes the range direction; they-axis denotes the cross range direction. Right: Experimental setup used in Section IV for

time reversal measurements. Two horn antennas, mounted on two rails, move to synthesize a uniform linear array. The scatterers

(◦) are a mixture of copper and solid dielectric pipes. The targets (4) are copper rods. The scattering and targets are mounted

on a wood platform.

set-up used in Section IV. Two horn antennas are mounted on rails and move to synthesize uniform linear

arrays. The scatterers and the targets are mounted on a platform.
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C. Multi-static Response Matrix and Time Reversal Matrix

We introduce in this section two matrices that play an important role in time reversal techniques: the

multi-static response matrix and the time reversal matrix.

Multi-static Response Matrix K(ωq). With respect to Fig. 1, letk(ωq;Bn ← Ap) denote the frequency

response of the propagation channel between thep-th transmit antennaAp and then-th receive antennaBn

at the discrete angular frequencyωq. We organize the total ofNP channel responses into theN × P

multi-static response matrixK(ωq) at frequencyωq (e.g., Lehman and Devaney, [10], [22],and Chambers,

[23].) We now determine the structure of this matrix in terms of the Green’s functions characterizing the

media propagation between antennas and scattering centers or targets. We consider first the single target

case in a highly cluttered environment. The case of multiple targets follows by superposition of all the

target reflections, neglecting secondary scattering between targets.

Single target.Let xt, rBn
, andrAp

denote the locations of the target, of then-th antennaBn of arrayB,

and of thep-th antennaAp of arrayA, respectively. The(n, p)-th entry ofK(ωq) is:

[K(ωq)]n,p = k(ωq; Bn ← Ap), (6)

= G(rBn
,xt; ωq)τ(xt; ωq)G(xt, rAp

; ωq), (7)

where: τ(xt; ωq) is the complex reflectivity of the point target at locationxt, and G(r, r′; ωq) is the

Green’s function of the background medium between locationsr′ and r at frequencyωq. In signal

frequency terms, the Green’s function is the channel response at locationr to an impulse at locationr′.

Often, the Green’s function satisfies thereciprocity relation:

G(r, r′; ωq) = G(r′, r; ωq). (8)

We assume that the medium is reciprocal and that (8) holds. An example of a Green’s function, is the

‘background’ or free space Green’s function, [24], [25],

G(r, r′; ωq) =
1
4j

H
(2)
0 (kq|r− r′|), (9)

whereH
(2)
0 is the zeroth-order Hankel function of the second kind,kq = ωq/c is the wavenumber of a

propagating wave with angular frequencyωq, andc is the medium propagation velocity. In the near field,

the free space Green’s function can be approximated as

G
(
r, r′; ωq

) ≈ −
√

1
8πkq

e−jkq|r−r′|

|r− r′| , for
∣∣r− r′

∣∣ > 3λ. (10)

In the far field, the Green’s function is simply a delay

G
(
r, r′; ωq

) ≈ e−jkq|r−r′|. (11)
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The “direct path” Green’s functions hold under the Born approximation, or weak scattering condition,

and in general does not hold when multiple scattering is non-negligible. For a discussion on the Born

approximation and the multiple scattering Foldy-Lax approximation in the context of time reversal

imaging, readers can refer to [15], [16], [17], [26].

We first consider the receiving array to be at pointsrBi
, i = 0, · · · , N − 1. Stacking the Green’s

functionsG (rBi
,xt; ωq) from the targetxt to each of the array elementsBi, i = 0, · · · , N − 1, into an

N -dimensional vector, define the receive array response vector at arrayB for a target atxt as:

gB (xt; ωq) =
[
G (rB0 ,xt; ωq) , · · · , G

(
rBN−1 ,xt;ωq

)]T
. (12)

In the far field, and for a linear equi-spaced array,gB (xt; ωq) reduces to theN -dimensional conventional

steering vector

gB (xt; ωq) ≈
[
1, e

−j2π d

λq
sinθ

, · · · , e
−j2π d(N−1)

λq
sinθ

]T

, (13)

where:θ is the azimuth angle, andd is the inter-element spacing.

Similar to Eqn. (12), theP -dimensional transmit array response vector is

gA (xt;ωq) =
[
G (xt, rA0 ; ωq) , · · · , G

(
xt, rAP−1 ; ωq

)]T
. (14)

Applying Eqns. (12) and (14) to (7) yields a revealing subspace representation of theN × P response

matrix K (ωq):

K (ωq) = τ (xt; ωq)gB (xt;ωq)gT
A(xt; ωq). (15)

Multiple targets.In general, if there areM well resolved targets, and neglecting in this discussion

the secondary scattering among targets, the target response matrix is the superposition of the individual

target responses given by (15), i.e.,

K (ωq) =
M∑

m=1

τ(xt,m; ωq)gB(xt,m; ωq)gT
A(xt,m; ωq), (16)

= GB (ωq)ΠGA (ωq) , (17)

whereΠ is the diagonal matrix of target reflectancesτ(xt,m; ωq), and theN ×M matrix GB (ωq) and

the P ×M matrix GA (ωq) collect the array response vectors in (12) and (14) for the arrayB and the

arrayA, respectively,

Π = diag [τ(xt,1; ωq), · · · , τ(xt,M ; ωq)] ,

GB (ωq) = [gB(xt,1; ωq), · · · ,gB(xt,M ; ωq)] ,

GA (ωq) = [gA(xt,1; ωq), · · · ,gA(xt,M ; ωq)] .

(18)
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Time Reversal Matrix T (ωq). The time reversal matrix, e.g, [5], [4], is

∀0 ≤ q ≤ Q− 1 : T (ωq) = KT (ωq)K∗ (ωq) .

Clutter and Target Multi-static Response Matrices. In the paper, we distinguish between the

following three multi-static response matrices: the clutter channel multi-static response matrixKc (ωq)

when only scatterers are present; the clutter plus target channel multi-static response matrixKc+t (ωq)

when both scatterers plus target are present; and the target channel multi-static response matrix

Kt (ωq) = Kc+t (ωq)−Kc (ωq) . (19)

As an abuse of terminology, we will simply refer to these matrices as the scatterers or clutter channel

response, the clutter plus target channel response, and the target channel response, respectively.

The structure ofKc (ωq) andKt (ωq) follows Eqn. (7), i.e.,

[Kc (ωq)]n,p = kc(ωq; Bn ← Ap) (20)

[Kt (ωq)]n,p = kt(ωq; Bn ← Ap), (21)

wherekc(ωq;Bn ← Ap) andkt (ωq; Bn ← Ap) are the clutter and target responses between antennasAp

andBn, respectively.

III. TRAIC-TRBF: M ATHEMATICAL DESCRIPTION

In this section, we describe a time reversal based algorithm to image targets in rich scattering scenes—

the time reversal adaptive interference canceler time reversal beamformer (TRAIC-TRBF); see also

preliminary work in [27]. We start by clarifying the terminology. In many radar applications, and in

this paper,imagingmeans roughly constructing a soft version of an occupancy grid map of a region of

interest (ROI), which is sampled by a finite number of grid cells, or pixels.

To image a target in high density clutter, we could attempt to locate the clutters and then use these data

in the Green’s function of the channel to model the secondary scattering from the clutter to the target

and determine the position of the target—mimicking in a sense matched field processing. This approach

suffers from the burden of having to locate accurately the clutter positions. For example, narrowband

MUSIC requires that the number of sensors in the array be larger than the number of clutters. In heavy

clutter, this is not the case and techniques like these have limited applicability. With TRAIC-TRBF, we

adopt a different strategy. We avoid all together the step of locating the clutters. Instead, we time reverse

the clutter returns and reshape this time reversed waveform so that, after retransmission, we minimize

(null or cancel) the clutters’ backscatter received at the array. This strategy mitigates the clutter response

and reinforces the return from the target. The clutter mitigation stage is followed by a second stage of
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time reversal that focuses the retransmitted signal on the target, with little backscatter to the array from

the scatterers. In other words, we first time reverse and reshape toanti-focuson the clutter, and then

we time reverse the returns tofocuson the target. Because the backscatter from the clutter is reduced

by TRAIC-TRBF, we do not need a sophisticated propagation model and a simple direct path is usually

sufficient to locate the target.

We now present formally the time reversal adaptive interference canceler time reversal beamforming

(TRAIC-TRBF) algorithm. It is designed to image (locate) targets in highly dense cluttering environ-

ments. As mentioned, it performs two tasks, clutter mitigation and target focusing, through a series of

transmission and processing steps. There are a total of five steps: clutter channel probing; time reversal

waveform reshaping for clutter cancellation; target channel monitoring; time-reversal target focusing; and,

finally, image formation by beamforming and triangulation. The first three steps constitute TRAIC, while

the two last steps are the TRBF. The first two steps of TRAIC learn the clutter channel and construct

a whitening filter for clutter mitigation. This allows us to subtract out the clutter component in each

of the three subsequent steps. Step 3 monitors the target channel, step 4 time reverses the returns from

the reshaped target waveform to focus on the target, and step 5 uses beamforming and triangulation to

form the image. TRAIC-TRBF uses time reversal twice—first, to adaptivelyanti-focus, null or cancel,

the clutter; second, tofocuson the target.

Subsection III-A details TRAIC-TRBF. Subsection III-B derives the weight vectors used to beamform

the data in step 4. Subsection III-C presents an alternative imager, the TRAIC-TR MUSIC, where we

combine TRAIC and TR with MUSIC. This algorithm is compared to TRAIC-TRBF in Section IV.

A. TRAIC-TRBF

Time reversal is usually associated with focusing. To mitigate the effect of clutter, we take here the

opposite point of view: We reshape the time reversed signal to achieve anti-focus, i.e., to null or to cancel,

the backscatter from the clutter. Thus, the goal becomes to reshape the time reversed clutter returns to

synthesize a waveform that, once retransmitted through the same medium, minimizes the energy of

the clutter returns. In this subsection, we detail the five steps represented of the time reversal adaptive

interference cancellation (TRAIC) time reversal beamformer (TRBF) algorithm (TRAIC-TRBF). In the

sequelae, we recall that the symbolsKc (ωq), Kc+t (ωq), and Kt (ωq) represent theN × P response

matrices of the clutter, the clutter plus target, and the target at frequencyωq, respectively.

Step 1: Clutter channel probing (A→B). This is the training step in which there exist only scatterers.

The goal of this step is to estimate very reliably from the received data the clutter channel frequency

responseKc (ωq). This stage assumes that only clutter and no targets are present. This is realistic in many
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applications where one can survey the area of interest before it becomes active. We first consider, without

loss of generality, that the probing signal is transmitted from antennaAp and received at theN sensors

of array B; by reversing the argument, we obtain similar results when the signal is first transmitted

from the sensors atB and received by theP sensors atA. Each antennaAp is individually excited and

radiates monochromatic signals with frequenciesωq, q = 0, · · · , Q − 1, one frequency at a time. The

scattered returns from the signal transmitted from antennaAp at frequencyωq are received at antennas

Bn, n = 0, · · · , N − 1, and collected in theN -dimensional arrayB received signal vectorrp (ωq). We

assume that the probing step can be repeated several times to average out possible measurement noise,

i.e., we assume that we havem = 1, · · · ,M noisy snapshots

rp,m (ωq) = Kc (ωq) epS (ωq) + nm (ωq) , m = 1, · · · ,M, (22)

where ep is the vector whosep-th entry is 1 and 0 elsewhere andnm (ωq) is additive noise. From

theseM snapshots, we can estimate accurately the clutter channel frequency response. For example, for

white Gauss noise, takingS (ωq) = 1, q = 0, · · · , Q − 1, we get that thep-th column ofKc (ωq) ep is

estimated by

K̂c (ωq) ep =
1
M

M∑

m=1

rp,m (ωq) ≈ Kc (ωq) ep. (23)

We repeat this process for all the antennasAp, p = 0, · · · , P − 1, which leads to estimates of the

P columns ofKc (ωq). From this clutter channel probing step, we conclude that

K̂c (ωq) ≈ Kc (ωq)

and so the clutter channel frequency response can be safely assumed to be accurately determined by

step 1.

Step 2: Waveform reshaping for clutter cancellation.The signals received by arrayB scattered by

the clutter in step 1 are widely spread in time. Intuitively, if we time reverse these signals and retransmit

them fromB, they will focus on the clutters—this is the common goal of time reversal. To image in a

highly cluttered environment, we propose an alternative goal for time reversal. Rather than focusing, we

reshape the time reversed signals so that theyavoid the clutters, once retransmitted fromB. We refer to

this as clutternulling or cluttercancellation. This is the goal of step 2 and we explain it now.

We first time reverse the backscattered signals at arrayB. As mentioned before, apart a time delay,

this corresponds to phase conjugation in the frequency domain. Then, we reshape and energy normalize

the time reversed backscatter. This is achieved by a reshaping filter, which at frequencyωq is represented

by theN ×N matrix W (ωq). The reshaped signal vector transmitted from arrayB is

∀0 ≤ p ≤ P − 1 : xp (ωq) = W (ωq)K∗
c (ωq)S∗ (ωq) ep. (24)
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The clutter backscatter received at antenna arrayA is

∀0 ≤ p ≤ P − 1 : yp (ωq) = KT
c (ωq)xp, (25)

= KT
c (ωq)W (ωq)K∗

c (ωq) S∗ (ωq) ep. (26)

Stacking theP vector signals received by all theP antennas of arrayA given by (26), we get

y (ωq) =




y0 (ωq)
...

yP−1 (ωq)


 . (27)

Stacking these vectors{y (ωq)} for all the Q frequencies into the single vectory yields

y =




y(ω0)
...

y(ωQ−1)


 . (28)

We design the reshaping filters{W (ωq) , q = 0, · · · , Q − 1} by minimizing the total energy of the

vectory (given by its squared norm or Frobenius norm)

‖y‖2
F =

∑Q−1
q=0 ‖KT

c (ωq)W (ωq)K∗
c (ωq) ‖2

F |S (ωq) |2. (29)

Given the additive nature of this cost function, we minimize each of its terms, which leads to

W (ωq)opt = arg min ‖KT
c (ωq)W (ωq)K∗

c (ωq) ‖2
F . (30)

We solve this design problem subject to the following constraints:

1) Unit norm: ‖W (ωq) ‖2
F = 1, ∀ωq. This avoids the trivial solutionW (ωq) = 0 and biasing it

towards any of theQ frequenciesωq.

2) Symmetry: W (ωq) = W (ωq)
H > 0, ∀ωq, i.e.,W (ωq) is Hermitian and positive definite (or semi-

definite if Kc (ωq) is rank deficient.) The time reversal matrixKT
c (ωq)K∗

c (ωq) becomes now the

time reversalanti-focusingmatrix

KT
c (ωq)W (ωq)K∗

c (ωq)

To preserve the Hermitian positive definiteness (or semi-definiteness ifKT
c (ωq) is rank deficient) of

the time reversal anti-focusing matrix, we choose our solutionW (ωq) to be symmetric and positive

definite.

3) Constant volume:
∏N

i=1 wii (ωq) is constant. Geometrically, for a matrixA, |det [A] | is the volume

of the n-dimensional parallelepiped whose generating edges are given by the rows (or columns) of

then×n matrixA. This volume is the largest when the generating edges are orthogonal, and, in this
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case, the volume is the product of the lengths of the edges, [28], [29]. By Hadamard’s inequality,

[29], |W (ωq) | ≤
∏N

i=1 wii (ωq), whereW (ωq) = [wij (ωq)]. We consider this as an alternative

constraint to constraining det[W (ωq)]. We will see that this condition facilitates the derivation of

the reshaping filter.

Condition (1) constrains the reshaping to have finite, nonzero, normalized energy. Condition (3) is more

subtle, it is like an entropy based design. While the goal is to avoid the clutters, because we do not know

where they are, we still want to illuminate uniformly as much as possible the space where the target may

possibly be, and that is precisely what an entropy design accomplishes—maximum uncertainty, like with

a uniform distribution.

The following two results determine the reshaping filterW (ωq): Result 1 is forN ≤ P , while Result 2

is for N > P .

Result 1: AssumeN ≤ P andKc (ωq), ∀q, is full rank. Let

Kc (ωq) = UqΛ̃qVH
q (31)

be the singular value decomposition (SVD) ofKc (ωq), where

Λ̃q =
[
Λq 0N×(P−N)

]
, (32)

Λq = diag [λq,1, · · · , λq,N ] . (33)

The optimal reshaping filter (30) under conditions (1) through (3) above is

W (ωq)opt = kqU∗
qΛ

−2
q UT

q , (34)

= kq

[
K∗

c (ωq)KT
c (ωq)

]−1
, (35)

wherekq is

k2
q =

(
N∑

i=1

1
λ4

q,i

)−1

, (36)

=
(∥∥∥

(
K∗

c (ωq)KT
c (ωq)

)−1
∥∥∥

2

F

)−1

. (37)
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Proof: From the SVD (31) ofKc (ωq) it follows successively

∥∥KT
c (ωq)W (ωq)K∗

c (ωq)
∥∥2

F
=

∥∥∥V∗
qΛ̃qUT

q W (ωq)U∗
qΛ̃qVT

q

∥∥∥
2

F
, (38)

=

∥∥∥∥∥∥∥
Λq UT

q W (ωq)U∗
q︸ ︷︷ ︸

F

Λq

∥∥∥∥∥∥∥

2

F

, (39)

= ‖ΛqFΛq‖2
F , (40)

=
N∑

i=1

λ4
q,i|fii|2 +

∑

i

∑

j,i<j

λq,iλq,j

(|fij |2 + |fji|2
)
. (41)

SinceF is Hermitian and positive definite, this implies that

∀1 ≤ i ≤ N : fii > 0, (42)

∀j : λq,j > 0. (43)

Hence,‖ΛqFΛq‖2
F is minimized by{fij = 0, i 6= j}, which yields

F = diag[f11, · · · , fNN ]. (44)

Next, we determine the values offii. Recall the inequality between the arithmetic and geometric means

n∑

i=1

ai ≥ n n

√√√√
n∏

i=1

ai, (45)

whenevera1, · · · , an > 0, with equality holding whena1 = a2 = · · · = an and
∏n

i=1 ai is a constant.

Using now condition (3), we derive that for (41) and using (45)

‖ΛqFΛq‖2
F =

N∑

i=1

λ4
q,if

2
ii, (46)

≥ N N

√√√√
N∏

i=1

λ4
q,if

2
ii, (47)

= N N

√√√√
(

N∏

i=1

λ4
q,i

)
det[W (ωq)]. (48)

The equality holds when

∀1 ≤ i ≤ N : λ4
q,if

2
ii = k2

q , (49)

or

∀1 ≤ i ≤ N : fii =
kq

λ2
q,i

. (50)
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By condition (1), we have

k2
q =

(
N∑

i=1

1
λ4

q,i

)−1

=
(∥∥∥

[
K∗

c (ωq)KT
c (ωq)

]−1
∥∥∥

2

F

)−1

. (51)

This leads to the solution

W (ωq)opt = kqU∗
qΛ

−2
q UT

q . (52)

If we allow an arbitrary unitary transform matrix in the above equation, we then find that this solution

can be further written in a compact and revealing form as

W (ωq)opt = kq

[
K∗

c (ωq)KT
c (ωq)

]−1
. (53)

Result 2: Assume thatN > P or thatKc (ωq) is rank deficient, i.e.,1 ≤ r = rank[Kc (ωq)] ≤ P . Let

Kc (ωq) = UqΠ̃qVH
q

be the singular value decomposition ofKc (ωq), where

Π̃q =


 Πq 0r×(P−N)

0(N−r)×r 0(N−r)×(P−N)


 , (54)

Πq = diag [λq,1, · · · , λq,r] . (55)

Then, under conditions (1) through (3),

W (ωq)opt = kqU∗
qΦ

2
q,rU

T
q (56)

= kq

[
K∗

c (ωq)KT
c (ωq)

]†
, (57)

where† denotes pseudo-inverse, and

Φq,r = diag


 1

λq,1
, · · · ,

1
λq,r

, 0, · · · , 0︸ ︷︷ ︸
(N−r)


 , (58)

k2
q =

(
r∑

i=1

1
λ4

q,i

)−1

=
(∥∥∥

(
K∗

c (ωq)KT
c (ωq)

)†∥∥∥
2

F

)−1

. (59)
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Proof: From

∥∥KT
c (ωq)W (ωq)K∗

c (ωq)
∥∥2

F
=

∥∥∥V∗
qΠ̃qUT

q W (ωq)U∗
qΠ̃qVT

q

∥∥∥
2

F
, (60)

=

∥∥∥∥∥∥∥
Π̃q UT

q W (ωq)U∗
q︸ ︷︷ ︸

F

Π̃q

∥∥∥∥∥∥∥

2

F

, (61)

=
∥∥∥Π̃qFΠ̃q

∥∥∥
2

F
, (62)

=
r∑

i=1

λ4
q,i|fii|2 +

∑

i

∑

j,i<j

λq,iλq,j

(|fij |2 + |fji|2
)
. (63)

Notice thatF is Hermitian and positive semi-definite. Minimizing the left hand side of Eqn. (63) and

using condition (3) and inequality (45) yields

∀1 ≤ i ≤ r : fii =
kq

λ2
q,i

. (64)

Therefore, the shaping filter takes the form:

W (ωq)opt = kqU∗
qdiag


 1

λ2
q,1

, · · · ,
1

λ2
q,r

, 0, · · · , 0︸ ︷︷ ︸
(N−r)


UT

q , (65)

= kq

[
K∗

c (ωq)KT
c (ωq)

]†
, (66)

which is Eqn. (59) in Result 2.

We now interpret the solutions (35) or (57) in the next Result. First, recall the projection operator on the

column space of matrixA

PA = A(AHA)−1AH .

Result 3: The reshaped signalxp (ωq) and the clutter returnsyp (ωq), p = 0, · · · , P −1, given by (24)

and (26), respectively, when the reshaping filterW (ωq) is given by Result 2, see (57), are

[x0 (ωq) · · ·xP−1 (ωq)] = kq

[
K∗

c (ωq)KT
c (ωq)

]−1
K∗

c (ωq)S∗ (ωq) , (67)

[y0 (ωq) · · ·yP−1 (ωq)] = kqPKT
c (ωq)S (ωq) . (68)

In particular, ifP = N andKc (ωq) is full rank, see Result 1 and (35), we have

[x0 (ωq) · · ·xP−1 (ωq)] = kqK−T
c (ωq)S∗ (ωq) , (69)

[y0 (ωq) · · ·yP−1 (ωq)] = kqIS (ωq) . (70)

Proof: By direct substitution of (57) in (24) and (26), Eqns. (67) and (68) follow.

WhenP = N andKc (ωq) is full rank, Eqn. (69) follows directly from (67). Also, we have that

KT
c (ωq)W (ωq)K∗

c (ωq) = kqI, (71)
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which leads to (70).

Result 3 shows that the reshaped time reversed signal designed for clutter mitigation unscrambles the

clutter channel response: note that, in the first step, we transmit from a single antenna from arrayA, say

antenna 1, and receive the clutter returns at all antennas at arrayB. We then, time reverse the signal

received at each antenna in arrayB and retransmit simultaneously from all these antennas at arrayB. If

the clutter is very rich, these signals should focus at antenna 1 at arrayA, from which it was transmitted

initially. The filter W (ωq) forces this to happen—the signal refocus at antenna1 of arrayA and is zero

at every other antenna atA. The clutter response can then be subtracted out in succeeding processing

steps. Intuitively, the filtersW (ωq) , ∀q, after the clutter response is subtracted out, reduce the imaged

area to an open field, i.e., with no clutter, so that subsequent processing can assume that target only is

present. We can then image the area using a simple Green’s function, without requiring knowledge of

the position of the scatterers.

Step 3: Target channel monitoring. (B→A) In this step, the environment is probed with the sig-

nal (67). Targets may be present or absent. The “signal plus clutter components” in the received signal

(if a target is present) are

z′p (ωq) = (Kt (ωq) + Kc (ωq))
T xp (ωq) , (72)

= zt
p (ωq) + zc

p (ωq) , (73)

= kq

(
KT

t (ωq)K−T
c (ωq) + I

)
epS

∗ (ωq) , (74)

where in (74) we assumed thatN = P andKc (ωq) is full rank. We subtract out the known component

zc
p (ωq) due to the clutter. The resulting data matrixZ (ωq) is

Z (ωq) =
[
zt
0 (ωq) , zt

1 (ωq) , · · · , zt
P−1 (ωq)

]
, (75)

= kqKT
t (ωq)K−T

c (ωq) S∗ (ωq) . (76)

Step 4: Time reversal target focusing. (A→B) The returns from step 3, received at the antennas

in array A, after the whitened clutter has been subtracted out, are either noise or target response plus

noise. The target response may be smeared out by the complex environment, e.g., multiple scattering

from clutter to target. The goal of step 4 is to obtain focused returns from the target by time reversing the

returns from step 3, retransmitting them into the environment, and collecting back the returns at arrayB.

June 19, 2007 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 16

The “signal plus clutter components” of the received signal atB are (again, assuming a target is present)

p′p (ωq) = [Kt (ωq) + Kc (ωq)] [zp (ωq)]
∗ (77)

= [Kt (ωq) + Kc (ωq)] kqKH
t (ωq)K−H

c (ωq) epS (ωq) (78)

= kqKt (ωq)KH
t (ωq)K−H

c (ωq) epS (ωq)

+kqKc (ωq)KH
t (ωq)K−H

c (ωq) epS (ωq) (79)

= pt
p (ωq) + pc

p (ωq) , (80)

where the target component is given by

pt
p (ωq) = p′p (ωq)− pc

p (ωq) , (81)

= kqKt (ωq)KH
t (ωq)K−H

c (ωq) epS (ωq) . (82)

Groupingpt
p (ωq), p = 0, · · · , P−1, into anN×N matrixMB, yields the clutter focused target response

matrix measured at arrayB

MB (ωq) =
[
pt

0 (ωq) ,pt
1 (ωq) , · · · ,pt

P−1 (ωq)
]
, (83)

= kqKt (ωq)KH
t (ωq)K−H

c (ωq) S (ωq) . (84)

Note thatMB (ωq) collects the returns resulting from the two steps, target channel monitoring (step 3)

and time reversal target focusing (step 4), when we start from arrayB in step 3.

Similarly, if we repeat steps 3 and 4 but starting initially from the antennas in arrayB, we obtain the

clutter target response matrix measured at arrayA given by theP × P matrix

MA (ωq) = kqKT
t (ωq)K∗

t (ωq)K−∗
c (ωq) S (ωq) . (85)

Step 5: Image formation. This final step forms the image by scanning the area of interest with two

focused beams, one at arrayB and the other at arrayA. The beam atB is when we start atB and end

at B; similarly, the beam atA is when we start atA and end atA.

Start with the returnsMB (ωq) andMA (ωq). LetwrB(x; ωq), wtB(x; ωq), wrA(x; ωq), andwtA(x; ωq)

denote the receive and transmit beams for arraysB and A, respectively, at frequencyωq,∀q. Their

structures are presented in the next Subsection III-B. The complex output of the beamformersB andA

are

Y B (x; ωq) = wH
rB (x; ωq)MB (ωq)wtB (x; ωq) , (86)

Y A (x; ωq) = wH
rA (x;ωq)MA (ωq)wtA (x; ωq) . (87)

June 19, 2007 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 17

We now combine the outputs of these two beamformers by triangulation, i.e., we multiply the outputs

of the two beamformers at each frequency to form the final imageI (x) as the spatial distribution of the

total energy at each pixelx

I (x) =
Q−1∑

q=0

∣∣Y A (x; ωq) Y B (x; ωq)
∣∣2 . (88)

Eqn. (88) implements theenergy detector.1

B. Weight vectors

We design the imaging weight vectors introduced in Subsection III-A by maximizingI(x) given in (88)

subject to unit norm constraints on the weight vectors as explained here. Using the subspace revealing

representation (15) for the response matrices, and from Eqns. (84), (85), and (88), we obtain

I(x) =
Q−1∑

q=0

∣∣wH
rB (x;ωq)MB (ωq)wtB (x;ωq)

∣∣2 ∣∣wH
rA (x;ωq)MA (ωq)wtA (x; ωq)

∣∣2 (89)

=
Q−1∑

q=0

|〈wrB (x; ωq) ,gB (x; ωq)〉|2 ‖gA (x; ωq)‖2
∣∣〈wtB (x; ωq) ,K−1

c (ωq)gB (x; ωq)〉
∣∣2

× |〈wrA (x; ωq) ,gA (x; ωq)〉|2 ‖gB (x; ωq)‖2
∣∣〈wtA (x; ωq) ,K−T

c (ωq)gA (x;ωq)〉
∣∣2

×k4
q |S (ωq)|4 |τ (x;ωq)|8 (90)

In (90), we indicate explicitly the target reflectivityτ (x;ωq). Given the additivity ofI(x) in (90), the

weight vectors, which are frequency dependent, can be calculated frequency by frequency. For a unit

target impulse response atxt = x, the optimal weights are obtained by the following optimization

{wrB (x;ωq) ,wtB (x; ωq) ,wrA (x; ωq) ,wtA (x;ωq)}
∣∣opt = arg max

weights
I(x) |xt=x , (91)

subject to the constraints

‖wrB (x;ωq)‖2 = ‖wtB (x;ωq)‖2 = ‖wrA (x;ωq)‖2 = ‖wtA (x;ωq)‖2 = 1. (92)

The solution is promptly found as an application of Schwartz inequality and is in the following Result.

1The energy detector is a generalized likelihood ratio test for this problem, see [18]. The matched filter is not applicable since

the target channel response is assumed to be unknown.
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Result 4: The optimal weights (91) under the unit norm constraint (92) are

wrB (x; ωq) =
gB (x;ωq)
‖gB (x;ωq)‖ , (93)

wtB (x; ωq) =
K−1

c (ωq)gB (x;ωq)∥∥K−1
c (ωq)gB (x;ωq)

∥∥ , (94)

wrA (x; ωq) =
gA (x; ωq)
‖gA (x; ωq)‖ , (95)

wtA (x; ωq) =
K−T

c (ωq)gA (x; ωq)∥∥∥K−T
c (ωq)gA (x; ωq)

∥∥∥
. (96)

Proof: As noted before, from the additivity ofI(x), we can perform the optimization term by term.

Also, given that each term in the sum in (90) is a product of several non negative factors, optimizing

each term is equivalent to optimizing each of its factors. It follows then that we optimize each transmit

and receive weight vector for each arrayA and B independently of each other. We consider explicitly

the optimization with respect towrB (x; ωq). The optimization is

arg max
‖wrB(x;ωq)‖=1

I(x) = arg max
‖wrB(x;ωq)‖=1

|〈wrB (x; ωq) ,gB(xt = x; ωq)〉|2 . (97)

By Schwartz inequality, (93) follows. Similarly, we obtain (94)-(96).

C. TRAIC-TR MUSIC

The TRAIC-TRBF forms the images by beamforming the returns from step 4 at arraysA and B,

and then by triangulation of the two resulting beams. In section IV, we will compare the TRAIC-TRBF

imager with other alternative imagers. One of these combines TRAIC-TR with a wideband version of

the subspace based location estimation algorithm Multiple Signal Classification (MUSIC). We describe

this algorithm now. The motivation to consider TRAIC-TR with MUSIC is the following: in a highly

cluttered environment, where there are a large number of scatterers, MUSIC is not directly applicable.

Since, intuitively, TRAIC clears the field of view by minimizing and subtracting out the clutter, it should

be possible to use MUSIC after TRAIC to localize targets as long as the number of targets is smaller

than the number of array elements. Because we are using wideband signals, we compute the MUSIC

spectrum by combining the spectrum at all frequencies through simple multiplication of the spectrum at

each frequency. We detail the method.

We perform singular value decomposition of the matricesMB (ωq) in (84) andMA (ωq) in (85) to
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obtain

MB (ωq) =
(
UB

t (ωq) UB
n (ωq)

)

 ΓB

t (ωq) 0

0 ΓB
n (ωq)


(

VB
t (ωq) VB

n (ωq)
)H

, (98)

MA (ωq) =
(
UA

t (ωq) UA
n (ωq)

)

 ΓA

t (ωq) 0

0 ΓA
n (ωq)


(

VA
t (ωq) VA

n (ωq)
)H

, (99)

where: theN ×rq matrix UB
n (ωq) and theP ×rq matrix UA

n (ωq) are the left null subspaces of matrices

MB (ωq) andMA (ωq), respectively; andrq is the effective rank ofMB (ωq) or MA (ωq), i.e., the number

of the dominant singular values ofMB (ωq) or MA (ωq). For example, we may define the number of

dominant singular values for matrixMB (ωq) as the minimum number of singular values whose sum

exceeds

τTr
[
MB (ωq)

]

where0 ≤ τ ≤ 1 is close to unity (e.g.,τ = 0.85.) The MUSIC spectrum is computed as follows:

ITRMU(x) =
1
Q

Q−1∏

q=0

PB (x; ωq)PA (x;ωq) , (100)

where the factor1/Q is for normalization purposes. The MUSIC spectra, at pixelx and frequencyωq,

{PB (x; ωq)} and{PA (x;ωq)} are given by

PB (x; ωq) =
1∥∥gH

B (x;ωq)UB
n (ωq)

∥∥2
/ ‖gB (x; ωq)‖2

, (101)

PA (x; ωq) =
1∥∥gH

A (x;ωq)UA
n (ωq)

∥∥2
/ ‖gA (x;ωq)‖2

. (102)

IV. EXPERIMENTAL RESULTS

This section studies the performance of the TRAIC-TRBF imager, comparing it to TRAIC-TR MUSIC

and to a conventional imager obtained by direct subtraction, as will be explained in subsection IV-B. We

first measure real electromagnetic (EM) backscatter from clutters placed in the imaging area with no target,

and then the EM backscatter when there are cluttersand target(s). From these measurements, we extract

the clutter channel and the clutter plus target channel frequency responses{Kc (ωq) , q = 0, · · · , Q− 1}
and{Kc+t (ωq) , q = 0, · · · , Q− 1}, respectively. From these we compute{Kt (ωq) , q = 0, · · · , Q− 1}.
The data in steps 2 through 5 in Subsection III-A are then computer generated using theseKc (ωq)

and Kt (ωq) channel responses. In other words, TRAIC-TRBF is achieved as an algorithm, with no

actual retransmission of the reshaped signals. We refer to this asmathematicaltime reversal rather than

physicaltime reversal, which is when we actually retransmit the time reversed signals.
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We start by describing the experimental set-up and physical measurements in subsection IV-A. Subsec-

tion IV-B presents a conventional imaging method using direct subtraction (DS) beamforming (DSBF).

Subsection IV-C compares the performance of four imagers for different clutter/target configurations:

TRAIC-TRBF, TRAIC-TR MUSIC, DSBF, and DS MUSIC. Finally, Subsection IV-C analyzes the results

to confirm that time reversal and TRAIC-TRBF improve imaging in high clutter environments.

A. Physical measurements

In this subsection, we describe successively the scattering environment, the experimental set-up, and

finally the sequence of actual measurements at discrete frequenciesωq, q = 0, · · · , Q−1 to get the clutter

and the clutter plus target channel frequency response matricesKc (ωq) andKc+t (ωq), from which we

get Kt (ωq).

Scattering environment. The scattering environment is illustrated in Fig. 1. It contains a number of

scattering rods placed in a wood platform. The rods are a mixture of the following four types of scatterers:

(1) 1.27 cm diameter (0.5′′) copper pipe; (2) solid dielectric pipe with outer diameter of3.2 cm, with

dielectric constant3.7; (3) dielectric rod with copper-patches to cause frequency dependent radar-cross

section; and (4) extended object,25 × 10 cm aluminum box. The targets are1.3 cm diameter copper

rods.

Experimental set-up. We conducted a series of electromagnetic measurements in the4 − 6 GHz

frequency range, [30], uniformly sampled byQ = 201 frequencies. The corresponding total waveform

time length is then

Tc = (201− 1)× 1
2× 109

= 100× 10−9s.

This signal is generated by an Agilent89610A vector signal analyzer. Both, the in-phase (I channel)

and quadrature phase (Q channel) streams of the received signals are captured. Two horn antennas, both

with operational bands4 − 6 GHz, are used as transmit and receive antennas. Each horn antenna is

mounted on a rail and moves physically to computer controlled positions to synthesize two uniform

linear arrays. In our experiments, the baseline of these arrays is limited by two factors: (1) The physical

dimensions of the horn antennas set a minimum inter-element spacing of 10.16 cm; and (2) the size of

the absorbing wall limits the maximum length of the transmit or receive array. This limited the two arrays

to P = N = 10 antennas. The device noise level is set below−40 dB relative to the received signal.

Measurements.A sequence of measurements were carried out:

1) Calibration. The equipment, I-Q modulators, network analyzer, and horn antennas were carefully

calibrated by an initial set of measurements.
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2) Clutter channel.With the scatterers placed in their controlled positions, we measure with the I-

Q modulators the response of the channel to the201 monochromatic signals at frequenciesωq,

q = 0, · · · , Q − 1. The data is organized into the clutter channel frequency response matrices

Kc (ωq) , q = 0, · · · , Q− 1.

3) Clutter plus target channel response.With the scatterersand target placed in their locations, we

measure the total clutter plus target channel frequency response matricesKc+t (ωq) , q = 0, · · · , Q−
1.

B. Conventional Imaging: Direct Subtraction (DS)

In conventional imaging, direct subtraction is commonly used to eliminate the contributions of the

background and focus on objects of interest. Since from the measurements, we have both the clutter only

Kc (ωq) and the clutter plus targetKc+t (ωq) channel frequency responses, by direct subtraction

Kt (ωq) = Kc+t (ωq)−Kc (ωq) . (103)

In practice, noise and other distortions makeKt (ωq) to be different from the target channel response.

Using the subspace revealing representation (15), the target response matrixKt (ωq) is modeled as

Kt (ωq) = gB (xt; ωq)gT
A (xt; ωq) . (104)

Direct subtraction beamformer (DSBF). The direct subtraction (DS) beamformer (DSBF) correlates

the target response matrixKt (ωq) with normalized weight vectors

wB (x;ωq) =
gB (x; ωq)
‖gB (x; ωq)‖ , (105)

wA (x;ωq) =
gA (x; ωq)
‖gA (x; ωq)‖ , (106)

at each frequencyωq, which yields the DSBF image

IDSBF(x) =
Q−1∑

q=0

∣∣∣∣
gH

B (x; ωq)Kt (ωq)g∗A (x; ωq)
‖gB (x; ωq)‖ ‖gA (x; ωq)‖

∣∣∣∣
2

. (107)

Direct subtraction MUSIC (DS MUSIC). We can also apply MUSIC to the direct subtraction

approach. By singular value decomposition

Kt,DS (ωq) = (Ut (ωq) Un (ωq))


 Γt (ωq) 0

0 Γn (ωq)


 (Vt (ωq) Vn (ωq))

H , (108)

whereUn (ωq) andVn (ωq) define the null subspaces of matrixKt (ωq) with rq being its estimated rank.

The DS-MUSIC spectrum is given by

IDSMU(x) =
1
Q

Q−1∏

q=0

J A(x; ωq)J B(x; ωq), (109)
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where1/Q is for normalization, and

J B(x; ωq) =
1∥∥gH

B (x; ωq)Un (ωq)
∥∥2

/ ‖gB (x; ωq)‖2
, (110)

J A(x; ωq) =
1∥∥gH

A (x; ωq)V∗
n (ωq)

∥∥2
/ ‖gA (x; ωq)‖2

. (111)

C. Test results

We now contrast the performance of the4 imaging algorithms: (i) TRAIC+TRBF (ii) DSBF (iii) TRAIC+TR

MUSIC (iv) DS MUSIC.

As mentioned at the beginning of this Section, we performmathematicaltime reversal, rather than

physicaltime reversal. In physical time reversal the data in steps 3 and 4 described in Subsection III-A

are actually physically generated, transmitted, and measured. However, this is not necessary to image the

target, and we can simply perform mathematical time reversal where the data in these steps is generated

numerically using the channel responsesKc (ωq) andKc+t (ωq) for q = 0, · · · , Q− 1.

We performed a battery of 11 tests with different number and configuration of clutters and targets.

We report in this section the results for case 8 (17 scatterers and single target) and case 6 (6 scatterers

and two targets.) Lack of space prevents detailed discussion of the other cases. Table I will summarize

relevant resolution results for all 11 cases.

We show for cases 8 and 6, the imagesI(x) at the output of the beamformers, see Figs. 2 through 5.

These figures show the scattering configuration. For example, with respect to Fig. 2, the 17 numbers on

each plate indicate the position of the scatterers. The correct position of the target is at the cross×, while

the peak of the imageI(x) is at the circle◦. The closer the circle to the cross is, the better the localization

accuracy is. The cross-range and range are in the vertical and horizontal directions, respectively, with

the physical dimensions as indicated in cm along each axis. To calibrate these distances, we recall that,

at the center frequency,5 GHz, the wavelength in free space is6 cm. The color bar on the side shows

the dB scale starting from 0 dB at the top (dark blue in color printing.) For each image, the total range

of the color bar shows the dynamic range of the imager. For visual comparison purpose, the images in

Figs. 2 and 4 are properly scaled to the same range in dB. The sharper high contrast images provide

better details, and thus better resolution.

17 Scatterers and 1 target.The templates in Fig. 2, from top to bottom, left to right, show the

TRAIC+TRBF, DSBF, TRAIC-TR MUSIC, and DS MUSIC images. Fig. 3 shows the projections along

the cross-range (left template) and range (right template) of the 3DI(x) for the TRAIC-TRBF (heavy

trace with x) and the DSBF (lighter trace).
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Fig. 2. Time Reversal imaging with17 scatterers and1 target. Numbers indicate locations of the scatterers,× and◦ indicate

the exact location of the target and the peak value of the image, respectively. Top left–TRAIC+TRBF. Top right–DSBF. Bottom

left–TRAIC+TR MUSIC. Bottom right–DS MUSIC. All images are plotted within the same range (0 ∼ −34 dB).
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Fig. 3. The projection onto cross range and range for the images in Fig. 2. Left–Cross range; Right–Range. TRAIC shows a

narrower main lobe, deeper null, and lower sidelobes relative to direct subtraction imaging.
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Fig. 4. Time Reversal imaging with6 scatterers and2 targets. Numbers indicate locations of the scatterers,× and◦ indicates the

exact location of the target and the peak value of the image, respectively. Top left–TRAIC+TR beamforming. Top right–Direct

subtraction beamforming. Bottom left–TRAIC+TR MUSIC. Bottom right–Direct subtraction MUSIC. All images are plotted

within the same range (0 ∼ −45 dB).

There are a number of important remarks from Figures 2 and 3 that demonstrate the higher cross-range

and range resolution provided by TRAIC-TRBF over all the other alternative algorithms. The first is the

dynamic range that is about 35 dB for TRAIC-TRBF, 10 dB larger than for DSBF, and about 20 dB

larger than for the MUSIC based algorithms. The higher resolution of TRAIC-TRBF is also apparent

from Figure 2, where the lobe around the target is narrower in both (cross-range and range) directions.

Both points are also well made with Figure 3: the higher resolution is apparent from much narrower

main lobes and the dynamic range is a result of smaller sidelobes. Furthermore, in this case, the number

of antennas (= 10) is smaller than the number of scatterers (= 17). The resulting images using TRAIC

demonstrate that TRAIC successfully mitigates the clutters’ response and focuses on the intended target.

6 Scatterers and 2 targets.Fig. 4 depicts the images formed by the same 4 algorithms now using

case 6 with a total of6 scatterers and2 targets. The top left panel shows that the TRAIC-TRBF mitigates
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Fig. 5. The projection onto cross range and range for the formed image in Fig. 4. Left–Cross range projection. Right–Range

projection. TRAIC+TRBF yields two lobes corresponding to two target locations.

the clutter (scatterers9, 15, 27, 23, 36 are placed in deep nulls) and focuses on both targets. The dynamic

range is about45 dB, compared with about30 dB dynamic range for the DSBF,11 dB for TRAIC-TR

MUSIC and22 dB for DS MUSIC. Both, the DSBF and the DS MUSIC, miss the target at range290 cm.

Fig. 5 shows the projection of the TRAIC-TRBF and DSBF images onto cross-range and range. The left

image clearly shows two high peaks for TRAIC+TR beamforming. We observe a−5 dB null between

the two peaks. For the direct subtraction beamforming, the second peak misses the target completely.

Resolution. We consider the two dimensional point spread function (PSF) of the imager, which is its

output when the targets are pointwise. The PSF is

I (x,x) =
Q−1∑

q=0

∣∣wH
rB (x;ωq)MB (x, ωq)wtB (x; ωq)

∣∣2 ∣∣wH
rA (x; ωq)MA (x, ωq)wtA (x;ωq)

∣∣2 , (112)

wherex is the actual source location andx is the pixel location on which the transmit and receive beams

focus. Define∆x = x− x, and

J̃ (x) =
1

I (x)
J (x) = − 1

I (x)
∂

∂x

(
∂

∂x
I (x)

)T
∣∣∣∣∣
x=x

. (113)

Second order Taylor’s series expansion aboutx of the PSF leads to

I (x,x) ≈ 1− 1
2

(∆x)T J (x) (∆x) , (114)

The diagonal elements of the inverseJ̃(x)−1, i.e., J̃−1 (x)xx and J̃−1 (x)yy, evaluated at the peak of

the beamformed images are a measure of how narrow or wide the main lobe is. In other words, these

values provide a quadratic description of the main lobe of (112). The analytical expression (113) is hard

to obtain due to its complexity. We resort to numerical means by finite difference replacement of the
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TRAIC+TRBF DSBF TRAIC+TRBF DSBF TRAIC+TRBF DSBF

(eJ−1)yy (eJ−1)yy (eJ−1)xx (eJ−1)xx (eJ−1)xy (eJ−1)xy

Case-1 12.4 23.1 144.4 246.0 7.2 19.2

Case-2 12.5 27.2 129.5 278.4 15.3 35.2

Case-3 34.5 96.0 339.4 359.7 −42.8 −103.2

Case-4 13.3 21.0 131.0 194.2 4.6 6.0

Case-5 22.3 33.2 233.8 354.6 31.7 62.8

Case-6 19.5 36.0 218.5 421.3 22.5 79.6

55.6 88.4 766.2 1186.7 138.3 101.8

Case-7 85.5 121.8 1225.8 1103.7 256.4 −163.0

108.2 52.5 1273.4 780.0 −333.7 −138.8

Case-8 16.0 45.0 289.7 759.1 −17.6 −94.9

Case-10 15.1 22.9 150.6 200.0 6.3 5.9

Case-13 24.9 29.8 256.9 338.3 43.5 55.1

165.2 258.2 2271.8 4395.4 430.9 770.8

Case-14 22.8 39.5 199.6 403.8 44.8 91.1

TABLE I

RANGE RESOLUTION(x) AND CROSS RANGE RESOLUTION(y) FOR TRAIC+TRBF AND DSBF

second derivatives∂
2

∂x2 [I (x)]i,j ,
∂2
∂y2 [I (x)]i,j and the mixed derivative∂2

∂x∂y [I (x)]i,j as approximations,

defined as follows: [31]

∂2Ii,j

∂x2

∣∣∣∣
i,j

=
Ii+1,j − 2Ii,j + Ii−1,j

∆2
+ O(∆2) (115)

∂2Ii,j

∂y2

∣∣∣∣
i,j

=
Ii,j+1 − 2Ii,j + Ii,j−1

∆2
+ O(∆2) (116)

∂2Ii,j

∂x∂y

∣∣∣∣
i,j

=
1

4∆2
{3 [Ii+1,j+1 + Ii−1,j−1]− [Ii−1,j+1 + Ii+1,j−1]

−2 [Ii+1,j + Ii,j+1 + Ii−1,j + Ii,j−1 − 2Ii,j ]}+ O(∆2) (117)

whereIi,j = I (xi, yj). Eqn. (117) uses a nine point numerical approximation to the cross second order

derivative. Because∆ = 0.75 cm, the grid size is sufficiently small to ensure the smoothness of the

numerical solution. Table I shows these quantities for all 11 cases studied. They show that, except for

one of the targets in case 7, the main lobe of the TRAIC-TRBF image is consistently narrower than the

main lobe of the DSBF along both the range and cross range directions.

DiscussionThe proposed TRAIC+TR BF algorithm images a target scene using mathematical time
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reversal twice. The first time reversal step nulls the clutter; the second time reversal step focuses on

the target. The target data matrix defined in (19), in dense scattering, contains both the direct reflection

between the target and the receive array,and the secondary reflections between the scatterers, the target,

and the receive array. The clutter nulling step suppresses the clutter reflections,not the secondary scattering

between the target, the scatterers, and the receiver. The target focusing step back propagates the wave field

and focuses on the target. After the target focusing step, the measurements contain the energy focused

wavefield; then, we apply a beamformer weight vector to locate the target.

Because the focused wavefield contains direct and secondary scattering, ideally, the weight vector, i.e.,

the field Green’s function, should combine the direct reflection from the target to the receiver, and the

secondary scattering due to the presence of the surrounding scatterers. In our algorithm, we use only

the direct path Green’s function, which, in a sense, is equivalent to the Born approximation [16]. This

avoids having to locate the scatterers, which is challenging in high scattering environments. But, high

scattering environment is exactly where time reversal makes a difference, and so, our method of nulling

the scatterers before focusing on the targets, avoids having to resolve the scatterers, still providing good

target imaging performance. This simplification, however, may explain why, in the experiment with 17

scatterers and 1 target, reported in Fig. 2, some local maxima are close to the global maxima.

The effect of multiple scattering on time reversal imaging has been studied in [15], [16], [17], where

the Foldy-Lax model [32] is employed. For example, references [16], [17] show that, despite the presence

of non-negligible multiple scattering, the time reversal imaging with MUSIC works well in predicting the

scatterers’ locations. However, MUSIC is limited by the condition that the number of antennas is larger

than the number of scatterers, which is common in heavy scattering environments. Another example of

using the Foldy-Lax model is the maximum likelihood estimation of point scatterers reported in [15],

where the locations of the scatterers and their reflectivity coefficients are estimated iteratively through the

maximum likelihood approach. That is, starting from an initial estimate of the target location and updating

the estimates iteratively by optimizing a chosen non-linear cost function, the algorithm in [15] generates

an image of all the scatterers. However, all the examples shown in [15] use a number of antennas that

is significantly larger than the number of scatterers plus targets, for example, 40 antennas or 8 antennas

and 3 scattering objects (scatterers plus targets). Other than MUSIC, [26] implements a high dimensional

signal subspace localization method. In contrast, our proposed algorithm does not attempt to estimate

the locations of the clutters (i.e., the unwanted scatterers) explicitly, rather it suppresses the clutter and

then focuses on the targets. This strategy avoids the problem of directly estimating the parameters of the

clutter, which may be an impossible task when the number of clutters is very large. For example, we

show results when using 10 antennas and 17 scatterers.
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In terms of the computational complexity, our proposed TRAIC+TR BF algorithm is comparable to

the conventional DS BF algorithm. For simplicity, we assume that the number of antennas in array A

and B are the same (N = P ), and that we do not consider the unit normalization constraint in the weight

vectors (93)-(96) and (105)-(106) for the moment. Using the Big-O notation, we can show that the DS

BF algorithm has the computational complexityO(JxJyQ(2N2 + 2N)) = O(JxJyQN2), whereN is

the size of the weight vectors and the data matrices,Q is the number of frequencies,Jx and Jy are

the number of pixels in range and cross range, respectively; similarly, the TRAIC+TR BF algorithm has

the computational complexityO(JxJyQ16N2 + QcN3), where the factorN3 results from inverting the

matricesKc(ωq), and c is a small constant. In our experiments, we chooseN = 10, Q = 201, Jx =

256, Jy = 200, so the numbersQ, Jx, Jy are dominant with respect toN . Thus, the computational

complexity of the TRAIC+TR BF is still comparable to that of the DS BF for a largeQ, Jx, Jy, and

smallerN . This conclusion still holds when the computation of the unit normalization constraint is taken

into account in that the number of operations of carrying out the unit normalization for both algorithms

is on the order ofO(JxJyQN).

Another important question is the effect of measurement noise. In this paper, we rely on experimental

data for algorithm verification. The noise power in the collected experimental data is low relative to the

signal and clutter power. The device noise is measured experimentally to be below−40 dB relative to

the received signal. The analysis of the noise effect on the time reversal imaging algorithm proposed

here will be reported elsewhere. Interested readers can refer to [33] where the impact of noise on time

reversal detection is analyzed.

V. CONCLUSION

In this paper we present a new high resolution radar imaging system to detect and locate targets

using time reversal in rich scattering environments, where the number of scatterers is significantly

larger than the number of antennas. The proposed imaging system performs two major tasks by time

reversal: clutter mitigation and target focusing. Clutter mitigation is accomplished by aTime Reversal

Adaptive Interference Canceler(TRAIC) through waveform reshaping to null out the clutters. After

clutter is suppressed and subtracted out, a second time reversal for target focusing is performed. A final

image is then obtained by beamforming. A series of experimental tests in electromagnetic domain have

demonstrated the good performance of the proposed imaging algorithm over conventional approaches. In

future research, we intend to pursue performance analysis studies of the TRAIC time reversal beamformer

and find ways of handling explicitly the secondary scattering between scatterers and targets, while avoiding

resolving the individual scatterers. We are also currently extending our imaging algorithm to synthetic

aperture monostatic and bistatic radar, see [34] for some preliminary results.
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