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Abstract

Contrast-enhanced magnetic resonance imaging (MRI) ifulus®e study the infiltration of cells
in vivo. This research adopts ultrasmall superparamagnetic irithe USPIO) particles as contrast
agents. USPIO particles administered intravenously casnidecytosed by circulating immune cells, in
particular, macrophages. Hence, macrophages are labélledJBPIO particles. When a transplanted
heart undergoes rejection, immune cells will infiltrate @llegraft. Imaged by J-weighted MRI, USPIO-
labeled macrophages display dark pixel intensities. Digigthese labeled cells in the image facilitates
the identification of acute heart rejection.

This paper develops a classifier to detect the presence oilQJBBeled macrophages in the
myocardium in the framework of spectral graph theory. Five¢ describe a USPIO-enhanced heart
image with a graph. Classification becomes equivalent tditjpaming the graph into two disjoint
subgraphs. We use the Cheeger constant of the graph as ativadjenctional to derive the classifier. We
represent the classifier as a linear combination of basistifums given from the spectral analysis of the
graph Laplacian. Minimization of the Cheeger constant thdsactional leads to the optimal classifier.
Experimental results and comparisons with other methodgesi the feasibility of our approach to

study the rejection of hearts imaged by USPIO-enhanced MRI.
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. INTRODUCTION

Heart failure is a major public health crisis in the Unitect8s. It is the leading cause of
death and hospitalization in this country. For many pasiesith end-stage heart failure, heart
transplantation may be the only viable treatment optioryskians typically assess for cardiac
rejection by performing frequent endomyocardial biopsigsing biopsy samples, cardiologists
monitor immune cell infiltration and other pathological cheteristics of rejection. However,
biopsies are invasive procedures that are subject to patihn In addition, due to limited
sampling, biopsies may not detect focal areas of rejection.

Cellular magnetic resonance imaging (MRI) is a useful t@hbn-invasively monitor the
migration and localization of cells in the whole heartvivo [1]. This imaging modality relies
on extrinsic contrast agents, such as ultrasmall superzaaetic iron oxide (USPIO) particles.
The superior relaxivity of USPIO particles reduces sigmaission in T-weighted MRI [2].

In other words, the signal attenuation created iwkighted MR images localizes the cells
containing a significant number of USPIO patrticles.

Mammalian cells can be labeled with MRI contrast agentseeiéx vivoor in vivo. In the
ex vivo method, specific types of cells are isolated, labeled withtrast agents in culture,
and then reintroducedn vivo method, contrast agents are administered intravenolnshjivo
labeling is effective for cells that can phagocytose or entlise the contrast agents, and can be
conveniently applied in the clinical studies. We adopvivo labeling in this study.

After USPIO particles are administered, circulating mabiages can endocytose USPIO par-
ticles and become USPIO-labeled macrophages. When myemnticurs, the labeled macrophages
migrate to the rejecting tissue. Imaging the transplant bw&ighted MRI, dark pixels represent
the infiltration of macrophages labeled by USPIO particles identify the rejecting sites [3], [4].
For example, Figure 1 shows the left ventricular image ofjectang cardiac allograft, where the
darker signal intensities in the myocardium reveal the gmmee of USPIO-labeled cells, leading
to the detection of the macrophage accumulation. To idestich regions, the first task is to
classify the USPIO-labeled dark pixels in the image.

The usual method to classify USPIO-labeled pixels is manlzaisification [4]-[7], or simple
thresholding of the image. Manual classification requiragiologists to scrutinize the entire

image to determine the location of the USPIO-labeled pix®lanual classification is labor-
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Fig. 1. A USPIO-enhanced cardiac MR image where the dardpae segmented. The dark pixels correspond to the location

of USPIO-labeled abnormal cells.

intensive and operator dependent. In addition, the noisedanced during the imaging, the blur
induced by cardiac motion, and the partial volume effect endirk and bright pixels difficult
to distinguish. Thresholding the intensities is the sirapkdgorithm to classify USPIO-labeled
pixels; however, this method cannot handle noise. Anotha&wblack of thresholding is that the
operator has to adjust the threshold values, which maydotre inconsistent recordings. To
reduce the labor involved with manual classification, to en#lie process robust to noise, and
to achieve consistent results, we propose to develop amatitalgorithm for classification of
USPIO-labeled pixels.

To design an automatic classification algorithm, we faceftfiewing challenges:

1) Macrophages accumulate in multiple regions without kmpattern. For example, Figure 1
displays a rejecting heart where the boundaries of macggphacumulation are manually
determined. We can see that the macrophage spread randowmighout the myocardium.
Since there is no model describing how macrophages inéltridte algorithm will rely
solely on the MRI data.

2) Due to noise and cardiac motion, the boundaries betwesmldhk and bright pixels are
diffuse and hard to distinguish; as such, any classificagiigorithm has to be robust to
noise.

3) There are a large number of pixels in the myocardium. Fstairce, the heart shown in

Figure 1 has more than 2500 myocardial pixels. This mearisstddave to classify more
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than 2500 pixels, which may involve estimating a large nundieparameters. To avoid
estimating too many parameters and design the classificatgwrithm in a tractable way,
we transform the problem into another one that expresseddisifier in terms of a small
number of parameters.

4) There are two types of classifiers for our design: supedvand unsupervised. Supervised
classifiers need human operators to label a subset of théspikbe classifiers then
automatically propagate the human labels to the remainirglgo However, the human
knowledge might be unreliable, so the classification resaife sensitive to operators. To
avoid the classification inconsistency related to operdépendence, the classifier will be

unsupervised.

A. Overview of Our Approach

We formulate the task of classifying USPIO-labeled regiaasa problem of graph partition-
ing [8]. Given a heart image, the first step is to representithiecardium as a graph. We treat all
the myocardial pixels as the vertices of a graph, and pteseriway to assign edges connecting
the vertices. Graph patrtitioning is a method that sepathtegraph into disconnected subgraphs,
for example, one representing the classified USPIO-lalrelgidn and the other representing the
unlabeled region of the myocardium. The goal in graph paniing is to find a small as possible
subset of edges whose removal will separate out a large afhfsubset of vertices. In graph
theory terminology, the subset of edges that disjoins tlaplyiis called aut, and the measure
to compare partitioned subsets of vertices is tb&ume Graph partitioning finds theninimal
ratio of the cut to the volume, which is called tis®perimetric numbeand is also known as the
Cheeger constan®] of the graph. Evaluating the Cheeger constant will datee the optimal
edge cut.

The determination of the Cheeger constant, and hence ofpiveal edge cut, is a combinato-
rial problem. We can enumerate all the possible combinatairtwo subgraphs partitioning the
original graph, and then choose the combination with thellsstacut-to-volume ratio. However,
when the number of vertices is very large, the enumeratipnogeh is infeasible. To circumvent
this obstacle, we adopt an optimization framework. We thiice a classifier, or a classification
function, that determines to which class each pixel belpagd derive from the Cheeger constant

an objective functional to be minimized with respect to thessifier. The minimization leads to
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the optimal classification.

If there is a complete set of basis functions on the graph, are represent the classifier
by a linear combination of the basis. There are various wayshtain the basis functions,
e.g., using the Laplacian operator [10], the diffusion lkeéfi1], or the Hessian eigenmap [12].
Among these, we choose the Laplacian. The spectrum of thiadiap operator has been used
to obtain upper and lower bounds on the Cheeger constantw@]utilize these bounds to
derive our objective functional. The eigenfunctions of tteglacian form a basis of the Hilbert
space of square integrable functions defined on the graphs, we express the classifier as
a linear combination of the Laplacian eigenfunctions. 8itize basis is known, the optimal
classifier is determined by the linear coefficients in the loo@tion. The classifier can be
further approximated as a linear combination of only thest relevantbasis functions. The
approximation reduces significantly the problem of lookioga large number of coefficients to
estimating only a few of them. Once we determine the optiroaffecients, the optimal classifier

automatically partitions the myocardial image into USRéDeled and unlabeled parts.

B. Paper Organization

This paper extends our work briefly presented in [13]. Theaoization of this paper is
as follows. Section Il describes how we represent a heargéntyy a graph and introduces the
Cheeger constant for graph partitioning. Section Il detiie optimal classification algorithm in
the framework of spectral graph theory. In Section IV, wecdiége the algorithm implementation
and show our experimental results for USPIO-enhanced MRA da heart transplants. We
contrast the proposed method with the results of manuakiizaion, thresholding, another

graph based algorithm, and the level set approach. Firfadlgtion V concludes this paper.

II. GRAPH REPRESENTATION ANDGRAPH PARTITIONING

For a given USPIO-enhanced MR image, we first segment thevésftricle and remove
artifacts. Then, the myocardial pixels are arranged intjmgles column vector indexed by a set
of integers/ = {1,2,---, Nmyo}, Where Ny, is the number of myocardial pixels. The image
intensity becomes a functiofi : 7 — R. We next describe how to represent the image as a

graph.
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(a) Edge assignment according to the geographical neigh- (b) The graph representation using both geographical neigh

bors. bors and feature similarities.
Fig. 2. lllustration of the graph representation of & 4 image.

A. Weighted Graph Representation

A graph G(V, E) has a sel’ of vertices and a sell of edges linking the vertices. For the
segmented myocardium, we treat each myocardial pix a vertexy;. We next assign edges
connecting the vertices. In the graph representation, éntces with high possibility of being

drawn from the same class are linked together. There are trategies to assign edges:

(i) Connect vertices to geographically neighboring vexti¢l4], because the neighborhood is
usually drawn from the same class.
(i) Connect vertices with similar features [10], becauseels in the same class generate the
same features up to noise.
We adopt both strategies to build up our graph representatidghe image.
With reference to Figure 2(a), consider vertigxorresponding to pixelat coordinatez;, ;).
We connecty; to its four neighboring vertices at coordinates + 1, v;), (x; — 1,v:), (2, y; +
1), and (x;,y; — 1). Figure 2(a) illustrates the graph representation respitiom this rule of
geographical neighborhood fordax 4 image. In this figure, each square is a pixel, and hence
a vertex, and each line is an edge.
To account for strategy (ii), we need features associatéid the vertices and need a metric

to determine the similarity between pairs of features. ke ti@to account noise, we treat each
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pixel as a random variable and adopt WMahalanobis distancg15], as similarity measure. We
stack alN,, x Ny, block of pixels centered at pixélinto a column vectok;, which we treat as
the feature vector for the vertex. The Mahalanobis distangg; between the features;, x; of

verticesu;, v; is, see [15],

pij = \/(Xz‘ —x,)T8 (% — %) 1)
where ¥, ; is the covariance matrix betweeny and x;. When the distance;; is below a
predetermined threshold,, the verticesy;, v; are connected by an edge; otherwise, they are
disconnected. Figure 2(b) shows the final graph representat the4 x 4 image example using
both geographical neighbors and feature similarities.

In graph theory, we usually considareightedgraphs [8]. Since not all connected pairs of
vertices have the same distances, we capture this fact hyg asweight function on the edges.
We adopt a Gaussian kernel, suggested by Belkin and Niyd@jidhd used also by Coifman
et al. [11], to compute the weight8/;; on edges:;; connecting vertices; andv;:

2
exp (J;_g) , if there is edger;;

Wi = (2)

0, if no edgee;;
whereo is the Gaussian kernel parameter. The larges, the more weight far-away vertices will
exert on the weighted graph. The weidlit; is large when the features of two linked vertices
v;, v; are similar.

The weighted graph is equivalently represented byVits, x Nmyo Weighted adjacency matrix
W whose element$V;; are the edge weights in equation (2). Note that the malvixhas a
zero diagonal because we do not allow the vertices to becealfiected; it is symmetric since
Wi; = Wi,

B. Graph Partitioning and the Cheeger Constant

Classification is to partition the set of pixels into disjogets. In graph terms, we divide the
graphG(V, E) into two subgraphs. The task is to find out a suliaebf edges, called aedge cut
such that removing this cut separates the gr&ph, F) into two disconnected subgrapbs =
(Vi, Ey) and Gy = (Va, Es), whereV =V, UV, 0 = Vi NV, andE = Ey U E; U E,. Taking

the example of the x 4 image again, the dotted edges shown in Figure 3(a) assemlddge
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(a) Dotted edges assemble an edge cut. (b) Removal of the edge cut partitions the graph.
Fig. 3. Conceptualization of an edge cut associated totthet image in Figure 2(b).

cut for the graph. The removal of this edge cut partitionsgreph into two parts as shown in
Figure 3(b).
In the framework of spectral graph theory [8], we defineagtimal edge cut by looking for
the Cheeger constaitV;) of the graph,
- gy S0
assuming that vol’;) < vol(14). In equation (3),Ey(V1, V2)] is the sum of the edge weights in

the cutEy:

[Eo(Vi, Vo)l = > Wy 4)

v;EVY U5 Vs

The volume vall;) of V; is defined as the sum of the vertex degree¥jin

vol(Vi) = ) d;, 5)
v, EV1
where the degreé; of the vertexy; is defined as
vjEV

To denote the partition of the graph vertices, we introduténdicator vectory for V; whose

elements are defined as

1, ifv,eV;
Xi = (7)

0, if v; eVy
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In Appendix I, we derive the Cheeger constant in terms of titécator vectory:

T
. x Ly
r =m
(X) Xln XTd ) (8)

whereL is the graph Laplacian defined in (48) addis the vector collecting vertex degrees.

The optimal graph partitioning corresponds to the optimdidator vector

oy
X = argmxin XXT dX . 9)

C. Objective Functional for Cheeger Constant

In equation (8), the minimization of the cut-to-volume @ats equivalent to minimizing an

objective functional
Q(x) = x"Lx — x'd, (10)

where/ is the weight. The objectivé)(x) is convex, because the graph Laplaclars positive
semidefinite, see Appendix I. In addition, the second térm xy’d < vol(V) is finite, so the
minimizer y exists.

Since at each vertex the indicator is either 1 or 0, see amuéfi), there ar@’¥mv° candidate
indicator vectors. When the number of pixé¥g,, in the myocardium is large, it is not compu-
tationally feasible to minimize the objective by enumaergtall the candidate indicator vectors.

The next section proposes a novel algorithm to avoid thiskioatorial problem.

1. OPTIMAL CLASSIFICATION ALGORITHM

This section develops the optimal classifier that utilizes €heeger constant.

A. Spectral Analysis of the Graph Laplacidn

The spectral decomposition of the graph Laplaclanwhich is defined in equation (48),

Nmyo
n=1

gives the eigenvalue$,} and eigenfunctiong¢™}.™°. By convention, we index the
eigenvalues in ascending order. Because the Lapldcignsymmetric and positive semidefinite,
its spectrum{ \,,} is real and nonnegative and its rank/N&,, — 1. In the framework of spectral
graph theory [8], the eigenfunctiori®™} assemble a complete set and span the Hilbert space of
square integrable functions on the graph. Hence, we caegxjany square integrable function on

the graph as a linear combination of the basis functigi® }. The domain of the eigenfunctions
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are vertices, so the eigenfunctiops™} are discrete and are represented by vectors. We note that
both the eigenfunctions and the vertices are indexed byeahefsntegers/ = {1,2, -, Nnyo}-

Eigenfunction¢™ is the vector

o = [0, 657 iyl (11)

Nmyo

We list here the properties of the spectrum of the Laplacsae Gee [8] for additional details)

that will be utilized to develop the classification algonith

1) For aconnectedgraph, there is only one zero eigenvale and the spectrum is
0= <A< < ANmyo - (12)
The first eigenvectop™) is constant, i.e.,
oM =afl,1,--- 17, (13)

wherea =

1 - . - 1
is the normalization factor fop).
v/ Nmyo

2) The eigenvectors™ with nonzero eigenvalues have zero averages,

Nmyo

> oM =0. (14)
=1

The low order eigenvectors correspond to low frequency baros.
3) For aconnectedyraph, the Cheeger constdntlefined by (8) is upper and lower bounded
by the following inequality:
%M <T <+2X. (15)

Due to the edge assignment strategy of geographical neigbbd, see Section Il, our graphs
representing the heart images are connected. Therefaeptcttral properties in (12) and (15)

hold in our case, besides the property (14) that holds inrgéne

B. Expression of Classifier

We now consider the grapfi(V, £') that describes the myocardium in an MRI heart image.

The classifierc partitioning the graph vertex sét into two classed/; andV; is defined as

1, fuen
(16)

C; = .
1, ifuel,
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Utilizing the spectral graph analysis, we express the iflass terms of the eigen-bas{g ™}

Nmyo
c=)Y a,0" =2a, (17)
n=1
whereq,, are the coordinates of the eigen representatios, [a;, as, - - - ,aNmyo]T is a vector

stacking the coefficients, antl is a matrix collecting the eigen-basis
d = [¢(1)7¢(2)7 e 7¢(Nmy0)} ] (18)

The design of the optimal classifierbecomes now the problem of estimating the linear com-

bination coefficients.,,.

C. Objective Functional for Classification

In equation (8), the Cheeger constant is expressed in tefriie et indicator vectox that
takes 0 or 1 values. On the other hand, the classifafined in (16) takes-1 values. We relate

x andc by the standard Heaviside functidti(z) defined by

1, ifx>0
H(z) = . (19)
0, ifx<O
Hence, the indicator vector = [x1, X2, -, Xnmyol* fOr the setV; is given by
Xi = H(ei) - (20)

In equation (20), the indicatoy is a function of the classifiar using the Heaviside functioH.
Furthermore, by (17), the classifietis parametrized by the coefficient vectgrso the objective

functional Q is parametrized by this vectar, i.e.,

Q(a) = x(c(a))"Lx(c(a)) — Ax(c(a))"d. (21)

Minimizing @ with respect ta gives the optimal coefficient vectér, which leads to the optimal
classifierc = ®a. Using eigen-basis to represent the classifier transfohasptoblem of the
combinatorial optimization in (10) to estimating the realued coefficient vectoa in (21).

To avoid estimating too many parameters, we relax the d¢leaon function to a smooth
function, which simply requires the firgt harmonics in its expression in terms of the eigen-

basis. The classifiet is now

p
c=> a¢" =2a, (22)
n=1
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wherea = [ay, as, - - - ,a,)" and® = [¢V) @), ... ¢P)]. The estimation of théVy,,, parameters
in (17) is reduced to the < Ny, parameters in (22). As long asis chosen small enough,
the latter is more numerically tractable than the former.

Another concern in the objective functional (10) is the vaigg parameters. If we knew

the Cheeger constat, we could set? = I'" and the objective function would be

Q(x) =x"Ly—-Tx'd. (23)

The solution would correspond t©(x) = 0, see (8). However, we cannot set= I" beforehand,
since the Cheeger constdnty) is dependent on the unknown optimal indicator vegtor

We can reasonably predetermimeby using one of the spectral properties of the graph
Laplacian: The upper and lower bounds of the Cheeger canatarrelated to the first nonzero
eigenvalue\, of the graph Laplacian, see equation (15). The bounds nmestra range of values
for the weights. For simplicity, we set3 to the average of the Cheeger constant’s upper and

lower bounds,

53 (et von). 24)

D. Minimization Algorithm

Taking the gradient o€)(a), we obtain

0Q (X" ox”"
%_Q(K)Lx—ﬁ<a)d. (25)

In equation (25), the computation (é%) is

8XT aXI 8X2 aXNmyo
(K) - {821’8&1"“’ Oa } (26)
daq daq day
= : P : ) (27)
o oxe ., OXNmpw

Oap  Oap Oap
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Using the chain rule, the entrie(?@%) are

mn

T v
(a—ﬁ) B 8;( (28)
Xy O0cy,
- aﬁ da (29)
o> P a-<bg)
= 0en) =5 —— (30)
= 5(cn)p™ . (31)

In (30), i(x) is the delta (generalized) function defined as the derigati¥ the Heaviside
function H(z).
To facilitate numerical implementation, we use the regnéat Heaviside functiori{. and the

regularized delta function,; they are defined, respectively, as

1 2 T
H(x) = 5 {1 + - arctan <E>} , (32)
and
_dH(r) 1 €
e (T) ' (33)
Replaced with the regularized delta function, the expksipression of(%) is
ot 6E(Cl)¢§1) 56(62)¢§1) T 56(0Nmy0)¢§\1fr)n)/o
X . . .
A ) = : : : 4
(%) . . . (34)
0e(en)df” 6.(c2)0F - BelChimyo) Dy
= oTA, (35)
where we define
A= dlag (56(61), 55(02), s 765(CNmyo)) . (36)

Substituting (35) into (25), the gradient of the objectiastithe compact form

g—g = 20" ALy — p®TAd . (37)

The optimal coefficient vectod is obtained by looking for%—il2 = 0. We have to solve the

minimization numerically, because the unknowsrs inside the matrixA and the vector. We
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adopt the gradient descent algorithm to iteratively find sbutiona. The classifierc is then
determined by
c=>®a. (38)

The vertices with indicatorg; = H(c;) = 1 correspond to clasg; and O correspond to class
V5. To select the desired USPIO-labeled regions, the opesataply chooses one of the two

classes.

E. Algorithm Summary

There are two major algorithms in the classifier developmgratph representation and clas-

sification. We summarize them in the Algorithms 1 and 2, retpely.

Algorithm 1 The graph representation algorithm

1: procedure GRAPHREP(f) > Load the imagef
2: Segment the left ventricle

3: Index all the myocardial pixels by a set of integérs- {1,-- -, Nnyo}

4: Initialize W as anNmyo X Nmyo Z€ro matrix

5: forall i #j €1 do

6: Compute Mahalanobis distanpg by (1)

7: if p;; <7, 0ri,; are geographical neighbotisen
8: W;; < Compute edge weight/;; by (2)

o: end if

10: end for
11 return W

12: end procedure

IV. EXPERIMENTS

This section presents the performance of the classifier @dfferimentally obtained USPIO-
enhanced MRI of phantoms and of transplanted rat hearts.nWgéement our algorithm with
MATLAB ® on a computer with a 3 GHz CPU and 1 GB RAM. After data acquisitive

normalize the heart image intensities to range from 0 to Inaadually segment the left ventricle.
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Algorithm 2 The classification algorithm

1: procedure CLASSIFIER(W)

2:

3:

4.

10:

11:

12:

Compute graph Laplaciah by (48)
Eigendecompos& to obtain{\,} and {¢™}
Compute coefficient by (24)
Initialize classifier coefficienh = 1 and objectivel) = oo
repeat
c — Compute classifiee by (22)
x < Compute indicator vectoy by (20)
@ < Compute objective) by (21)
a «— Computea — 22 by (37)
until 22 =0

return y

13: end procedure

Classifier Setting: There are several parameters needed for running the atas#ikir values

are described in the following.

Each vertex; is associated with &/, x N,, block of pixels centered at pixelfor computing
the Mahalanobis distance, see Section II-A. WeSgt= 3. If N,, is 1, noise is not taken
into account. IfN,, is large, the graph takes better account of the impact of diserbut the
computational time for constructing the graph increases.dDoice ofV,, is a compromise
between these two issues.

To derive the image graph, we set= 0.1 when computing the edge weights in (2). This
choice ofo is suggested by Shi and Malik [14], who indicate empiricdligit o should be
set at10% of the range of the image intensities.

The parametet for the regularized Heaviside and delta functions in (32) €88), respec-
tively, is set to0.1. The smaller the parameters, the sharper these two regularized functions
are. Fore = 0.1, the regularized functions are a good approximation to taedard ones.
To determine the number of lowest order eigenfunctions used to represent the giassi

c, we tested values gf from 5 to 20. We obtain the best results fpr= 16.
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« To reach the minimum of the objective functional, we sogge: 0 recursively. We stop
the iterative process when the norm of the gradient is smétian 10~—* or when the
minimization reacheg00 iterations. This number of iterations led to convergencalln
of our experiments, although, in most cases, we observedeogence within the first00

iterations.

A. Phantom Study

We design a phantom to investigate how our algorithm perarnder various contrast-to-noise
ratios (CNRs). The phantom sample consists of three tulasctntain different concentration
of iron-oxide particles and that are surrounded by waterim&ged the phantom with a Bruker
AVANCE DRX 4.7-Tesla system with &.5-cm home-built surface coil. To generate CNRs from

low to high, we run three series of scans:

. Series 1: fixed repetition time (TR) #)00 ms and number of signal averages (NEX2=
varied echo time (TE) 3 to 15 ms.

« Series 2: fixed TR $00 ms and TE =5 ms; varied NEX =1 to 12.

. Series 3: fixed TE & ms and NEX =2; varied TR =300 to 1500 ms.

To compute CNR of an image, we begin with calculating sigoatoise ratios (SNRs) of
USPIO-labeled and -unlabeled regions:

SNRy — average signal of USPIO-labeled regions (39)
%~ “standard deviation of background noise

average signal of unlabeled regions

SNRunap = standard deviation of background noise (10)

Then, CNR is determined as
CNR = |SNRap — SNRnjap| - (42)

The percentage of misclassified pixels is the criterion tueate the performance of the classifier.
Figure 4 plots the percentage error versus CNR for the thegessof scans. With reference to
Figures 4(a), 4(b) and 4(c), the proposed algorithm ackigeefect classification when the CNR
is larger thanG, but the error increases considerably when the CNR is bélowhis phantom
study suggests that the MRI protocol should be designedaichr€NR =6 or above so that the

classifier can perform without errors.
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TABLE |

SNRAND CNRVERSUSPOD.

‘ POD3‘ POD4‘ PODS‘ PODG‘ PODY‘

SNR of USPIO-unlabeled myocardiuAn 24.87 | 20.79 | 16.77 | 25.36 | 21.71
SNR of USPIO-labeled myocardium | 12.89 | 13.11 | 9.71 | 11.81 | 10.38
CNR of USPIO-enhanced myocardium11.98 | 7.68 7.06 | 13.55| 11.33

B. Cardiac Rejection Study

USPIO-Enhanced MRI of Heart Transplants: We have studied the acute cardiac rejection
of transplanted hearts using our heterotopic working ratth@odel. All rats were male inbred
Brown Norway (BN; RT1n) and Dark Agouti (DA; RT1a), obtainfdm Harlan (Indianapolis,
IN), with body weight betwee.18 and0.23 kg each. We transplanted DA hearts to BN hosts.
Home-made dextran-coated USPIO patrticles [3}0hm in size were administered intravenously
one day prior to MRI with a dosage df5 mg per kg bodyweight.

To investigate the acute cardiac progression, we have ithfige different transplanted rat
hearts on post-operation days (PODs) 3, 4, 5, 6, and 7, ohaally. In our heterotopic rat cardiac
transplant model, mild acute rejection begins on POD 3, n@sxes to moderate rejection on
PODs 4 and 5, severe and very severe rejection on PODs 6 aedpégctively [4]. Each heart
was imaged with ten short-axis slices covering the entifeventricle. In vivo imaging was
carried out on the same machine in the phantom stugiyéighted imaging was acquired with
gradient echo recall sequence. Respiratory as well ag@bectiogram gating is used to control
respiratory and heart motion artifacts for MR imaging. Th&IMprotocol has the following
parameters: TR = one cardiac cycle (ab@s®d ms); TE =8 to 10 ms; NEX =4; flip angle
= 90°; field of view =3 to 4 cm; slice thickness 3 to 1.5 mm; in-plane resolution 317 to
156 pm. The MRI protocol is optimized to guarantee that the cfessworks in a valid CNR
range. Table | summarizes the SNRs and CNRs in various PO f@lae CNRs are all greater
than6, which was the threshold for the classifier to achieve pédkssification in the phantom
study.

Automatic Classification Results: Figure 5(a) shows different transplanted hearts imaged
on PODs 3, 4, 5, 6, and 7. Each image is the sixth slice out ofatjuired slices for the
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heart; its location in the heart corresponds to the equdtthenleft ventricle. Then, we apply
our classification algorithm to the images. Figure 5(b) shtlwe detected USPIO-labeled areas
denoted by red (darker pixels). Unlike time-consuming n@classification, our algorithm takes
less than three minutes to determine the regional macrephagumulation for each image.

To take into account the 3D heart, we process slices 3 to 8 folid dor the current study.
We do not use the first two and the last two slices because theyod clearly contain the
myocardium. The classifier automatically determines dtigeslice the USPIO-labeled regions
of the heart.

Validation with Manual Classification: Wu et al. [4] have shown that the dark patches in
the MR images are due to those macrophages labeled with UBRitixles whose presence
is correlated histologically and immunologically with &eucardiac rejection. Since the best
validation option right now is to compare with classificati@sults by a human expert, we treat
manually determined USPIO-labeled pixels as the gold st@hdn our data set, we can see
that manual classification of the heart slices is appraopriat all PODs, except POD5, as we
will discuss shortly. Manual classification of all the heslites at all PODs has been carried out
before running the automatic classification. Figure 5(@vehthe manually classified USPIO-
labeled regions. Our automatically detected regions shamd @greement with the manual results
in all slices and PODs, except for POD5. This qualitativedadlon suggests that our automatic
approach is useful in the study of heart rejection based oRlO$nhanced MRI data.

To quantitatively evaluate the quality of the automaticsslication, we have compared the
total area of USPIO-labeled regions determined by the iflesand determined manually. In
Figure 6(a), we plot the total macrophage accumulationgreage for slice 6 as a function of
the PODs for the data used in Figure 5. Figure 6(b) shows aimealsults but for the whole 3D
heart.

To appreciate better how much the classifier deviates fromuadaclassification, we define
the percentage error as

_|(automatic USPIO-labeled area)(manual USPIO-labeled aré¢a)

Ple) myocardium area ’ (42)

which we show in Figure 7(a). Since the noise levels in defferslices are not identical, the
classification errors vary from slice to slice. The deviatwf the classifier, usually below®s,

shows the very good agreement between the classifier andaineiasgsification for all PODs,
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except PODS5.

We now consider the discrepancy between the automatidfadassid the manual classification
results in POD5. The five slices in POD5 heart have perceregages larger thai6%, with one
of them exceedind(0%. POD5 data sets are the most challenging among all POD d&da s
This is because PODS5 slices are the most noisy, see Tabld lylaere the macrophages spread
dispersively, as rejection spreads from the periphery @htkart (epicardium) to the whole heart.
With reference to the POD5 image (middle image on the lefurmml) in Figure 5(a), we see
many dark punctate blobs corresponding to the presence ofopiaages. Manual selection of
these blobs is challenging to a human operator. By missing/rafthese, the lines displaying the
manual classification results (percentage area or pegenalume) in Figures 6(a) and 6(b),
respectively, fail to be nondecreasing, showing a dip at BOlere this true, the level of
rejection would have decreased from POD4 to PODS5, clearlgrdaradiction, since the animal
models were not treated and rejection becomes more pré\adetime progresses. In contrast,
the corresponding plot lines for the classifier are monateswhile they track well the manual
classification results everywhere else, they deviate filoendip at POD5.

Comparisons with Other Classification Approaches:In addition to manual classification,
simple thresholding is the common automatic method usedlé&ssification of USPIO-labeled
regions. Figure 8(a) shows the classification results nbthby thresholding the images in Fig-
ure 5(a). Figures 6(a) and 6(b) also plot the macrophagenadetion curves using thresholding.
The error analysis of the thresholding classification iswshan Figure 7(b) using the same
definition for percentage deviation in (42). Although thasdification results by our classifier
and by thresholding shown in Figures 5(b) and 8(a), resgagtiare visually indistinguishable,
the quantitative error analysis shown in Figure 7(b) dernrates that the thresholding method
has higher error rates in most slices than automatic clasdfirther, thresholding is not robust,
with error rates that can range from5% to 18.5%, usually with error rates larger thai9o.
Thresholding is prone to inconsistency because of the siiijg in choosing the thresholds
and because it does not account for the noise and motionrguirte images.

We provide another comparison by contrasting our algorithith an alternative classifier,
namely, theisoperimetric partitioningalgorithm proposed by Grady and Schwartz [16]. The
isoperimetric algorithm uses also a graph representatuinch includes a geographical neigh-

borhood only, not taking into account the noise for edge hsigas in our approach. The
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isoperimetric algorithm tries to minimize the objectivaétion c’ Lc, wherec is the real-valued
classification function and. is the graph Laplacian. The minimization is equivalent ttvisg
the linear systenh.c = 0. We applied this method to the images in Figure 5(a). Thesiflaation
results are shown in Figure 8(b). Comparing these results the manual classification results
in Figure 5(c), we conclude that the isoperimetric pantithg algorithm fails completely on this
data set. The problems with this method are twofold. First, dbjective function captures the
edge cut but ignores the volume enclosed by the edge cut.cbmisasts with our functional,
the Cheeger constant, that captures faithfully the goal wimmzing the cut-to-volume ratio.
Second, although the desired classifier of the isoperimp#rtitioning is a binary function, the
actual classifier it considers is a relaxed real-valuedtfanc Our approach addresses this issue
via the Heaviside function.

The final comparison is between our proposed method antetet setapproach [17], [18],
which has been applied successfully to segment the heatusts [19]. The level set method
finds automatically contours that are the zero level of allegefunction defined on the image
and that are boundaries between USPIO-labeled and -uathlpekels. The optimal level set
is obtained to meet the desired requirements: (i) the regioside and outside the contours
have distinct statistical models, (ii) the contours captsinarp edges, and (iii) the contours are
as smooth as possible. Finally, we can classify the pixetdosad by the optimal contours
as USPIO-labeled areas. The experimental results usindetie® set approach are shown in
Figures 7(c) and 8(c). In the heart images, macrophagesrasernt not only in large regions
but also in small blobs with irregular shapes whose edgesotiprovide strong forces to attract
contours. The contour evolution tends to pass small blodscapture large continua, leading to
more misclassification than our proposed method.

The performance of our proposed classifier may be affecteshvelntifacts are present in the
MR images. Our method establishes the graphical repragentd the images from geographical
and intensity similarities among pixels. If a myocardiajios has hypointensity due to artifacts,
its intensity features are similar to those of USPIO-lablgléxels and the classifier will have a
hard time to distinguish correctly between the artifactd e USPI1O-labeled regions. Although
artifacts were not present in our data sets, the operatorrmaag to invoke an artifact removal
algorithm before running our classifier.

The classifier presented in this paper performs binary ifieestson of the myocardial pixels
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and then determines the rejection severity by counting tmeber of pixels per volume involved
in USPIO-labeling. Since macrophage infiltration dependshe rejection severity, less for mild
rejection, more for severe rejection, the USPIO-labelgéctmg tissue does not contribute the
same levels of MR signals. In future work, we will extend tlkiassifier to handle multiple

classes to provide an integrated mechanism to measuréeioejseverity.

V. CONCLUSIONS

This paper develops an automatic algorithm to classifyorgi macrophage accumulation of
allografts imaged by USPIO-enhanced MRI. Automatic cfasstion is desirable. It lightens the
manual work of an expert, prevents inconsistencies reguftom different choices of thresholds
that usually plague classification by human operators, lyp@ccounting in its design explicitly
for noise, it is robust to noise. The classifier developedhis paper can assist in studying
rejection in heart transplants.

We formulate the classification task as a graph partitiopraplem. We associate to an MR
image a graph where the graph vertices denote pixels andrdpd g@dges connect neighboring
and similar pixels. We treat the classifier as a binary fumcon the graph. The eigendecom-
position of the graph Laplacian provides a basis to reptebenclassifier. The binary classifier
is relaxed to a smooth function by linearly combining selvéa order eigen basis functions.
The optimal classifier is designed to minimize an objectiuectional derived from the Cheeger
constant of the graph. Our experimental results with USéh@anced MRI data of small animals’
cardiac allografts undergoing rejection show that the Gaegraph partitioning based classifier
can determine accurately the regions of macrophage itifitraThese experiments show that
it presents better performance than other methods like ¢menwnly used thresholding, the

isoperimetric algorithm, and a level set based approach.

APPENDIX |

EXPRESSION OF THECHEEGER CONSTANTI' IN TERMS OF THE INDICATOR VECTORY
We can rewrite the vertex degreg see (6), by considering the verticesin eitherV; or V5;
i.e.,

di=) Wy+ Y Wy, (43)

Uj€V1 ’UjEVQ



SUBMITTING TO IEEE TRANSACTIONS ON MEDICAL IMAGING 22

Assuming that the vertey; is in V7, the second term in equation (43) is the contributior,of

made to the edge cuk,(V3, V,)|. Taking into account all the vertices i, we have the edge

cut
[Eo(Vi, Vo)l = > > Wy (44)
vieVy vjeVL
— Z d; — Z wi, | (45)
v; V1 v;€V1

To write equation (45) in a more compact form, we use the atdicvectory for V;, defined
in (7). It follows that the edge cutt}) is

|Eo(Vi,Va)] = x"Dx—x"Wx (46)
= x'Lx, (47)

whereD = diag(dy, da, - - - , dnmyo) is @ diagonal matrix of vertex degrees, and
L=D-W (48)

is the Laplacian of the graph, see [8]. Becalses diagonal andV is symmetricL is symmetric.
Further,L is positive semidefinite since the row sumslofire zeros.
Using the indicator vectog, we express the volume \df,) as

vol(Vi) = > di=x"d, (49)

v; €V
whered is the column vector collecting all the vertex degrees. Raph (47) and (49) into the

Cheeger constant (3), we write the Cheeger constant in tefrtige indicator vectoly:

T
X" Lx
I(y) = .
(x) min =g (50)
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(@) USPIO-enhanced images. (b) Automatically classified results. (c) Manually classified results.

Fig. 5. Application of our algorithm to rejecting heart tsmtants. Red (darker) regions denote the classified US&beldd
pixels. Top to down: POD3, POD4, POD5, POD6, and POD?7.
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Fig. 7. Percentage deviation of various algorithms versasual classification results.



SUBMITTING TO IEEE TRANSACTIONS ON MEDICAL IMAGING 28

(a) Thresholding method. (b) Isoperimetric algorithm. (c) Level set approach.

Fig. 8. Application of other algorithms to rejecting heagrtsplants. Red (darker) regions denote the classified Q&ileled
pixels. Top to down: POD3, POD4, POD5, POD6, and POD?7.



