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Abstract

In ocean tomography acoustical means are used to
infer characteristic parameters of the underwater
medium such as temperature profile and current ve-
locity. These techniques are based on the functional
dependency between the propagation and the param-
eters that must be estimated. Accuracy of this mod-
elisation is critical to the performance:a mismatched
model may preclude corrrect inference, either by im-
posing biases or by affecting the variance of the es-
timates. In this paper, we apply to this problem a
global performance prediction tool showing its abil-
ity to predict system’s sensitivity to modeling errors.

1 Introduction

An important problem in the design of tomography
systems is to predict performance, both expected ac-
curacy and parameter observability. Since this sys-
tems are based on knowledge of the functional de-
pendency of the propagation/observation operator on
the desired parameters, actual performance is highly
dependent on the correctness of all the prior informa-
tion concerning the physical medium and experimen-
tal conditions. In this paper, we show how an am-
biguity function, initially developed for localization
problems, may predict expected global performance
of a given tomography system under modeling inac-
curacies.

The ambiguity function is a global analysis tool
that accounts for large errors rather than the local
errors taken into consideration by the Cramér-Rao
bounds. Based on the information provided by the ge-
ometric properties of the probabilistic manifold that
describes the observed data, this function describes
the statistical observability of the parameters being
estimated, incorporating in an integrated manner the
invertibility of the transmission operator, the effect of
the noise, and the impact of uncertainties. As we will
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s(t) r(t)
= H(6,E,R) =

Figure 1: Inverse problems in underwater signal pro-
cessing.

see, the ambiguity index introduced in [3] is defined
directly in terms of the Kullback directed divergence
between the conditional distributions associated with
a parametrized family modeling the observed data
and can thus be directly applied to many estimation
problems, in particular to ocean tomography.

In the paper, we demonstrate the use of this tool,
by considering a trivial case-study, where two param-
eters describing a simple bilinear propagation model
are to be infered from the observations produced on
an aray of sensors. We show ambiguity plots, that
demonstrate the sensitivity of the analyzed system to
several parameters: source positiom, bottom depth,
velocity gradient in the lower layer.

In the next section we formulate the problem.
Then, we introduce the ambiguity function. In the
last section, using a very simple case study, we
demonstrate the application of the ambiguity func-
tion to the analysis of ocean tomography.

2 Problem Formulation

Ocean tomography and sonar systems share a
very important characteristic, namely they utilize the
same probabilistic model to describe the observed
data, only its parametrization is different. The di-
agram of Figure 1 illustrates this point. In the dia-

0-7803-1385-2/93/$3.00 © 1993 IEEE



gram, s(t) denotes a vector of source signals which
corresponds to multiple sources in source location
problems or to several emitters in tomography; r(t)
is the signal observed by an array of sensors; £ and
R are the parameters describing the geometry and
location of the emitting and receiving antennas, re-
spectively; @ describes the physical medium parame-
ters; and H(#, E, R) is the matrix transmission oper-
ator that combines the directional characteristics of
the emitters and of the receivers with the propaga-
tion effects of the channel. The transmission opera-
tor H(6, E, R) is parametrized by the emitter and the
receivers’ location parameters F and R, respectively,
as well as by the channel physical parameters. With
ocean tomography, we are interested in estimating &
assuming that E and R are known. With localiza-
tion problems, it is 8 and R that are assumed to be
known while it is £ that is to be estimated. It is in
this sense that tomography and localization are said
to be inverse problems.

To demonstrate the validity of the approach, the
paper considers the simple case of an horizontally
stratified medium, with perfectly flat boundaries.
The ocean is divided in two horizontal layers where
the velocity gradient is constant: in the upper layer,
sound speed decreases linearly with depth, in the
lower layer there is a positive constant gradient
(ducted propagation). This simple bilinear model
has the advantage of preserving a certain degree of
analyticity, exibiting, at the same time, the multi-
path propagation which is commonly present in vast
ocean areas, with a number of distinct rays between
any two given points being present. In [3], we studied
the performance of location systems using this tool,
showing the potential advantage of explicitly model-
ing the temporal (inter-path) delay structure of the
observations.

We assume that the bottom depth, the sound speed
at the surface, and the gradient of the sound speed
profile (SVP) at the lower layer are known and that
it is the duct’s depth and the gradient in the upper
layer that are to be estimated. We consider that the
emitting and receiving antennas are fixed (i,e,, their
position do not change with time). The emitter is
a point source radiating a wideband pseudo-random
signal with known power density, and the receiving
antenna consists of several sensors arranged in a uni-
formly spaced vertical linear array.

For this simple scenario, we use our ambiguity
function to study performance sensitivity to incorrect
prior knowledge, i.e., how does erroneous information
regarding pior parameters affects the ambiguity struc-
ture associated with the estimated parameters.

3 Ambiguity Function

Consider a family G, of density functions, indexed by
a parameter a € A:

Ga 2 {p(z]a), ac A}.

The Kullback-Leibler number (also called Kullback
directed divergence or cross-entropy) between two
members of G, is [1]:

I(a1,03) & Eq, {]n Zg:z;;} ’

In this equation, E,, is expectation with respect to
the probability density function p(z|ey). This func-
tional was introduced by Kullback [1] in the frame-
work of information theory. Although it has some
distance-like properties, it is not, in fact, a distance.
As it can be easily seen, it is not symmetric and it
does not satisfy, in general, the triangular inequality.
However, I{0;,02) > 0, with equality iff oy = ay.
Note that

I{a1, e2) = Eq, {Inp(z|e1) ~ Inp(z|ea)},

i.e., I(-,-) is the mean value of the difference between
the values of the log-likelihood function for two points
in the parameter space, for observations z, condi-
tioned on one of those points. The value of I(.,-)
depends, naturally, on the size of the observation in-
terval. Here, we consider only the asymptotic case of
very long observation interval.

Heuristically, I(a;,a2) is a measure of the resem-
blance, or proximity, of the two models described by
p(z|ay) and p(z|ag). The values of a3 that yield small
values of I{aj,ag) indicate possible erroneous esti-
mates of a when the true value of the parameter is
Q.

Based on these arguments, ambiguity between two
points (), ap) in the parameter space is defined as

& Imax(og) = I{ay, a3)
Ao, 2) = Inpax(ay) M

where Ipsax(a;) denotes an upper bound on the
value of I(a1,a2) over aa € A. Since I(.,-) is not
symmetric, A(ai, @z2) is not, in general, a symmetric
function of its two arguments.

Consider that the observations’ power spectrum is
described by

Ro(w) = S(w)hs(w)he(w)™ + o¥(w)Ix

where we assume that the observation noise is spa-
tially incoherent, with known power density o%(w).
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In the previous equation, S(w) is the unknown source
spectral density and hg(w) is the resultant vector,
that describes the coherent combination of the steer-
ing vectors corresponding to the P replicas received,
see (2, 3] for further details.

The resultant vector can be decomposed as

hg(w) = D(6)b(6)

where the K x P matrix D(#) describes the spatial
structure of the individual replicas, depending only
on the inter-sensor delays for each received path, and
b(8) is a P dimensional vector that depends only on
their temporal alignment.

Using the relation

_ 1
Ro(w)™ = o?(w) (1

where the scalar Ey(w) is defined by

S(w)
- (w)hg(w)ho(w)H)

Eg(w) = 0®(w) + S(w)[lhe(w)II?,

leads to

160:0) = 3 [ |50 - 2 hatol?
~ ) lhe () el
+ lngi((‘:))]m.

Ambiguity is computed using this equation in the
general definition given before, see [4] for a complete
discussion.

4 Case Studies

We present in this section ambiguity plots for the es-
timation of surface layer velocity gradient and duct
depth in a deep ocean area, considering a bilinear ap-
proximation to a velocity profile typical of the North
Atlantic with the following nominal values: gradient
above duct (go): -0.0035 s~!, gradient below duct
(91): .013 s71, duct depht: 950 m, sound speed at
the surface: 1500 m~?!, ocean depth. 4000m.

The receiving antenna is a 10 element uniform ver-
tical linear array, with inter-element spacing d =
....m, and top-most element at an immersion 100m.
Horizontal distance from the source to the receiving
array is 60K'm, and source is placed near the duct
axis, at an immersion of 600m. The source signal has
a flat spectrum in the bandwidth 400 — —500H z.

All figures presented show gray-scale density plots
of the ambiguity surfaces, white areas corresponding
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to small ambiguity values (close to zero) and dark re-
gions corresponding to values close to one. Horizontal
axis is upper gradient (on a grid between —.039m™!
and —.03m™1), vertical axis being duct depth (on a
grid from —1000m to —900m).

The first plot, Fig. 2, shows the ambiguity surface
in the ideal case, where perfect knowledge of all the
modeling parameters is asumed, except of those being
estimated. The diagonal orientation of the ambiguity
lobes of this plot displays a strong correlation between
the two parameters, showing that a lower value of
upper sound gradient can be partially compensated
for by an increase in duct depth.

The second group of plots, Fig. 3 through Fig. 5
show the sensitivity of the tomography systems to
uncertainty on the parameters that are treated as be-
ing known (source position, ocean bottom, deep layer
gradient). Comparing these plots to the correspond-
ing ideal one Fig. 2, we see that utilization of nominal
erroneous parameter values results in the introduc-
tion of biases (the ambiguity curves no longer peak
at the right values) and/or lead to deformation of the
original structure.

Fig. 3 shows that an error of 10 meters in source
immersion has a drastic effect on the ability to esti-
mate the two parameters of interest. The most strik-
ing feature of this plot is the existence of two peaks,
both at wrong (upper gradient, duct depth) coordi-
nates indicating abias and ambiguity problem.

In Fig. 4 we see that an error of 300 meters on
bottom depth has no significant influence on system’s
performance on the grid of analysis, except for the re-
gion of large values of duct depth and upper gradient.
This fact seems natural, since the receiving antenna
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Figure 3: Wrong value of source immersion (600 m).

is placed in the first convergence zone, where the im-
portance of bottom reflected rays is negligible.

The last figure (5) corresponds to a mismatch in
the velocity gradient of the lower layer. In this case,
the diagonal structure is still present, but no relevant
peak exists in the vicinity of the actual value. This is
due to the fact that with a wrong value for the lower
layer gradient, the location of the convergence zone is
displaced, leading to a large deviation from the actual
values of the unknwon parameters in order to fit the
model to the actual observations.
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Figure 4: Wrong value of ocean bottom (4300 m).
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Figure 5: Wrong value of bottom layer gradient (g, =
014 571,
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