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Three-Dimensional Modeling
from Two-Dimensional Video
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Abstract—This paper presents thesurface-based factorization
method to recover three-dimensional (3-D) structure, i.e., the 3-D
shape and 3-D motion, of a rigid object from a two-dimensional
(2-D) video sequence. The main ingredients of our approach are as
follows:

1) we describe the unknown shape of the 3-D rigid object by
polynomial patches;

2) projections of these patches in the image plane move ac-
cording to parametric 2-D motion models;

3) we recover the parameters describing the 3-D shape and 3-D
motion from the 2-D motion parameters by factorizing a ma-
trix that is rank 1 in a noiseless situation.

Our method is simultaneously an extension and a simplification of
the original factorization method of Tomasi and Kanade [1]. We
track regions where the 2-D motion in the image plane is described
by a single set of parameters, avoiding the need to track a large
number of pointwise features, in general, a difficult task. Then our
method estimates the parameters describing the 3-D structure by
factoring a rank 1 matrix, not rank 3 as in [1]. This allows the use
of fast iterative algorithms to compute the 3-D structure that best
fits the data. Experimental results with real-life video sequences
illustrate the good performance of our approach.

Index Terms—Factorization, structure from motion, 3-D image
and video processing, 3-D shape.

I. INTRODUCTION

T HE automatic generation of a three-dimensional (3-D) de-
scription of the real-world environment has received the

attention of a large number of researchers. Target applications
are found in several fields, including digital video, virtual re-
ality, and robotics. The information source for a number of suc-
cessful approaches to 3-D modeling has been a range image.
This image, obtained from a usually expensive range sensor,
provides the distance between the sensor and the environment in
front of it, thus the range image itself contains explicit informa-
tion about the 3-D structure of the environment. In this paper, we
build 3-D models for rigid bodies from two-dimensional (2-D)
video data, when no explicit 3-D information is given.
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A. Previous Related Work

The problem of recovering the 3-D structure (3-D shape and
3-D motion) from a 2-D video sequence has been widely con-
sidered by the computer vision community. Methods that infer
3-D shape from a single frame are based on cues such as shading
and defocus. These methods fail to give reliable 3-D shape es-
timates for unconstrained real-world scenes. If no prior knowl-
edge about the scene is available, the cue to estimating the 3-D
structure is the 2-D motion of the brightness pattern in the image
plane. For this reason, the problem is generally referred to as
structure from motion (SFM).The two major steps in SFM are
usually as follows.

Step 1) Compute the 2-D motion in the image plane, either in
the form of a dense field or in the form of a sparse set
of correspondences (see [2] for a recent discussion
on this topic).

Step 2) Estimate the 3-D shape and the 3-D motion from the
computed 2-D motion.

Early approaches to SFM processed a single pair of consec-
utive frames and provided existence and uniqueness results to
the problem of estimating 3-D motion and absolute depth from
the 2-D motion in the camera plane between two frames [3].
Two-frame-based algorithms are highly sensitive to image noise
and, when the object is far from the camera, i.e., at a large
distance when compared to the object depth, they fail even at
low-level image noise.

More recent research has been oriented toward the use
of longer image sequences. An attractive tool to recursively
extend two-frame algorithms to multiframe algorithms is the
Kalman filter. A number of approaches used extended Kalman
filter (EKF) to estimate 3-D structure from the 2-D motion
across long video sequences [4]–[7]. The lack of guarantee
of convergence for the EKF-based algorithms and the fact
that those approaches did not truly enforce the 3-D rigidity of
the scene over the sequence of images motivated a number of
researchers to use nonlinear optimization methods to address
the multiframe SFM problem in a batch way [8]–[11]. In
general, these methods lead to complex and time-consuming
algorithms.

In the early 1990s, Tomasi and Kanade [1] introduced the
factorization method, an elegant method to solve multiframe
SFM that avoids nonlinear optimization. They represent the 3-D
shape by the 3-D position of a set of feature points. The 2-D
projection of each feature point is tracked along the image se-
quence. The 3-D shape and motion are then estimated by fac-
toring a measurement matrix whose entries are the set of tra-
jectories of the feature point projections. Tomasi and Kanade
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pioneered the use of linear subspace constraints in motion anal-
ysis. In fact, the key idea underlying the factorization method is
the fact that the rigidity of the scene imposes that the measure-
ment matrix lives in a low-dimensional subspace of the universe
of matrices. Tomasi and Kanade have shown that the measure-
ment matrix is a rank 3 matrix in a noiseless situation. Refer-
ence [1] uses the orthographic projection model. The factor-
ization method was later extended to the scaled-orthography
and para-perspective models [12] and to the multibody scenario
[13].

A different approach to recovering 3-D structure from 2-D
images, also denominated SFM, uses motion as the only cue,
but rather than computing the 2-D motion in the image plane as
as intermediate step, it attempts to compute the 3-D strucure di-
rectly from the image intensity values. Due to the complexity of
the problem, these approaches have been so far restricted to the
processing of only two or three consecutive frames [14]–[16] or
to the use of a Kalman filter [17] or an iterative Levenberg–Mar-
quardt minimization [18] to exploit rigidity across time.

B. Proposed Approach

The factorization method as developed by Tomasi and
Kanade [1] relies on the matching of a set of point features
along the image sequence. This task is difficult when pro-
cessing noisy videos. In general, only distinguished points,
as brightness corners, are used as “trackable” feature points.
As a consequence, the approach of [1] does not provide dense
depth estimates. Under our more general scenario, rather than
describing the 3-D shape by the set of 3-D positions of the
feature points, we parameterize the shape of the object surface
and show that this parameterization induces a parametric model
for the 2-D motion of the brightness pattern in the image
plane. Instead of tracking pointwise features, we track larger
regions where the image motion is described by a single set of
parameters. For example, for scenes with polyhedral surfaces,
each region corresponds to a flat surface patch and the 2-D
image motion models reduce to the well-known affine motion
model. The model parameters are computed by minimizing
directly the differences in the intensity levels, leading to robust
estimates [19]–[21]. Besides being particularly relevant in
outdoor modeling of buildings with flat walls, our approach
handles general shaped structures by approximating them by a
piecewise planar surface or higher order polynomial surface.
It is known that computer graphics methods using planar
patches rather than points, provide usually much better quality
3-D shape reconstruction because they use, besides the 3-D
relative depth at each point, the orientation of the surface at that
point—an important clue to recover the shape. To recover in an
expedite way the 3-D motion and 3-D shape parameters from
the image motion parameters, we introduce thesurface-based
factorization, a generalization of the original factorization
method that recovers the parameters describing the 3-D
structure by factorizing a matrix that collects the 2-D motion
parameters. We show that this matrix is rank 1 in a noiseless
situation. The estimates of the 3-D motion parameters and the
3-D shape parameters are then obtained from the column vector
and row vector whose outer product best matches the data in
the matrix of 2-D motion parameters.

Another relevant feature of our method is its computational
simplicity. There are two ways our method gains with respect to
the original method of Tomasi and Kanade [1]. First, the sur-
face-based representation leads to a much sparser parametric
description for the 3-D surface than the feature points descrip-
tion: the number of patches required is in general significantly
smaller than the number of feature points needed for similar
levels of approximations. This reduces the computational effort
because the number of patches to be tracked is much smaller and
because the matrix to be factored is also much smaller. Second,
by making an appropriate linear subspace projection, we find
the unknown 3-D structure by factoring a matrix that is rank 1
in a noiseless situation, rather than a rank 3 matrix as in the orig-
inal factorization method [1]. This allows the use of faster iter-
ative algorithms to compute the matrix that best approximates
the data.

C. Paper Overview

In Section II, we formulate the problem and motivate thesur-
face-based factorizationapproach with a simple example. In
Section III, we make explicit the relation between the 2-D image
motion parameters and the 3-D structure parameters for objects
whose 3-D shape is described by a piecewise polynomial sur-
face. Section IV details oursurface-based factorizationmethod
for recovering the 3-D shape and 3-D motion from the image
motion parameters. Section V illustrates the approach with two
real-life video clips and compares experimentally the compu-
tational cost of the feature-based specialization of our method
with the one of the original factorization method [1]. Section VI
concludes the paper. References [22] and [23] report parts of this
work.

II. PROBLEM FORMULATION

A. Model

We consider a rigid object moving in front of a camera.
The object is described by its 3-D shape and texture .
The texture represents the light received by the camera after
reflecting on the object surface, i.e., the textureis the object
brightness as perceived by the camera. The texture depends on
the object surface photometric properties, as well as on the en-
vironment illumination conditions. We assume that the texture
does not change with time. The 3-D shapeis a representation
of the surface of the object.

The position and orientation of the object relative to the
camera at time instant is represented by a vector . This
vector codes a rotation-translation pair that takes values in the
group of the rigid transformations of the space, the special Eu-
clidean group SE(3). The 3-D structure obtained by applying the
3-D rigid transformation coded by the vector to the object
is represented by . The frame captured at time ,

, is modeled as a noisy observation of the projection
of the object

(1)
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For simplicity, the observation noise is zero mean, white,
and Gaussian. We assume thatis the orthogonal projection
operator that is known to be a good approximation to the per-
spective projection when the relative depth of the scene is small
when compared to the distance to the camera. Thesurface-based
factorizationalgorithm proposed in this paper is derived from
the orthogonal projection model. Note, however, that it is easily
extended to the scaled-orthography and the paraperspective pro-
jections by proceeding as [12] proposes for the original factor-
ization method of Tomasi and Kanade [1].

The operator returns the texture as a real valued function
defined over the image plane. This function is a nonlinear map-
ping that depends on the object shapeand the object position

. The intensity level of the projection of the object at pixel
on the image plane is

(2)

where is the nonlinear mapping that lifts the point
on the image to the corresponding point on the 3-D object

surface. This mapping is determined by the object
shape and the position . To simplify the notation, we will
usually write explicitly only the dependence on, i.e., .

Fig. 1 illustrates the lifting mapping and the direct map-
ping for the orthogonal projection of a 2-D object. The
inverse mapping also depends on the object shapeand
position at frame , but we will, again, usually show only
explicitly the dependence on. On the left of Fig. 1, the point

on the surface of the object projects onto on the image
plane. On the right, pixel on the image plane is lifted to
on the object surface. We assume that the object does not oc-
clude itself, i.e., we have and .
The mapping , seen as a function of the frame index, for
a particular surface point, is the trajectory of the projection of
that point in the image plane, i.e., it is the motion induced in the
image plane.

We consider the estimation of the 3-D shapeand the 3-D
motion given the video sequence

of frames. In [24] and [25], we discuss themaximum-
likelihood (ML)estimate for this problem. There we show that,
after eliminating the dependence on the texture, we are left
with a cost function that depends on thestructure(3-D shape
and 3-D motion ) only through themotioninduced in the
image plane, i.e., through the 2-D motion mappings .
Recall that depends on the shapeand the motion

. This makes clear why the problem we are addressing is
referred to as SFM.

B. Approach

Thesurface-based factorizationmethod uses a parametric de-
scription of the surface of the rigid object in terms of a pa-
rameter vector , . We exploit the constraints induced on
the 2-D motion in the image plane by the projection operator,
the rigidity of the object and the parameterization of the surface
shape of the object. The constraints induced on the image mo-
tion enable us to parameterize the image motion mapping
in terms of a parameter vector as . The parameter

Fig. 1. Mappingsu (s) ands (u).

vector is directly related to the 3-D shape parameter vector
and the 3-D position , as will be shown below. Our approach
follows these two stages. First, we estimate the parameters
by using a known numerical technique for image motion estima-
tion. Then, we solve the inverse problem of going from the se-
quence of image motion parameters to the 3-D structure, i.e., we
determine the 3-D shape parameter vectorand the sequence
of 3-D positions , given the estimates of the image
motion parameter vectors .

Before addressing the general case, we illustrate our approach
with a simple example: a parabolic patch moving in a 2-D world
where the images are one-dimensional orthogonal projections.
This scenario, although simpler than the 3-D world problem, re-
flects the very basic properties and difficulties of the SFM par-
adigm. Note that the 2-D scenario, illustrated in Fig. 2, corre-
sponds to the real 3-D world, if we consider only one epipolar
plane and assume that the motion occurs on that plane. The im-
ages are single scan-lines.

C. Example

Fig. 2 shows a parabolic patchthat moves with respect to
a fixed camera. We attach a coordinate system to the object
given by the axes labeled byand . The 2-D object shape
is described in terms of the parameter vector ,
in the object coordinate system (o.c.s.), by the parabola

(3)

To capture the motion of the object, we attach a different co-
ordinate system to the camera given by the axesand (see
Fig. 2). The axis is the camera “plane.” We define the 2-D mo-
tion of the object by specifying the position of the o.c.s. relative
to the camera coordinate system (c.c.s.). The unconstrained mo-
tion of a rigid body can be described in terms of a time varying
point translation and a rotation. Hence, the object position at
time instant is expressed in terms of where, as
shown in Fig. 2, are chosen to be the coordinates of
the origin of the o.c.s. with respect to the c.c.s. (translational
component of the 2-D motion) and is the orientation of the
o.c.s. relative to the c.c.s. (rotational component of the motion).

At instant , the point on the object with 2-D coordinates
( ) in the o.c.s. has the following coordinates in the c.c.s.:

(4)
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Fig. 2. Two-dimensional world: object and camera coordinate systems.

where is the rotation matrix for angle and is the trans-
lation vector.

From (4), we see that the point ( ) projects at time on the
image coordinate given by

(5)

Expression (5) shows that the orthogonal projection is insensi-
tive to the translation component of the object motion. This
reflects the well-known fact that, under orthography, the abso-
lute depth (distance from the camera to the object) cannot be
estimated. Only the set of positions

can be estimated from the image sequence.
We now show how the mapping , introduced above

and illustrated in Fig. 1, is described parametrically. In the 2-D
world, the mapping is written as because it maps
a scalar to a scalar . Choose the coordinate, labeling the
argument of the texture function and representing in a unique
way the generic point on the object surface (object contour in
this case), to be the object coordinate. We refer to as the
texture coordinate. A point with texture coordinateon the
object surface projects at time, according to (5), to the image
coordinate given by

(6)

where and are the coordinates of the pointin the
o.c.s. The equality comes from the choice of the tex-
ture coordinate and the expression for comes from the
parabolic shape [see (3)].

By defining the coefficients of the powers ofin (6) as

(7)

we have the following parametric description for the
image motion in terms of the parameter vector

(8)

The parameter vector describes the mo-
tion of the brightness pattern in the image plane, i.e., it describes
the mapping introduced above (see Fig. 1).

With the parabolic patch, the steps of our approach to recover
the 2-D structure, i.e., the shape parameters and the
set of positions are then summarized as
follows.

Step 1) Given the image sequence of frames, es-
timate the set of image motion parameters

. This leads to
estimates .

Step 2) Invert (7), solving for the shape parame-
ters and the object positions

, given the set of estimates
.

Step 1 is solved by using a known numerical technique to fit
parametric models to the motion of the brightness patterns in
the image plane. Step 2 leads in general to a nonlinear problem.
Section IV details our approach to this problem. First, we obtain
a closed-form solution for the estimate of the 3-D translation.
Then, due to the structure of the orthogonal projection operator
and the shape parameterization, we can express the dependence
of for on the vectors and
in a bilinear matrix format as , where the matrix
collects the image motion parameters ,
depends on the positions and contains the
shape parameter. The problem of estimating and

becomes how to find suitable factors and for
the factorization of the matrix . We will see how to solve this
problem by computing only the largest singular value and the
associated singular vector of a matrixthat is easily obtained
from .

Our general methodology can be used for any parametric
shape description. The situations we are interested in are char-
acterized by no prior knowledge about the object shape. For this
kind of situations, a general shape model must be characterized
by a local parameterization. The local shape parameterization
induces a local parameterization for the motion in the image
plane. In the following sections we detail our approach for a
generic shape model locally parameterized: the piecewise poly-
nomial functions.

III. PIECEWISEPOLYNOMIAL SHAPE

The o.c.s. has axes labeled by and . The c.c.s. has axes
labeled by and . We consider that the o.c.s. coincides with
the c.c.s. on the first frame. The image plane is defined by the
axes and .

A. Three-Dimensional Shape

The 3-D shape of the object is a parametric description
of its surface. We consider objects whose shape is given
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by a piecewise polynomial surface with patches. The
3-D shape is described in terms of sets of parameters

, for , where

(9)

describes the shape of the patchin the o.c.s. With respect to
the representation of the polynomial patches, the parameters
and can have any value, e.g., they can be made zero. We
allow the specification of general parameters because
the shape of a small patchwith support region ( ) located
far from the point ( ) has a high sensivity with respect to
the shape parameters. To minimize this sensivity, we choose for
( ) the centroid of the support region of patch. With this
choice, we improve the accuracy of the 3-D structure recovery
algorithm. In [25] we show that, by making ( ) to be the
centroid of the support region of patch, we also improve the
numerical stability of the algorithm that estimates the 2-D image
motion parameters.

Expression (9) describes the 3-D shape with full gener-
ality in a local way—it is the Taylor series expansion of the
relative depth around the point ,
for appropriate values of the set of shape parameters

. We can recover the sim-
pler feature-based shape description from the general 3-D
shape described by (9) by making zero all the shape parame-
ters, except for that codes the relative depth of feature,

. Expression (9) models also a special case of practical
interest: the piecewise planar shapes. In this case, the planar
patch is described by the parameters . This set
of parameters codes theorientationof the planar patch, besides
its position.

Since the following derivations deal with a single
surface patch, we will omit the super-index in the
shape parameters. To further simplify the notation, we
define the vectors , ,

, , and
and rewrite the

shape of patch as

(10)

The vectors and are where depends on
the degree of the polynomial patch.

B. Three-Dimensional Motion

We define the 3-D motion of the object by specifying
the position of the o.c.s. relative to the c.c.s. in terms of

where are the coordinates
of the origin of the o.c.s. with respect to the c.c.s. (3-D transla-
tion) and the matrix is the rotation matrix that determines
the orientation of the o.c.s. relative to the c.c.s. (3-D rotation). A
point with coordinates in the o.c.s. has the following

coordinates in the c.c.s., at frame

(11)

Under orthography, the point with coordinates in
the o.c.s. projects in frame onto the image point
given by

(12)

where the matrix collects the first and second rows of the
3-D rotation matrix and the vector contains the two com-
ponents of the 3-D translation that can be recovered from the
image sequence, .

We now show how the 2-D motion induced in the image plane
by the body-camera 3-D motion is described in terms of a set
of parameters, and we relate the parameters of the 2-D motion
model to the 3-D shape and 3-D motion parameters.

C. Image Motion

Consider a generic point in the object surface with coordi-
nates and given by (10). We denote by

the trajectory of the projection of the pointin
the image plane. Since we have chosen the coordinate systems
to coincide on the first frame, we have . At frame ,
the point projects according to (12), to the image point

(13)

where we have decomposed the matrix as ,
where the matrix collects the first and second columns
of the matrix , and the vector is the third column of .

By inserting (10) into (13), we express the image displace-
ment between frame 1 and framein terms of the 3-D shape and
3-D motion parameters. After simple manipulations, we obtain

(14)

Denoting the vector corresponding to the term indepen-
dent of , the matrix that multiplies ( ) and the
matrix that multiplies by, respectively

(15)

we rewrite (14) as

(16)

Expression (16) shows that the image coordinates at frame,
, of the points belonging to the object surface are parametric

mappings of their image coordinates in frame 1, . The
2-D motion of the brightness pattern in the image plane is then
described parametrically by (16). Expression (15) relates the
parameters of the 2-D motion model for each surface patch,,
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, and , to the 3-D motion parameters, , , and , and
the 3-D shape parameters corresponding to that patch,, ,
and . For the special case of piecewise planar surfaces, the
3-D shape of each patch is described byand and the 2-D
motion in the image plane is given by ,
i.e., it is the affine motion model.

Except for particular 3-D motions, the 2-D motion in the
image plane corresponding to different surface patches is de-
scribed by different model parameterizations. The problem of
estimating the support regions of the surface patches leads to the
segmentation of the image motion field. Segmentation from mo-
tion has been widely addressed in the past [19], [21], [26]. In our
experiments, we used two methods that lead to similar results.
The first method simply slides a rectangular window across the
image and detects abrupt changes in the motion parameters. The
second method uses a quad-tree decomposition. We start by es-
timating the motion parameters considering the entire image as
the support region. The region is recursively decomposed into
smaller regions and the motion of each subregion is estimated.
Then we associate regions with similar motion. To estimate the
motion parameters within each region, we use the now widely
known approach introduced in [27]. This approach uses a hier-
archical Gauss-Newton method where the derivatives involved
are computed from the image gradients. Another possible way to
use oursurface-based factorizationmethod is to selecta priori
the support regions of the surface patches. This is the approach
followed by the feature-based methods, where the features are
selecteda priori, based on the spatial variability of the bright-
ness pattern.

IV. SUFACE-BASED FACTORIZATION

The problem of inferring 3-D rigid structure from the image
motion is formulated as estimating the 3-D motion parame-
ters and the 3-D shape parameters

from the image motion parameters
by inverting the over-

constrained set of equations of (15) for all the frames and all the
surface patches. The super-indexabove denotes the surface
patch.

A. 3-D Structure from 2-D Motion

We start by estimating the translation vector. By choosing
the o.c.s. in such a way that and the image origin in
such a way that , we obtain the least squares
(LS) estimate for the translation vector as the mean of the
vectors

(17)

To eliminate the dependence of the image motion parameters
on the translation, we replace the translation estimates into (15)
and define a new set of parameters related to by

(18)

Defining the matrix and the matrix

as

and

(19)

we rewrite the equation system (15) in matrix format as

(20)

where the matrix contains the two first rows of the 3-D
rotation matrix and the index in n and denotes the
surface patch number. Expression (20) relates the image motion
parameters at frame and patch , in matrix n , to the 3-D
rotation at frame , in matrix , and the 3-D shape parameters
for the patch , in matrix .

B. Factorization

There are matrix equations like (20): one for each
surface patch and each frame . To make
explicit the entire set of equations that arise from considering
every patch and every frame, we define the
matrix of image motion parameters, the matrix

of 3-D rotation parameters,and the matrix
of 3-D shape parameters as

...
...

.. .
...

...
(21)

and write the relation between the image motion parameters and
the 3-D structure parameters as

(22)

Expression (22) is an extension of the expression derived by
Tomasi and Kanade [1] for the feature-based approach to the
SFM problem. Expression (22), unlike the one in [1], accom-
modates regions whose shape is parameterized rather than de-
scribed by a single point. In fact, the measurement matrix in-
volved in the feature-based approach described in [1] is com-
posed by the columns of the matrix in (21) and (22) that
contain the parameters [see
(21) and (19)]. For this reason, we call the matrixin (21) and
(22) thesurface-based measurement matrix. The shape matrix
involved in the feature-based factorization of [1] is composed
by the columns of the matrix in (21) and (22) that contain
the parameters [see (21) and (19)]. For
the special case of piecewise planar shapes, the submatrices
and in (19) and (20) are simplified —they have only the first
three columns. In this case, the surface-based measurement ma-
trix is and the shape matrix is .The
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motion matrix in (21) and (22) is the same matrix that ap-
pears in the feature-based factorization of [1].

Expression (22) shows that the surface-based measurement
matrix of the image motion parameters is rank deficient.
In a noiseless situation, the surface-based measurement matrix

is rank 3 reflecting the high redundancy in the image mo-
tion parameters, due to the rigidity of the object. Thus, the sur-
face-based measurement matrixhas the same rank of the
measurement matrix involved in the feature-based factorization
of [1]. The problem of estimating the 3-D shape and 3-D mo-
tion parameters amounts to finding suitable factors of the sur-
face-based measurement matrix. The 3-D shape matrix and
the 3-D motion matrix are then the solution of

(23)

where the rows of the matrices and are restricted to have
the special structure of (21) – the rows of are restricted to
have: 1) unit norm and 2) row orthogonal to row ; and
the first two rows of are given by (19).

The problem of estimating the matrix and the third row
of from the matrix , although nonlinear, has a specific
structure: it is a bilinear constrained LS problem. The bilinear
relation comes from (22), where the motion unknowns and the
shape unknowns appear multiplied by each other and the con-
straints are imposed by the orthonormality of the rows of the
matrix . This specific structure enables us to solve the non-
linear problem by using a computationally simple decomposi-
tion-normalization approach. The decomposition stage solves
the unconstrained bilinear problem, leading to a solution up to a
scale factor. The normalization stage determines the scale factor
by approximating the constraints.

C. Decomposition

Define and . The matrices
and contain the first two columns of the matrices and ,
respectively, the vector is the third column of and the
vector is the third column of . We decompose the vector
into the component that belongs to the space spanned by the
columns of and the component orthogonal to this space as

with . (24)

We rewrite the matrix by inserting (24) in (22), obtaining

(25)

The decomposition stage solves the matrix (25) with respect
to the unknowns , , , and , ignoring the constraints
imposed by the structure of the matrix . We formulate this
problem as the unconstrained minimization

(26)

Since we know the matrix , we eliminate the dependence
of (26) on by solving the linear LS for in terms of the
other variables. We get

(27)

where we used theMoore-Penrose pseudoinverse[28] and the
orthogonality between the vectorand the columns of the ma-
trix [see (24)]. By replacing given by (27) in (26), we
get

where

(28)

We see that the decomposition stage does not determine. This
is because the component ofthat lives in the space spanned
by the columns of does not affect the space spanned by the
columns of the entire matrix and the decomposition stage re-
stricts only this latter space.

The solution for the vectors and is given by the rank 1
matrix that best approximates. In a noiseless situation, is
rank 1, since we would get

(29)

by replacing , given by (25), in (28). By computing the largest
singular value of and the associated singular vectors, we get

(30)

where is a normalizing scalar different from zero.
To compute , , and , we could usesingular value decom-

position (SVD), but the rank deficiency of enables the use of a
less expensive algorithm known as thepower method[28]. This
makes our decomposition stage simpler than the one in the orig-
inal factorization method of Tomasi and Kanade [1]. In fact, the
matrix in (28) is equal to the matrix multiplied by the or-
thogonal projector onto the orthogonal complement of the space
spanned by the columns of . This projection reduces the rank
of the problem from 3 (matrix ) to 1 (matrix ).

D. Normalization

In this stage, we compute the scalarand the vector by im-
posing the constraints that come from the structure of the matrix

.
By replacing the estimate , given by (30), in (27), we get

for the estimate

where

(31)

The constraints imposed by the structure of the matrixare
the unit norm of each row and the orthogonality between the
consecutive rows. In terms of , , and , the constraints are
then

(32)

where , , and denotes the
row of the matrix .
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Fig. 3. Three consecutive frames of the box video sequence.

Fig. 4. Estimates of the image motion parameters in the2 � 2matrixD and the2 � 1 vectord . From left to right, top to bottom,D ; D ; D ; D ; d ;

andd .

We compute the normalization parametersand from the
linear LS solution of the system of (32), in an analogous way
to [1] and [25]. The normalization stage is also simpler than
in the original factorization method [1] because the number of
unknowns is three (and ) as opposed to the nine
entries of a generic normalization matrix.

V. EXPERIMENTS

In this section, we describe three experiments that illustrate
the validity of our approach. We use thesurface-based factor-
izationmethod to analyze two real-life video clips. Finally, we
demonstrate experimentally the computational savings of our
approach when applied to the feature-based case.

A. Box Sequence

In this experiment, we taped a video sequence of 30 frames
showing a box over a carpet with a hand-held camera. Fig. 3
shows three consecutive frames of the box video sequence. The
3-D shape of the scene is well described in terms of four planar
patches. One corresponds to the floor and the other three corre-
spond to the three visible faces of the box. The camera motion
was approximately a rotation around the box.

We start by estimating the parameters describing the 2-D mo-
tion of the brightness pattern in the image plane. For planar
patches, the 2-D motion in the image plane is described by the
affine motion model. The plots in Fig. 4 represent the time evo-
lution of the affine motion parameters. The six affine motion pa-
rameters are the entries of the matrix and the
vector introduced in Section III [see (16)]. The top four plots

of Fig. 4 represent the entries of as a function of for each
of the four planar patches. The bottom two plots represent.
The planar patches are identified as follows: the solid line cor-
responds to patch 1 (the left side vertical face of the box in the
frames of Fig. 3); the dotted line corresponds to patch 2 (the right
side vertical face of the box); the dash-dotted line corresponds
to patch 3 (the top of the box); the dashed line corresponds to
patch 4 (the floor). The plots show that the evolution of the set
of affine parameters is distinct for each surface patch, in partic-
ular, see the evolution of and .

From the affine motion parameters of Fig. 4, we recover the
3-D structure of the scene by using thesurface-based factor-
ization method described in Section IV. After computing the
3-D structure parameters, we recover the texture of each surface
patch by averaging the video frames co-registered according to
the recovered 3-D structure. Fig. 5 shows six perspective views
of the reconstructed 3-D shape with the scene texture mapped
on it. The spatial limits of the planar patches were determined
in the following way. The angles between the planar patches
are correctly recovered. Each edge that links two visible patches
was computed from the intersection of the planes corresponding
to the patches. Each edge that is not in the intersection of two
visible patches was computed by fitting a line to the boundary
that separates two regions with different 2-D motion parame-
ters. Note that the success of our method does not depend on
an accurate segmentation of the planar patches. As pointed out
in Section III, we can even select arbitrarily the support region
of the patches, provided the region size is enough to enable the
estimation of the 2-D image motion parameters.
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Fig. 5. Perspective views of the 3-D shape and texture reconstructed from the box sequence.

Fig. 6. Two frames from the pedestal sequence.

Fig. 7. Relative depth and reconstructed 3-D shape and texture.

B. Pedestal Sequence

In the second experiment a video shows a pedestal with nine
patches. Fig. 6 shows two frames. We derive from the estimated
3-D shape parameters the relative depth of the pedestal shown
on the left image of Fig. 7. In this image, the brightness level
of a pixel codes the relative depth of that pixel, the brighter the
pixel, the closer it is to the camera in reference frame 1. We
reconstructed the 3-D shape from the depth map and superim-
posed the texture extracted from the sequence. Two perspective
views of the reconstructed 3-D shape are shown on the center
and rightmost images of Fig. 7. The nine planar patches of the
pedestal are clearly seen as well as the angles between them.
These two images represent two different views obtained by ro-
tating the 3-D model. Other views are generated in a similar
way.

C. Computational Cost

To compare the computational cost of our rank 1 matrix fac-
torization algorithm with the rank 3 matrix factorization method
originally proposed by Tomasi and Kanade [1], we specialize
our approach to the feature-based case that is the only case ad-
dressed in [1]. We generated a set offeature points randomly
located inside a cube. The 3-D rotational motion was simulated
by synthesizing a smooth time evolution for the Euler angles
that specify the orientation of the o.c.s. relative to the c.c.s. We
use the perspective projection model to project the features onto
the image plane. The distance of the camera to the centroid of
the set of feature points was set to a value high enough such
that orthographic projection is a valid approximation. We ran
the experiment described for a fixed number of frames
and a number of feature points varying from 10 to 100; and
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Fig. 8. MatLab FLOPS count as a function of the number of frames.

Fig. 9. MatLab FLOPS count as a function of the number of feature points.

for a fixed number of feature points and a number
of frames varying from 10 to 100. We computed the average
number of MatLab floating point operations (FLOPS) over 1000
tests for each experiment.

For each experiment, we estimate the 3-D shape and 3-D mo-
tion by using three methods: 1) the original factorization method
[1] that computes the SVD of the measurement matrix; 2) the
samemethodbutcomputing the factorizationof the rank3matrix

by using an algorithm detailed in [25], which is based on the
power method[28]; and 3) our formulation of the factorization as
a rank 1 problem. The reason why we include Method 2 in the ex-
periment is because it is the fastest way available to compute the
rank 3 matrix factorization. Figs. 8 and 9 plot the average number
of FLOPS as a function of the number of frames and the number
of feature points. The number of FLOPS are marked with dotted
lines forMethod1,dash-dotted lines forMethod2,andsolid lines
for Method 3. The left plots show the three curves, while the right
plots show only the curves for Methods 2 and 3 using a different
vertical scale, for better visualization.

From the left side plots, we see that the number of FLOPS is
much larger for the original factorization method than for our
method. This is due to the high computational cost of the SVD.
The computational gain factor is approximately 20 when pro-
cessing 50 frames and 50 feature points and even larger when

processing a larger number of features and/or a large number
of frames. From the right side plots, we see that the number of
FLOPS increases approximately linearly with both the number
of frames and the number of feature points, for both iterative
Methods 2 and 3. The rate of increase is lower for the factor-
ization of the rank 1 matrix than the rank 3 matrix , by a
factor of approximately 2. This is because both the decomposi-
tion and normalization stages in Method 3 are simpler than the
ones in Method 2. In all of the experiments, the performance of
the three methods in terms of the accuracy of the estimates of
the 3-D structure is the same.

VI. CONCLUSION

We presented a new approach for the estimation of 3-D rigid
shape and 3-D motion from a 2-D video sequence. We describe
the 3-D shape by a parameterized representation. We show how
this parametric representation induces a parametric representa-
tion for the 2-D image motion. Our method recovers the 3-D
shape and 3-D motion by first estimating the image motion pa-
rameters. The rigidity of the 3-D shape along the image se-
quence leads to a highly constrained problem when estimating
the 3-D structure parameters from the image motion parameters.
These constraints are expressed in terms of a matrix that is rank
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1 in a noiseless situation. Our method is based on the factor-
ization of this matrix, leading to a computationally very simple
algorithm. Its good performance is illustrated by two experi-
ments with real-life video. In summary, there are two ways our
method gains with respect to the original factorization method
of Tomasi and Kanade [1]. First, a rank 1 factorization is simpler
than a rank 3 factorization, as shown by Figs. 8 and 9. Second,
planar patches (or in general higher order polynomial patches)
lead to much sparser parametric descriptions for the 3-D surface
than the feature points description, i.e., the number of patches
required is in general significantly smaller than the number of
feature points needed for similar levels of approximations, what
this means is that the computational effort is reduced because the
number of patches to be tracked is much smaller and because the
matrix to be factored is also much smaller.
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