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Three-Dimensional Modeling
from Two-Dimensional Video

Pedro M. Q. Aguiar and José M. F. Mouteellow, IEEE

Abstract—This paper presents thesurface-based factorization A. Previous Related Work

method to recover three-dimensional (3-D) structure, i.e., the 3-D .
shape and 3-D motion, of a rigid object from a two-dimensional The problem of recovering the 3-D structure (3-D shape and

(2-D) video sequence. The main ingredients of our approach are as 3-D motion) from a 2-D video sequence has been widely con-

follows: sidered by the computer vision community. Methods that infer
1) we describe the unknown shape of the 3-D rigid object by 3-D shape from a single frame are based on cues such as shading
polynomial patches; and defocus. These methods fail to give reliable 3-D shape es-

2) projections of these patches in the image plane move ac-timates for unconstrained real-world scenes. If no prior knowl-
cording to parametric 2-D motion models;

3) we recover the parameters describing the 3-D shape and 3-D edge abo.ut the scene is avallable,.the cue to esnmgtlng t.he 3-D
motion from the 2-D motion parameters by factorizing ama- structure is the 2-D motion Of the brlghtneSS pattern N the |ma.ge
trix that is rank 1 in a noiseless situation. plane. For this reason, the problem is generally referred to as

Our method is simultaneously an extension and a simplification of structure from motion (SFM)lhe two major steps in SFM are
the original factorization method of Tomasi and Kanade [1]. We ysually as follows.
track regions where the 2-D motion in the image plane is described

by a single set of parameters, avoiding the need to track a large Step 1) Compute the 2-D motion in the image plane, either in

number of pointwise features, in general, a difficult task. Then our the form of a dense field or in the form of a sparse set
method estimates the parameters describing the 3-D structure by of correspondences (see [2] for a recent discussion
factoring a rank 1 matrix, not rank 3 as in [1]. This allows the use on this topic).

of fast iterative algorithms to compute the 3-D structure that best
fits the data. Experimental results with real-life video sequences
illustrate the good performance of our approach.

Step 2) Estimate the 3-D shape and the 3-D motion from the

computed 2-D motion.

Early approaches to SFM processed a single pair of consec-
utive frames and provided existence and uniqueness results to
the problem of estimating 3-D motion and absolute depth from
the 2-D motion in the camera plane between two frames [3].
|. INTRODUCTION Two-frame-based algorithms are highly sensitive to image noise
gnd, when the object is far from the camera, i.e., at a large

HE automatic generation of a three-dimensional (3-D) d - h d to the obiect depth. thev fail ;
scription of the real-world environment has received til%'s ance when compared to the object depth, they fail even a

attention of a large number of researchers. Target applicati ﬂ\%ﬂ—level |mag(ta noise. h has b iented t d th
are found in several fields, including digital video, virtual re- ore recent research has been oriented towar € use

ality, and robotics. The information source foranumberofsu8I longer image sequences. An attractive tool to recursively

cessful approaches to 3-D modeling has been a range im end two-frame algorithms to multiframe algorithms is the
This image, obtained from a usually expensive range sen ?Iman filter. A number of approaches used extended Kalman

provides the distance between the sensor and the environmertn ol (EFF) to_(;asnmate 3D strLAJrctu;e f_lr_?]m lthek 2']!3 motion
front of it, thus the range image itself contains explicitinforma‘fj-Icross ong video sequences [4}-{7]. € lack 0 guarantee
convergence for the EKF-based algorithms and the fact

tion about the 3-D structure of the environment. In this paper, \/9&

build 3-D models for rigid bodies from two-dimensional (2-D)§Eat those apprc;sches did not ter_JIy enforce ;[_hetB;jD rigiditg of f
video data, when no explicit 3-D information is given. € scene over the sequence of Images motivated a number o

researchers to use nonlinear optimization methods to address
the multiframe SFM problem in a batch way [8]-[11]. In
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pioneered the use of linear subspace constraints in motion analAnother relevant feature of our method is its computational
ysis. In fact, the key idea underlying the factorization method smplicity. There are two ways our method gains with respect to
the fact that the rigidity of the scene imposes that the measutige original method of Tomasi and Kanade [1]. First, the sur-
ment matrix lives in a low-dimensional subspace of the univerfece-based representation leads to a much sparser parametric
of matrices. Tomasi and Kanade have shown that the measutescription for the 3-D surface than the feature points descrip-
ment matrix is a rank 3 matrix in a noiseless situation. Refeiion: the number of patches required is in general significantly
ence [1] uses the orthographic projection model. The factamaller than the number of feature points needed for similar
ization method was later extended to the scaled-orthogragkyels of approximations. This reduces the computational effort
and para-perspective models [12] and to the multibody scendpecause the number of patches to be tracked is much smaller and
[13]. because the matrix to be factored is also much smaller. Second,
A different approach to recovering 3-D structure from 2-Iby making an appropriate linear subspace projection, we find
images, also denominated SFM, uses motion as the only cties unknown 3-D structure by factoring a matrix that is rank 1
but rather than computing the 2-D motion in the image plane &sa noiseless situation, rather than a rank 3 matrix as in the orig-
as intermediate step, it attempts to compute the 3-D strucureidial factorization method [1]. This allows the use of faster iter-
rectly from the image intensity values. Due to the complexity aftive algorithms to compute the matrix that best approximates
the problem, these approaches have been so far restricted tdlleedata.
processing of only two or three consecutive frames [14]-[16] or
to the use of a Kalman filter [17] or an iterative Levenberg—Mag. Paper Overview

uardt minimization [18] to exploit rigidity across time. _ .
g [18] P gidity In Section II, we formulate the problem and motivate she-

B. Proposed Approach face-based factorizatioapproach with a simple example. In
Section lll, we make explicit the relation between the 2-D image
otion parameters and the 3-D structure parameters for objects
. : R Shose 3-D shape is described by a piecewise polynomial sur-
along the image sequence. This task is difficult when P'P3ce. Section IV details owurface-based factorizatianethod

cessing noisy videos. In general, only distinguished poinﬁ%r recovering the 3-D shape and 3-D motion from the image

as brightness comers, are used as "trackable” feature POIMStion parameters. Section V illustrates the approach with two

ﬁs atlhcon?eql:enca, tge approach of [1] d?es not provuzﬁ d?@&l—life video clips and compares experimentally the compu-
dep .;z.s |rr}[z;]1 ess. Dn her ourbm(t)r:e ge?er]:':lgs;enan'?', ra efrth nal cost of the feature-based specialization of our method
escribing the o-L shape by the Set of >-L) positions of W, 1he one of the original factorization method [1]. Section VI

feature points, we parameter_|ze _the_shape of the ObJeCF Surf%ﬁcludes the paper. References [22] and [23] report parts of this
and show that this parameterization induces a parametric mo

for the 2-D motion of the brightness pattern in the image

plane. Instead of tracking pointwise features, we track larger

regions where the image motion is described by a single set of Il. PROBLEM FORMULATION

parameters. For example, for scenes with polyhedral surfac S'Model

each region corresponds to a flat surface patch and the 2-D

image motion models reduce to the well-known affine motion We consider a rigid objea® moving in front of a camera.
model. The model parameters are computed by minimizidde object®© is described by its 3-D shap® and texture7 .
directly the differences in the intensity levels, leading to robu$he textureZ represents the light received by the camera after
estimates [19]-[21]. Besides being particularly relevant ireflecting on the object surface, i.e., the textiirés the object
outdoor modeling of buildings with flat walls, our approachrightness as perceived by the camera. The texture depends on
handles general shaped structures by approximating them e object surface photometric properties, as well as on the en-
piecewise planar surface or higher order polynomial surfacgronment illumination conditions. We assume that the texture
It is known that computer graphics methods using plandpes not change with time. The 3-D shapis a representation
patches rather than points, provide usually much better qualitiithe surface of the object.

3-D shape reconstruction because they use, besides the 3-Dhe position and orientation of the objeBtrelative to the
relative depth at each point, the orientation of the surface at ticamera at time instant is represented by a vectane. This
point—an important clue to recover the shape. To recover in gector codes a rotation-translation pair that takes values in the
expedite way the 3-D motion and 3-D shape parameters fragroup of the rigid transformations of the space, the special Eu-
the image motion parameters, we introduce sheface-based clidean group SE(3). The 3-D structure obtained by applying the
factorization a generalization of the original factorization3-D rigid transformation coded by the vecie; to the object)
method that recovers the parameters describing the 3Jgxepresented byt(mg)O. The framely captured at timef,
structure by factorizing a matrix that collects the 2-D motiof < f < F', is modeled as a noisy observation of the projection
parameters. We show that this matrix is rank 1 in a noiseleskthe object

situation. The estimates of the 3-D motion parameters and the

3-D shape parameters are then obtained from the column vector

and row vector whose outer product best matches the data in I = P{M(mf)(’)} + Wy (1)

The factorization method as developed by Tomasi a

the matrix of 2-D motion parameters.
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For simplicity, the observation nois®&¢ is zero mean, white, Object surface S
and Gaussian. We assume thais the orthogonal projection se(u)
operator that is known to be a good approximation to the per- S T
spective projection when the relative depth of the scene is small |
when compared to the distance to the camerastiface-based [
factorizationalgorithm proposed in this paper is derived from :
the orthogonal projection model. Note, however, that it is easily |
|
|
|

|
|
|
|
|
extended to the scaled-orthography and the paraperspective pro- !

jections by proceeding as [12] proposes for the original factor- | Image plane
ization method of Tomasi and Kanade [1]. us(s) u

The operatof returns the textur& as a real valued function
defined over the image plane. This function is a nonlinear map- Fig. 1. Mappingsu(s) ands(u).

ping that depends on the object shapand the object position
m¢. The intensity level of the projection of the object at pixel vectords is directly related to the 3-D shape parameter veator

on the image plane is and the 3-D positiom;, as will be shown below. Our approach
follows these two stages. First, we estimate the parampdgis
?{M(mf)O}(u) =T (s¢(S, mg; 1)) (2) by usingaknown numerical technique forimage motion estima-
tion. Then, we solve the inverse problem of going from the se-

. . . . . quence of image motion parameters to the 3-D structure, i.e., we

wheres¢(S, mg; u) is the nonlinear mapping that lifts the POINtyatermine the 3-D shape parameter veetand the sequence
u on the imagdy to the corresponding point on the 3-D objec}y 5 positions{my}, given the estimate{:ﬁlf} of the image
surface. This mapping (S, mg; u) is determined by the object |\ i, parameter vectorgls }.
shapeS an_d the positionny. To simplify the notation, we will " Before addressing the general case, we illustrate our approach
usuglly v_vnte explicitly Qr_"y the dependence 95“"6'_' se(u). with a simple example: a parabolic patch moving in a 2-D world

. Fig. Lillustrates the lifting mapp_lrg(u) andthe dlregt MAaP- \yhere the images are one-dimensional orthogonal projections.
ping ug(s) for the orthogonal projection of a 2-D object. Therpig scenario, although simpler than the 3-D world problem, re-

inve_r_se mappingue (s) also depequ on .the object shapand flects the very basic properties and difficulties of the SFM par-
positionme at framef, but we will, again, usually show only adigm. Note that the 2-D scenario, illustrated in Fig. 2, corre-

explicitly the dependence oft On the left of Fig. 1, the point g4 14 the real 3-D world, if we consider only one epipolar

s on the surface of the object projects omtg(s) on the image |, and assume that the motion occurs on that plane. The im-
plane. On the right, pixaek on the image plane is lifted &g (u) a%es are single scan-lines

on the object surface. We assume that the object does not o
clude itself, i.e., we haveg(ss(u)) = u andsg(ug(s)) = s.
The mappinga¢(s), seen as a function of the frame indgéxfor ] ) )
a particular surface poist is the trajectory of the projection of ~ Fig. 2 shows a parabolic patchthat moves with respect to
that point in the image plane, i.e., it is the motion induced in trffixed camera. We attach a coordinate system to the oBject
image plane. given by the axes labeled byand=. The 2-D object shap@(%)
We consider the estimation of the 3-D shapand the 3-D IS described in terms of the parameter veetor [ag, a, as] ",
motion {m¢,1 < f < F} given the video sequendd;,1 < N the object coordinate system (0.c.s.), by the parabola
f < F} of F' frames. In [24] and [25], we discuss thaximum- )
likelihood (ML) estimate for this problem. There we show that, 2(z) = 2(a;2) = a0 + a1z + asz”. ®3)
after eliminating the dependence on the textiirewe are left
with a cost function that depends on tteucture(3-D shapeS ) ;
and 3-D motion{imy }) only through themotioninduced in the ordinate system to the camera given E)y the axendw (see
image plane, i.e., through the 2-D motion mappirigs(s)}. Fig. 2). Theu axis is the camera “plane.” We define the 2-D mo-

Recall thatus (S, mg; s) depends on the shagseand the motion tion of the object by _specifying the position of the o.c.s. r_elative
my. This makes clear why the problem we are addressingt?sthe camera coordinate system (c.c._s.). The unconstrameq mo-
referred to as SEM. tion of a rigid body can be described in terms of a time varying

point translation and a rotation. Hence, the object position at

time instantf is expressed in terms ¢t,, . t., ;. ) where, as

o ~shownin Fig. 2(t.,t.) are chosen to be the coordinates of
Thesurface-based factorizationethod uses a parametric dethe origin of the o.c.s. with respect to the c.c.s. (translational

scription of the surface of the rigid object in terms of a pa- component of the 2-D motion) aré} is the orientation of the

rameter vecton, S(a). We exploit the constraints induced org ¢ s, relative to the c.c.s. (rotational component of the motion).

the 2-D motion in the image plane by the projection operator, At instant f, the point on the object with 2-D coordinates

the rigidity of the object and the parameterization of the surfage .) in the o.c.s. has the following coordinates in the c.c.s.:

shape of the object. The constraints induced on the image mo-

tion enable us to parameterize the image motion mapipisg) [uf} e {x} B [imf ka} [az} [tuf}

; ; =0 +tp = + (4)

in terms of a parameter vectdg asu(dy;s). The parameter wy z Lo f

C. Example

To capture the motion of the object, we attach a different co-

B. Approach

<

kop ki
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we have the following parametric description for the

image motion «;(s) in terms of the parameter vector
T

dr = [dfo,ds1,dy2]

() up(s) = w(dg;s) = dgo + dyis + dpas’. (8)
x The parameter vectat; = [dfo,ds1,ds2]" describes the mo-
tion of the brightness pattern in the image plane, i.e., it describes
the mappingu (s) introduced above (see Fig. 1).
With the parabolic patch, the steps of our approach to recover
the 2-D structure, i.e., the shape paramefegsa , a; } and the
set of positiong{t, ¢, 0,1 < f < F'} are then summarized as
follows.

Step 1) Given the image sequence &f frames, es-
timate the set of image motion parameters
{dfo,dfl,dp,lA < Af < F}. This leads to3F

tug  ug(s) u estimatedso, ds1,dp2,1 < f < F}.
Step 2) Invert (7), solving for the shape parame-
ters {ap,a1,a2} and the 2F object positions

{tAuf, 9Af, 1< f < F}, given the set 08 F' estimates

. . . . {dso, ds1,dp2}.
where®y is the rotation matrix for anglé,; andty is the trans- Step 1 is solved by using a known numerical technique to fit

|
|
|
|
|
|
1

Fig. 2. Two-dimensional world: object and camera coordinate systems.

lation vector. . . _ parametric models to the motion of the brightness patterns in
~ From (4), we see that the point,(z) projects attimgf onthe  the image plane. Step 2 leads in general to a nonlinear problem.
image coordinate:; given by Section IV details our approach to this problem. First, we obtain

a closed-form solution for the estimate of the 3-D translation.
Then, due to the structure of the orthogonal projection operator
Up =y g +UapZ + buy- ®) andthe shape parameterization, we can express the dependence
. o of d¢ = d(a,my¢) for 1 < f < I on the vectora andmg¢
Expression (5) shows that the orthogonal projection is insengj-5 pilinear matrix format a& = MST, where the matrisR
tive to the translation componeny ; of the object motion. This qjjects the image motion parametdts,1 < f < F}, M
reflects the well-known fact that, under orthography, the abs&’épends on the positiofsng, 1 < f < F} andS contains the
lute depth (distance from the camera to the object) cannot Q’f‘ape parameter. The problem_of egtimating and{mg,1 <
estimated. Only the set of positiofins = {tur,fr},1 <f < ¢ < F} becomes how to find suitable factadd andST for
F} can be estimated from the image sequence. the factorization of the matriR. We will see how to solve this
We now show how the mappings(s), introduced above yrgphlem by computing only the largest singular value and the
and illustrated in Fig. 1, is described parametrically. In the 2-Bssqciated singular vector of a matExthat is easily obtained
world, the mappingi¢(s) is written asu;(s) because it maps fom R..
a scalars to a scalan.. Choose the coordinate labeling the  oyr general methodology can be used for any parametric
argument of the texture functidh and representing in a uniquéshape description. The situations we are interested in are char-
way the generic point on the object surface (object contour igterized by no prior knowledge about the object shape. For this
this case), to be the object coordinate\We refer tos as the ind of situations, a general shape model must be characterized
texture coordinate. A point with texture coordinateon the yy g |ocal parameterization. The local shape parameterization
object surface projects at timfe according to (5), to the image induces a local parameterization for the motion in the image
coordinateu (s) given by plane. In the following sections we detail our approach for a
generic shape model locally parameterized: the piecewise poly-
nomial functions.
up(s) =igppr(s) + iz p2(s) +tuy
=iy s +i.5 (a0 + 18+ a2s®) +tuy (6) 1. PIECEWISE POLYNOMIAL SHAPE

The o.c.s. has axes labeledbyy and=. The c.c.s. has axes
labeled by, v andw. We consider that the o.c.s. coincides with
the c.c.s. on the first frame. The image plane is defined by the
axesu andw.

wherez(s) andz(s) are the coordinates of the poiatin the
o0.c.s. The equality(s) = s comes from the choice of the tex-
ture coordinates and the expression for(s) comes from the
parabolic shape [see (3)].

By defining th ffici f th f
y defining the coefficients of the powers ofn (6) as A. Three-Dimensional Shape

The 3-D shape of the object is a parametric description
dpo =i.pa0+tuy, dp =tdpp+i.par, dypo=i.a2 (7) of its surface. We consider objects whose shape is given
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by a piecewise polynomial surface withV patches. The coordinates in the c.c.s., at franfe
3-D shape is described in terms &f sets of parameters

ally, aly, aly, a, a%y, aly, ...}, for1 < n < N, where bt * tuy
{ 00> **107 **01» *11» 207 202 } — — vy — ®f y + trl;f ] (11)
wy F1 1297
# = ago +ajo(w — 25) + ag (¥ — ¥o) Under orthography, the point with coordinatiesy, z]* in
+ay (@ —x5)(y — yo) the o.c.s. projects in framg onto the image poinfuy, v]¥
+aho(x - 2f)? +afa(y —yp)*+--- (@) gvenby
describes the shape of the patcin the o.c.s. With respect to up| *
: : =My |y | +ts (12)
the representation of the polynomial patches, the paramejers v

z
andyg can have any value, e.g., they can be made zero. We

allow the specification of general parametefs, i, because where the matriXM; collects the first and second rows of the
the shape of a small patehwith support region#, ¢) located 3-D rotation matrix®¢ and the vectoty contains the two com-

far from the point £, y§) has a high sensivity with respect toponents of the 3-D translation that can be recovered from the
the shape parameters. To minimize this sensivity, we chooseifoage sequences = [tz %, f|T.

(x5, yo) the centroid of the support region of patehWith this We now show how the 2-D motion induced in the image plane
choice, we improve the accuracy of the 3-D structure recoveany the body-camera 3-D motion is described in terms of a set
algorithm. In [25] we show that, by making:{, v{) to be the of parameters, and we relate the parameters of the 2-D motion
centroid of the support region of pateh we also improve the model to the 3-D shape and 3-D motion parameters.

numerical stability of the algorithm that estimates the 2-D image

motion parameters. C. Image Motion

Expression (9) describes the 3-D shape with full gener- Consider a generic point in the object surface with coordi-
ality in a local way—it is the Taylor series expansion of th@atess = [z,4]T andz given by (10). We denote bye(s) =
relative depthz(z,y) around the point(z,y) = (25,45), [us(s),vs(s)]T the trajectory of the projection of the poisin
for appropriate values of the set of shape parameterg image plane. Since we have chosen the coordinate systems
{ago, a%o, agy, af'y, agy, agy, - ..} We can recover the sim-to coincide on the first frame, we have(s) = s. At frame f,
pler feature-based shape description from the general 3t points projects according to (12), to the image point
shape described by (9) by making zero all the shape parame-
ters, except fory, that codes the relative depth of featurg ug(s) = Nys+nyz+te 13)

z = agy,. Expression (9) models also a special case of practic%

interest: the piecewise planar shapes. In this case, the plaﬁ E;g m;hj\;en?:g; rlrleO(:S(;ellif:Tst?eEﬂfilrlsft2?11(;/Isfe§o[r§fc7;lfj]rinns
atchn is described by the parametdks,,, a7y, al; +. This set . f . .
patchn ythep diso; oo, 461} of the matrixM¢, and the vectony is the third column oM.

of parameters codes tloeientationof the planar patch, besides By inserting (10) into (13), we express the image displace-

its position. ‘
Since the following derivations deal with a single;neDnt bei'_[ween fram(: . anﬁf{ratﬁ_m tlerms of_thel 3,:.'D shape abntd_
surface patch, we will omit the super-index in the =~ motion parameters. After simple manipuiations, we obtain

shape parameters. To further simplify the notation, W& (s) = Neso + nrago + b + (N 4+ nral) (s — so)
define the vectorsa; = [ai0,a01]T, s = [z,9]7,

T p—
so = [zo,y0]T, az = [a11, a20, a02. .. ]T, andp(s — s) = +nraz p(s — so). (14)
2 2 T H . . .
[(z = z0)(y — o), (x — x0)*, (¥ —w0),...]" and rewrite the penoting thez x 1 vector corresponding to the term indepen-
shape of patctt as dent ofs, the2 x 2 matrix that multiplies§—so) and the2 x P
matrix that multipliesp(s — sg) by, respectively
2 = ago + alr(s — S()) + a;rp(s — S()). (10) d¢ = N¢esg + nragp + tr
Df = Nf + nfa’1r
The vectorsa; andp(s — sg) are P x 1 whereP depends on Er =ngal (15)

the degree of the polynomial patch.

we rewrite (14) as

B. Three-Dimensional Motion () = dg + De( )+ Bep( ) (16)
ug(s) = + S —Sg)+ S —Sg)-
We define the 3-D motion of the object by specifying ‘ ! ! o P o

the position of the o.c.s. relative to the c.c.s. in terms &Xxpression (16) shows that the image coordinates at frAme
(tug.tus tws, Of) Where (¢4, ¢, 5.t ;) are the coordinates ug, of the points belonging to the object surface are parametric
of the origin of the o.c.s. with respect to the c.c.s. (3-D translazappings of their image coordinates in frameul,= s. The
tion) and the matrix®; is the rotation matrix that determines2-D motion of the brightness pattern in the image plane is then
the orientation of the o.c.s. relative to the c.c.s. (3-D rotation). described parametrically by (16). Expression (15) relates the
point with coordinategr, y, z]* inthe o.c.s. has the following parameters of the 2-D motion model for each surface paigh,
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D¢, andEg, to the 3-D motion paramete®l¢, ng, andty, and ST as

the 3-D shape parameters corresponding to that pageha;, .

anda,. For the special case of piecewise planar surfaces, the Ry = [df D¢ Ef]

3-D shape of each patch is described:dgy anda; and the 2-D and

motion in the image plane is given o (s) = d¢ + D¢ (s—s0),

i.e., itis the affine_motion model._ o gT _ [ so Ioyo Ooup 19
Except for particular 3-D motions, the 2-D motion in the “lap af aT (19)

image plane corresponding to different surface patches is de-

scribed by different model parameterizations. The problem We rewrite the equation system (15) in matrix format as

estimating _the suppc_)rt regions pf th_e surface patch_es leads to the Rg" = M,ST (20)

segmentation of the image motion field. Segmentation from mo- "

tion has been widely addressed in the past [19], [21], [26]. In Ofyfrare the2 x 3 matrix M, contains the two first rows of the 3-D
experiments, we used two methods that lead to similar resuli§iation matrix®; and the index. in Ry andST denotes the

The first method simply slides a rectangular window across 164 ce patch number. Expression (20) relates the image motion
image and detects abrupt changes in the motion parameters. B_Qr%meters at framg and patchn, in matrix RZ, to the 3-D

second method uses a quad-tree decomposition. We start by,g8stion at framef, in matrixMg, and the 3-D shape parameters
timating the motion parameters considering the entire imagegs ihe patchy, in matrix ST.

the support region. The region is recursively decomposed into
smaller regions and the motion of each subregion is estimatgd. Factorization

Then we associate regions with S|m_|lar motion. To esumatg the.l_here areN(F — 1) matrix equations like (20): one for each
motion parameters within each region, we use the now widel

. : i . <n< <f<F.

known approach introduced in [27]. This approach uses a hlg?l_rfgcle patch == N and egch fram@ —.f = F.T0 m"’?"e .
. . ; eéphcn the entire set of equations that arise from considering

archical Gauss-Newton method where the derivatives mvolvgver atch and every frame, we define B&'— 1) x N (P+3)

are computed from the image gradients. Another possible wayto yp y ’

2 X .. “matrix R of image motion parameters, tBeF' — 1) x 3 matrix
use oursurface-based factorizatiamethod is to seled priori . T
. g M of 3-D rotation parameters,and thex N (P + 3) matrix S
the support regions of the surface patches. This is the approa
-D shape parameters as

followed by the feature-based methods, where the features are

selecteda priori, based on the spatial variability of the bright- 'R} RZ2 ... RY
ness pattern. R} RZ --- RY
R =
IV. SUFACE-BASED FACTORIZATION [RL RZ .. RE
The problem of inferring 3-D rigid structure from the image "M,
motion is formulated as estimating the 3-D motion parame- Ms;
ters{Ng,ng, te, 2 < f < F} and the 3-D shape parameters M= . |, ST HsT sT ... sT] (21

{aly,a},a5,1 < n < N} from the image motion parameters :
{dp, D, Ep,2 < f < F,1 < n <N} by inverting the over- L M
constrained set of equations of (15) for all the frames and all thgd write the relation between the image motion parameters and
surface patches. The super-indexabove denotes the surfacqne 3-D structure parameters as

patch.

R =MST. (22)
A. 3-D Structure from 2-D Motion
We start by estimating the translation vecdtgrBy choosing
the o.c.s. in such away that . af, = 0 and the image origin in
such a way tha}"  se™ = [0,0]%, we obtain the least square
(LS) estimate for the translation vectty as the mean of the
vectors{dy,1 <n < N}

Expression (22) is an extension of the expression derived by
Tomasi and Kanade [1] for the feature-based approach to the
SFM problem. Expression (22), unlike the one in [1], accom-
modates regions whose shape is parameterized rather than de-
scribed by a single point. In fact, the measurement matrix in-
volved in the feature-based approach described in [1] is com-

. 1 & posed by the columns of the matrR in (21) and (22) that
te =+ de"ﬂ (17)  contain the parametefgl, 1 < n < N,2 < f < F} [see
n=1 (21) and (19)]. For this reason, we call the malRxn (21) and
To eliminate the dependence of the image motion parameté#8) thesurface-based measurement matfike shape matrix
on the translation, we replace the translation estimates into (I®jolved in the feature-based factorization of [1] is composed
and define a new set of parameté&%n} related to{df"} by by the columns of the matl’iST in (21) and (22) that contain
- - the parameter§sg, agy, 1 < n < N} [see (21) and (19)]. For
—n a1 m the special case of piecewise planar shapes, the submdjces
de =d;" - N Z de™. (18) andST in (19) and (20) are simplified —they have only the first
m=t three columns. In this case, the surface-based measurement ma-
Defining the2 x (P + 3) matrixR¢ and the3 x (P + 3) matrix  trix Ris2(F —1) x 3N and the shape matr&® is 3 x 3N.The

N
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motion matrixM in (21) and (22) is the same matrix that apwhere we used th®oore-Penrose pseudoinverg8] and the
pears in the feature-based factorization of [1]. orthogonality between the vectarand the columns of the ma-
Expression (22) shows that the surface-based measurengxtS, [see (24)]. By replacindViy given by (27) in (26), we
matrix R of the image motion parameters is rank deficienget
In a noiseless situation, the surface-based measurement matrix )
R is rank 3 reflecting the high redundancy in the image mo- ggg
tion parameters, due to the rigidity of the object. Thus, the syjhere
face-based measurement matBxhas the same rank of the ~ Ta ! oT
measurement matrix involved in the feature-based factorization R=R [I —So (SO SO) SO} ) (28)

of [1]. The problem of estimating the 3-D shape and 3-D mape see that the decomposition stage does not deteimifieis
tion parameters amounts to finding suitable factors of the sy-pecause the componentofhat lives in the space spanned
face-based measurement matixThe 3-D shape matri® and by the columns o8, does not affect the space spanned by the
the 3-D motion matriXM are then the solution of columns of the entire matri& and the decomposition stage re-
stricts only this latter space.

The solution for the vectorsz anda is given by the rank 1

matrix that best approximat@®. In a noiseless situatio® is
where the rows of the matric®d andST are restricted to have rank 1, since we would get

the special structure of (21) — the rowsef are restricted to ~ T
have: 1) unit norm and 2) ro®; — 1 orthogonal to row2i; and R = mza (29)

the first two rows ofS™ are given by (19). by replacingR, given by (25), in (28). By computing the largest

The problem of estimating the matrMl and the third row singular value oR and the associated singular vectors, we get
of ST from the matrixR, although nonlinear, has a specific T r o T

structure: it is a bilinear constrained LS problem. The bilinear R~uov™, mz = ou, ar = EV (30)
relation comes from (22), where the motion unknowns and tg\fperea i a normalizing scalar different from zero

shape unknowns appear multiplied by each other and the con: q 9 Id inaul | ' q i
straints are imposed by the orthonormality of the rows of the To computeu, o, andv, we could ussingular value decom

matrix M. This specific structure enables us to solve the nojpsition (SVD,)but the rank deficiency dR enables the use of a

linear problem by using a computationally simple decompo fSS Expensive algorithm known as grever method2s]. This

tion-normalization approach. The decomposition stage sohZ kes our decomposition stage simpler than the one in the orig-

the unconstrained bilinear problem, leading to a solution up tdrlo?l factorization method of Tomasi and Kanade [1]. In fact, the

scale factor. The normalization stage determines the scale fa X Rin (.28) is equal to the matriR multiplied by the or-
by approximating the constraints. ogonal projector onto the orthogonal complement of the space

spanned by the columns B§. This projection reduces the rank
C. Decomposition of the problem from 3 (matriR) to 1 (matrixR).

R - mgaTH
F

i [R - MS™ . (23)

Define M = [Mg, m3] andS = [So,s]. The matricedMy D. Normalization
andSg contain the first two columns of the matrick$ andS,
respectively, the vectams is the third column ofM and the
vectors is the third column ofS. We decompose the vectsr
into the component that belongs to the space spanned by
columns ofSy and the component orthogonal to this space a

In this stage, we compute the scalaand the vectob by im-
posing the constraints that come from the structure of the matrix

Mﬁy replacing the estimatis, given by (30), in (27), we get
Yor the estimatdvi

s=Sgb+a, with aTts,=[0 O0]. (24) vy N Lz  O2x:
0 o=[0 0] M=[M, mz]=N| "I -

We rewrite the matri@® by inserting (24) in (22), obtaining  \ynere
R = M,ST + m3bTST + m3aT. (25)

N . . N =[RS, (STSo) " u]. (32)
The decomposition stage solves the matrix (25) with respect o
to the unknownsM,, ms, b, anda, ignoring the constraints The constraints imposed by the structure of the madtiixare
imposed by the structure of the matiM. We formulate this the unit norm of each row and the orthogonality between the

problem as the unconstrained minimization consecutive rows. In terms &, «, andb, the constraints are
then
o, [  MST ™S i . @0 T .
1 —abT o?2(1+bTh) | ™
Since we know the matri$,, we eliminate the dependence . | P —ab
of (26) onM, by solving the linear LS foM, in terms of the ny; |:_Oé>i)T o2(1 + bTb):| ny; =0 (32)

other variables. We get
N ) wherel <4 < 2(F —1),1 <j < F -1, andn denotes the
M, = RS (SgSo)  —m3b™ (27) row i of the matrixN.
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Fig. 3. Three consecutive frames of the box video sequence.
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Fig. 4. Estimates of the image motion parameters ir2tbe2 matrixD and the2 x 1 vectordg. From left to right, top to botton) 11, D12, D2y, Do, dy,
andd..

We compute the normalization parameterandb from the of Fig. 4 represent the entries B as a function off for each
linear LS solution of the system of (32), in an analogous wapf the four planar patches. The bottom two plots repredgnt
to [1] and [25]. The normalization stage is also simpler thahhe planar patches are identified as follows: the solid line cor-
in the original factorization method ’Ll] because the number sdsponds to patch 1 (the left side vertical face of the box in the
unknowns is threex(andb = [b1, b2] ) as opposed to the nineframes of Fig. 3); the dotted line corresponds to patch 2 (the right

entries of a generid x 3 normalization matrix. side vertical face of the box); the dash-dotted line corresponds
to patch 3 (the top of the box); the dashed line corresponds to
V. EXPERIMENTS patch 4 (the floor). The plots show that the evolution of the set

In this section, we describe three experiments that iIIustreﬁE"’“cﬁne parameters is distinct for each surface patch, in partic-

the validity of our approach. We use tharface-based factor- Ular, see the evolution dd,;, D1, andd,.
izationmethod to analyze two real-life video clips. Finally, we From the affine motion parameters of Fig. 4, we recover the

demonstrate experimentally the computational savings of oti®. Structure of the scene by using therface-based factor-

approach when applied to the feature-based case. ization method described in Section IV. After computing the
3-D structure parameters, we recover the texture of each surface
A. Box Sequence patch by averaging the video frames co-registered according to

In this experiment, we taped a video sequence of 30 framtgg recovered 3-D structure. Fig. 5 shows six perspective views

showing a box over a carpet with a hand-held camera. Fig_ogthe reconstructed 3-D shape with the scene texture mapped

shows three consecutive frames of the box video sequence. PRt The spatial limits of the planar patches were determined
3-D shape of the scene is well described in terms of four plarigrthe following way. The angles between the planar patches
patches. One corresponds to the floor and the other three coffé& correctly recovered._Each edge that links two visible patch_es
spond to the three visible faces of the box. The camera moti¥AS computed from the intersection of the planes corresponding
was approximately a rotation around the box. to the patches. Each edge that is not in the intersection of two

We start by estimating the parameters describing the 2-D misible patches was computed by fitting a line to the boundary
tion of the brightness pattern in the image plane. For planat separates two regions with different 2-D motion parame-
patches, the 2-D motion in the image plane is described by fig¢&s. Note that the success of our method does not depend on
affine motion model. The plots in Fig. 4 represent the time ev@h accurate segmentation of the planar patches. As pointed out
lution of the affine motion parameters. The six affine motion pa2 Section Ill, we can even select arbitrarily the support region
rameters are the entries of thex 2 matrix DP and the2 x 1  of the patches, provided the region size is enough to enable the
vectordy introduced in Section Il [see (16)]. The top four plotgstimation of the 2-D image motion parameters.
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Fig. 6. Two frames from the pedestal sequence.

Fig. 7. Relative depth and reconstructed 3-D shape and texture.

B. Pedestal Sequence C. Computational Cost

In the second experiment a video shows a pedestal with ninéfo compare the computational cost of our rank 1 matrix fac-
patches. Fig. 6 shows two frames. We derive from the estimatedization algorithm with the rank 3 matrix factorization method
3-D shape parameters the relative depth of the pedestal shasiginally proposed by Tomasi and Kanade [1], we specialize
on the left image of Fig. 7. In this image, the brightness levelur approach to the feature-based case that is the only case ad-
of a pixel codes the relative depth of that pixel, the brighter trlressed in [1]. We generated a sefofeature points randomly
pixel, the closer it is to the camera in reference frame 1. Wecated inside a cube. The 3-D rotational motion was simulated
reconstructed the 3-D shape from the depth map and superby-synthesizing a smooth time evolution for the Euler angles
posed the texture extracted from the sequence. Two perspectinat specify the orientation of the o.c.s. relative to the c.c.s. We
views of the reconstructed 3-D shape are shown on the cenise the perspective projection model to project the features onto
and rightmost images of Fig. 7. The nine planar patches of tthee image plane. The distance of the camera to the centroid of
pedestal are clearly seen as well as the angles between thifym.set of feature points was set to a value high enough such
These two images represent two different views obtained by that orthographic projection is a valid approximation. We ran
tating the 3-D model. Other views are generated in a similtlre experiment described for a fixed numberot 50 frames
way. and a number ofV feature points varying from 10 to 100; and
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Fig. 8. MatLab FLOPS count as a function of the number of frames.
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Fig. 9. MatLab FLOPS count as a function of the number of feature points.

for a fixed number ofN = 50 feature points and a humberprocessing a larger number of features and/or a large number
of I frames varying from 10 to 100. We computed the averagé frames. From the right side plots, we see that the number of
number of MatLab floating point operations (FLOPS) over 100BLOPS increases approximately linearly with both the number
tests for each experiment. of frames and the number of feature points, for both iterative
For each experiment, we estimate the 3-D shape and 3-D nethods 2 and 3. The rate of increase is lower for the factor-
tion by using three methods: 1) the original factorization methagation of the rank 1 matriR than the rank 3 matriR, by a
[1] that computes the SVD of the measurement ma;jR) the factor of approximately 2. This is because both the decomposi-
same method but computing the factorization of the rank 3 mattion and normalization stages in Method 3 are simpler than the
R by using an algorithm detailed in [25], which is based on thenes in Method 2. In all of the experiments, the performance of
power methof28]; and 3) our formulation of the factorization aghe three methods in terms of the accuracy of the estimates of
arank 1 problem. The reason why we include Method 2 in the etke 3-D structure is the same.
perimentis because itis the fastest way available to compute the
rank 3 matrix factorization. Figs. 8 and 9 plot the average number
of FLOPS as a function of the number of frames and the number
of feature points. The number of FLOPS are marked with dottedWe presented a new approach for the estimation of 3-D rigid
linesfor Method 1, dash-dotted lines for Method 2, and solid lineshape and 3-D motion from a 2-D video sequence. We describe
for Method 3. The left plots show the three curves, while the rigttie 3-D shape by a parameterized representation. We show how
plots show only the curves for Methods 2 and 3 using a differetftis parametric representation induces a parametric representa-
vertical scale, for better visualization. tion for the 2-D image motion. Our method recovers the 3-D
From the left side plots, we see that the number of FLOPSdkape and 3-D motion by first estimating the image motion pa-
much larger for the original factorization method than for omameters. The rigidity of the 3-D shape along the image se-
method. This is due to the high computational cost of the SViQuence leads to a highly constrained problem when estimating
The computational gain factor is approximately 20 when prdéhe 3-D structure parameters from the image motion parameters.
cessing 50 frames and 50 feature points and even larger whémese constraints are expressed in terms of a matrix that is rank

VI. CONCLUSION
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1 in a noiseless situation. Our method is based on the factoj20] S.Mannand R. Piccard, “Video orbits of the projective groups: A simple
ization of this matrlx’ |ead|ng to a Computatlona”y Very Slmple approach to featureless estimation of paramet¢éEE’E Trans. Image

Processingvol. 6, Sept. 1997.

algor'thm' Its gopd Performance is illustrated by two eXper"[Zl] M. Chang, M. Tekalp, and M. Sezan, “Simultaneous motion estimation
ments with real-life video. In summary, there are two ways our  and segmentation)EEE Trans. Image Processingol. 6, Sept. 1997.

method gains with respect to the original factorization method22l P. M. Q. Aguiar and J. M. F. Moura, "Video representation via 3-D

shaped mosaics,” iRroc. IEEE ICIP, Chicago, IL, Oct. 1998.

of Tomasi and Kana_de [1] First,arank 1 fa(_:torlzatlon 1S S|mpler[23] ——, “A fast algorithm for rigid structure from image sequences,” in
than a rank 3 factorization, as shown by Figs. 8 and 9. Second, Proc. IEEE ICIP, Kobe, Japan, Oct. 1999.
planar patches (or in general higher order polynomial patcheé?“] —, “Maximum likelihood inference of 3-D structure from image se-

guences,” irEnergy Minimization Methods in Computer Vision and Pat-

lead to much sparser parametric des_crlptlons forthe 3-D surface e Recognition New York: Springer—Verlag, 1999.
than the feature points description, i.e., the number of patchgss] p. M. Q. Aguiar, “Rigid structure from video ,” Ph.D. dissertation, Insti-
required is in general significantly smaller than the number of _ tuto Superior Técnico, Lisboa, Portugal, 2000.

S. Ayer, “Sequential and competitive methods for estimation of mul-

: - - 6]
feature points needed for similar levels of approximations, whaf tiple motions,” Ph.D. dissertation, Ecole Polytechnique Fédérale de Lau-
this means is that the computational effort is reduced because the sanne, Lausanne, Switzerland, 1995.
number of patches to be tracked is much smaller and because tiél J: R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, *Hierarchical

model-based motion estimation,” Rroc. ECCV ltaly, May 1992, pp.

matrix to be factored is also much smaller. 237052,
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