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ABSTRACT
Magnetic resonance (MR) tagging technology can assist us
in determining the motions of the myocardial pixels in a se-
quence of MR images. This paper presents a semi-supervised
algorithm that processes these motion maps and classifies au-
tomatically myocardial dysfunctional motions. In distinction
with other methods, our algorithm requires that only a few
normal motions are labeled a priori. This is significant be-
cause, while normal motions can be confidently labeled by
a human expert, abnormal motions are very difficult to label
with high reliability by an operator.
We use a graph to capture the motion map of the left

ventricle. The normalized weighted adjacency matrix of the
graph is interpreted as a stochastic matrix. Performing ran-
dom walks, or diffusion, on the graph determines how similar
myocardial motions are. Similar motions on the graph are
represented by the diffusion maps framework as closer vec-
tors in a Euclidean space. In the Euclidean space, we adopt
eigen-analysis on a small portion of labeled normal motions.
The analysis leads to a hyperelliptic surface that classifies the
remaining cardiac motions as normal or dysfunctional.

Index Terms— cardiac motion, dysfunction, classifica-
tion, diffusion maps, spectral graph.

1. INTRODUCTION

With the advent of cardiac magnetic resonance tagging tech-
nology, we can estimate dense motion maps of the left ventri-
cle [1]. That is, each pixel of the myocardium is assigned a
vector indicating the moving direction and magnitude toward
the next cardiac phase. Monitoring the dense cardiac motions,
cardiologists can learn where the dysfunctional and abnormal
cardiac tissue is.
To determine dysfunctional motions, cardiologists need to

scrutinize entire motion maps and then manually determine
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the regions of abnormalities. This manual work is time con-
suming. In [2], we proposed a computer assisted method to
detect regional heart malfunction based on spectral graph the-
ory [3–5]. The classifier in [2] is semisupervised—initially,
a human expert labels as normal or abnormal a small portion
of the motions and then the classifier propagates the human
prior knowledge to the remaining unlabeled motions. In early
stages of heart disease, the abnormal motions are not promi-
nent. As a result, the human expert lacks confidence when la-
beling dysfunctional motions, while labeling normal motions
is usually a reliable task. We propose a new algorithm that
requires only prior knowledge on the normal motions.
We develop our classifier in the framework of diffusion

maps [6]. A human expert labels a small portion of normal
motions. Then, the algorithm automatically diffuses the nor-
mal labels to the remaining undetermined motions. The ab-
normal motions are in regions where diffusion is hard. After
a sufficient number of diffusion steps, the regions with low
probability of diffusion are classified as abnormal.

1.1. Algorithm Overview

The algorithm starts by describing the image of the left ven-
tricle with a graph. Each myocardial pixel corresponds to a
vertex in the graph. The variations of motions within small
neighborhoods are assigned as weights to the graph edges.
From graph theory, we associate a weighted adjacency matrix
to the graph. We normalize the weighted adjacency matrix,
which leads to a stochastic matrix that defines a Markov chain
on the graph. Similarity between two arbitrary myocardial
motions is determined by how easily they can be reached from
one another through random walks, or diffusion, on the graph.
The framework of diffusion maps [6] transforms vertices that
are easily reached by diffusion from one another on the graph
into close vectors in a Euclidean space. In other words, the
normal and abnormal motions are mapped to two clusters of
vectors in a Euclidean space. Classification in this Euclidean
space simplifies the task of classifying motions on the graph.
We then train the classifier by performing eigen-analysis on
the vectors corresponding to the prelabeled normal motions.
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The eigen-analysis leads to a hyperelliptic surface enclosing
the labeled normal vectors. The hyperelliptic surface is used
to classify the myocardial motions as normal or abnormal.

1.2. Paper Organization

This paper is organized as follows. Section 2 develops in de-
tail the classification method. Section 3 demonstrates the ex-
perimental results with real cardiac MRI data. Finally, we
conclude the paper in Section 4.

2. METHODOLOGY

2.1. Graph Representation of Motion Maps

Let a set I = {1, 2, · · · , N} index the myocardial pixels,
where N is the number of myocardial pixels. A myocar-
dial pixel i has coordinate xi = [xi, yi]T and motion ui =
[ui, vi]T . We describe the myocardial motion map by a graph
G(V, E), which consists of a set V of vertices and a set E of
edges linking the vertices. In the graph G(V, E), each vertex i
is a pixel; it is linked to itself and to its four nearest neighbor-
ing pixels. An edge linking vertices i and j is denoted by
eij .
To capture the motion map by a graph, we use weights

Wij to record the similarities between pairs of motions ui,uj

if there are edges eij . Due to the errors in the motion estima-
tion step, we treat the motions ui as random vectors and use
the Mahalanobis distance ρij , see [7], to compute Wij . The
Mahalanobis distance is

ρij =
√

(ui − uj)T Σ−1
ij (ui − uj) , (1)

where Σij is the covariance matrix between ui and uj . In
the graph representation of the motion map, we assign larger
weights to edges linking pixels with shorter Mahalanobis dis-
tances. We compute these weights using the Gaussian kernel;
that is, the weightWij between a pair of myocardial pixels i,
j is

Wij =

{
exp

(
−ρ2

ij

ε

)
, if i and j are linked,

0, otherwise.
(2)

The graph G can now be represented by the weighted adja-
cency matrixW whose entries areWij .
We normalize the weighted adjacency matrix W by its

row sums to obtain a new matrix P, namely

Pij =
Wij∑
k Wik

. (3)

The matrixP is used to specify the transition probabilities be-
tween vertices in the graph and, as such, describes a Markov
chain. The entry Pij is the one-step transition from vertex i
to vertex j. The multiple-step transition probabilities are the

entries of powers of P ; i.e., let Pm be the m-th iterate of P,
the entry (Pm)ij is the probability of going from vertex i to
vertex j inm steps.
The i-th row (Pm)i− of Pm collects the transition prob-

abilities of starting at vertex i and ending at each of the other
vertices. When two rows, say (Pm)q− and (Pm)r−, are equal,
the vertices q and r will behave as identical random walks
in subsequent steps. Hence, the vertices q and r have simi-
lar characteristics and can be determined as belonging to the
same class. However, to build a classifier from this simple
idea, we need to consider two issues. First, there is a signifi-
cant computational cost in computing powers ofP. Although
P inherits the sparse structure from the weighted adjacency
matrixW, the matrix Pm will be a full matrix whenm � 1.
Second, we need a good measure to determine the similarity
between two probability distributions (Pm)q− and (Pm)r−.
To handle these issues, we adopt the diffusion maps frame-
work [6].

2.2. Diffusion Maps

The eigen-decomposition of the matrix P gives a set of left
eigenvectors and a set of right eigenvectors:

{φ(j)}N−1
j=0 and {ψ(j)}N−1

j=0 , (4)

respectively. The left and right eigenvectors correspond to
the same set of eigenvalues λ0 > λ1 ≥ · · · ≥ λN−1, where
λ0 = 1. The components φ

(0)
i of the zeroth left eigenvector

φ(0) are

φ
(0)
i =

∑
j Wij∑

i,j Wij
, (5)

and the zeroth right eigenvector ψ(0) = 1 is a constant vector
with all components being 1. The left eigenvectors are equiv-
alent to the stationary distributions on the graph. The right
eigenvectors are the dual of the left eigenvectors, and they
satisfy the inner product

〈φ(j), ψ(k)〉 = δjk (6)

and the relation

ψ
(j)
� =

φ
(j)
�

φ
(0)
�

. (7)

In the diffusion maps framework, the eigenvectors are nor-
malized with respect to φ(0):

‖φ(j)‖2 =
∑

�

φ
(j)
�

2

φ
(0)
�

= 1 (8)

and
‖ψ(j)‖2 =

∑
�

ψ
(j)
�

2
φ

(0)
� = 1 . (9)
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Coifman et al. [6] define the m-step diffusion distance
ξm(q, r) between vertices q and r, or between (Pm)q− and
(Pm)r−, as

ξm(q, r) =

√√√√ N∑
k=1

[(Pm)qk − (Pm)rk]2

φ
(0)
k

. (10)

The spectral representation of (Pm)ab is, see [6],

(Pm)ab =
N−1∑
j=0

λm
j ψ(j)

a φ
(j)
b . (11)

The substitution of equation (11) into the diffusion distance (10)
results in

ξm(q, r) =

√√√√N−1∑
j=1

λ2m
j

[
ψ

(j)
q − ψ

(j)
r

]2

. (12)

Because the eigenvalues are decreasing and the high order
eigenvalues λ2m

j vanish asymptotically fast with m, we can
further approximate the diffusion distance

ξm(q, r) ≈
√√√√ pm∑

j=1

λ2m
j

[
ψ

(j)
q − ψ

(j)
r

]2

(13)

by choosing the first pm eigen components.
An important implication of equation (13) is that there is

a diffusion map Dm that maps a vertex q on the graph G to a
vector sq in the Euclidean space R

pm , i.e.,

Dm : q �→ sq =
[
λm

1 ψ(1)
q , λm

2 ψ(2)
q , · · · , λm

(pm)ψ
(pm)
q

]T

.

(14)
The insight of the diffusion map (14) is the following. When
computing the Euclidean distance between sq and sr, we ob-
tain the same formulation as the diffusion distance in equa-
tion (13). In other words, the diffusion map Dm is an isome-
try. Our goal of comparing the similarities between two prob-
ability distributions (Pm)q− and (Pm)r− under the m-step
diffusion reduces to the evaluation of the Euclidean distance
between sq and sr. This simplifies significantly the task of
designing the classifier since it is much simpler to design it in
the Euclidean space R

pm where we can easily find a surface
that acts as a classification function for normality and abnor-
mality.
For practical implementation, we need to determine the

number m of diffusion steps and the number pm of eigen-
vectors to be used in the Euclidean representation (14). The
number m should be large enough to reduce the number pm

of eigenvectors needed, because, as mentioned earlier, high
order eigenvalues, λ2m

j for j > pm in equation (13) vanish
asymptotically. On the other hand, we can not setm too large.
Note that the zeroth eigenvalue and eigenvectors do not play

a role in the Euclidean representation (14). Since λj < 1
for j = 1, · · · , N − 1, a too large m makes all Euclidean
representations sq collapse to zero vectors that are useless for
classification. We choose empirically the value of m. Given
m, the value of pm can be determined through a predefined
threshold τλ, which should be a small number close to zero.
We choose the first pm eigenvectors determined by

λ2m
pm

≥ τλ and λ2m
pm+1 < τλ . (15)

2.3. Classification

The diffusion mapDm introduced in (14) transforms the graph G
of the myocardial motions into a set of points in the Euclidean
space R

pm . Each motion uq is now represented by a vec-
tor sq ∈ R

pm . We can perform the classification task on the
diffusion map representations. Equation (14) explains that
similar cardiac motions on the graph G have similar vector
representations in R

pm . In other words, different classes of
myocardial motions should be mapped farther away in R

pm .
The task of classification is to find in R

pm one subspace cor-
responding to the normal cardiac motions and a second sub-
space corresponding to the dysfunctional motions.
In R

pm , we derive the subspace of normal motions based
on the prior knowledge provided by a human expert. Let the
first c motions u1, · · · ,uc be labeled as normal. Hence, the
vectors s1, · · · , sc are known as normal. We perform eigen-
analysis on these vectors and obtain the eigenvalues {ai}pm

i=1

and eigenvectors {ei}pm

i=1. Described in terms of the eigen-
vectors ei, each vector sq has a new representation s̃q ,

s̃q = ET (sq − s̄L) , (16)

where
E = [e1, · · · , epm

] (17)

is a matrix collecting the eigenvectors ei and

s̄L =
1
c

c∑
i

si (18)

is the mean of the labeled vectors s1, · · · , sc. Step (16) means
that we translate the origin of the Euclidean space to s̄L and
then rotate the space to align with the eigen basis E.
Let z̃1, · · · , z̃pm

denote the Cartesian coordinates in the
eigen basis system. We now define the classification function
as

h(z̃) =
z̃2
1

a1
+

z̃2
2

a2
+ · · · + z̃2

pm

apm

. (19)

The relation h(z̃) ≤ τc defines a hyperellipsoid that encloses
all the labeled vectors s̃1, · · · , s̃c, where τc is a parameter
scaling the size of the hyperellipsoid; namely,

∀i = 1, · · · , c, h(s̃i) =
s̃2

i,1

a1
+

s̃2
i,2

a2
+ · · · + s̃2

i,pm

apm

≤ τc .

(20)
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The relation h(z̃) = τc defines a hyperelliptic surface. We
treat this hyperelliptic surface as the classification boundary
between the regions of normal and dysfunctional motions.
The classification rule is

∀i ∈ I,

{
ui is normal, if h(s̃i) ≤ τc

ui is dysfunctional, if h(s̃i) > τc

. (21)

3. EXPERIMENTAL RESULTS

This section details the classification algorithm and presents
classification results for abnormal cardiac motions in real MRI
data. We use MATLAB R© to implement the classifier.
Algorithm Parameters. There are various parameters

used by the algorithm. They are chosen as follows.

• The true covariance matrices Σij used in equation (1)
are not known, so we have to estimate them from the
data. We collect two 3 × 3 windows of motions cen-
tered at ui and uj , respectively, to derive the covariance
matrices Σij .

• To determine the edge weights in equation (2), we set ε
to 0.1 as suggested by Laflon [8].

• The number m of diffusion steps, see equation (14), is
crucial in the framework of diffusion maps. The litera-
ture has not reported how to choose this parameter. We
letm be the diameter of the graph. The graph diameter
is the least number of steps needed for the two farthest
vertices in the graph [4]. This choice of m allows all
vertices to have a chance of reaching every other ver-
tices in the graph inm steps.

• In the diffusion map representation, the number pm of
eigenvectors is chosen through a threshold τλ that bounds
the vanishing eigenvalues λ2m

i , see equation (15). We
set τλ = 0.1.

• Finally, the classification boundary between normal and
abnormal motions is the hyperelliptic surface h(z̃) =
τc. Since the labeled normal motions must satisfy h(z̃) ≤
τc, see equation (20), we set the threshold τc to

τc = max{h(s̃1), h(s̃2), · · · , h(s̃c)} . (22)

Application to Cardiac MRI Data. We apply the motion
estimation algorithm [1] to a set of taggedMRI sequences and
obtain dense motion maps. Figure 1 shows the motion map of
a heart at the end-diastole. In this figure, the motions inside
the two squares are labeled normal motions by an expert. We
run the classifier on the motion map and obtain the results in
Figure 2, where the dots denote the classified abnormal mo-
tions. To evaluate the results, a human expert manually clas-
sified the dysfunctional regions before running the algorithm.

Fig. 1. A map of dense cardiac motions.

Fig. 2. Classification of abnormal motions using the classifier
developed in this paper.

The manually determined abnormal regions are the three el-
lipses shown in Figure 2. The evaluation demonstrates that
our classified dysfunctional regions are consistent with the
manually classified results.
Comparisons with Other Approaches. A heuristic au-

tomatic method is to perform PCA on each motion vector.
The PCA method for classifying a motion as abnormal is as
follows: collect a window of neighboring motions, compute
the covariance matrix to find out the principal motion in this
neighborhood, and then determine the motion as abnormal if
it deviates appreciably from the principal motion. The clas-
sification results using PCA are shown in Figure 3(a), where
the classified abnormalities are randomly dispersed over the
heart and are inconsistent with the manual ground truth. The
main problem with the PCA method is that it ignores the my-
ocardial motions’ global geometry.
A second method to which we compare our algorithm is

the classifier based on the spectral graph approach [2]. The
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(a) PCA method.

(b) Semi-supervised spectral graph method when fed with normal motions
only [2].

Fig. 3. Classification of abnormal motions using other ap-
proaches.

spectral graph based method relies on prior knowledge in both
normal and abnormal motions. To compare fairly with our
diffusion based approach, we feed the spectral graph algo-
rithm with prelabeled normal motions only, leading to the
classification results shown in Figure 3(b). We can easily see
that the spectral graph approach misclassifies three regions of
abnormalities.

4. SUMMARY AND CONCLUSIONS

This paper develops a semi-supervised algorithm to classify
dysfunctional myocardial motions. Given a cardiac motion
map, it is an easy task to determine prior normal motions.
However, it is usually much harder to classify with high confi-
dence abnormal motions. We develop in this paper a classifier
that requires a small subset of normal motions.
We let a human expert label a small portion of the nor-

mal motions. The classifier automatically propagates this in-
formation to other unlabeled motions. The algorithm starts
by describing the motion map with a weighted graph. Nor-
malizing the weighted adjacency matrix of the graph results
in a stochastic matrix. Associated with the stochastic matrix
is a diffusion on the graph. The diffusion maps framework
transforms the graph structure to a Euclidean space. In the
Euclidean space, eigen-analysis on the labeled normal mo-
tions leads to a hyperelliptic surface that partitions the normal
and abnormal cardiac motions. The experimental results show
that the classifier in this paper performs better than other ap-
proaches: one based on PCA and the other based on spectral
graph theory (when this latter classifier is given only labeled
normal motions).
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