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Abstract - In numerous content-based video applications, it is impor-
tant to extract from a video sequence a representation for humans in
motion. For example, in generative video (GV) [4], one needs to con-
struct accurate world images for moving objects. Because humans are
not rigid objects, this task is difficult. We propose here a model-based
recognition of human walking in dynamic scenes. We model the human
body as an articulated object connected by joints and rigid parts, and
the human walking as a periodic motion. We determine the posture by
using a recognition algorithm that estimates the period and phase of
walking. We obtain promising results when testing our algorithm with
real video.

1 Introduction

Tracking and recognition of humans and their actions is a challenging task
in computer vision. Due to its complex nature, the human body is non-rigid,
it is capable of performing a wide variety of actions, and can be highly self-
occlusive. To overcome these problems in tracking humans and their actions,
most systems in this domain resort to model-based approaches. They either
adopt an apriori model of the human body [3, 6, 2] or make assumptions on
the types of motion of the human [3, 6].

Hogg [3] considered human walking recognition in real image sequences.
He modeled both the human body and the human motion. The human body
is described as a set of elliptical cylinders; the motion model is acquired in-
teractively from a prototype image sequence. A similar approach is taken by
Rohr [6]. Rohr also adopted a cylindrical model for the human body. How-
ever, Rohr modeled the motion through a time series, averaging the kinematic
data provided by the medical motion studies conducted by Murray {5].

Gavrila and Davis {2} studies tracking human movements based on a multi-
view approach. Their model of a human body is constructed with super-
quadrics and a large number of degrees of freedom. Their system can track
and recognize unconstrained actions, yet it needs known initial pose as a
start-up and several static cameras to provide sufficient views.

Our system accomplishes recognition of a walking person in a complex
scene. Functionally, it is most closely related to the work of Hogg [3] and
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Rohr [6]. However, the systems of Hogg [3] and Rohr [6] require well-calibrated
environments, and the human subject walks front-and-parallel to the static
camera. Our system allows for camera motion during video capturing. The
task is made more complicated by the camera mobility.

Our system consists of three components: pre-processing, modeling, and
recognition. The pre-processing component detects human subjects and lo-
cates their positions. The modeling component describes the body and the
walking. The recognition component recognizes the posture of walkers with
assistance from the modeling component.

Section 2 to 4 consider each of these components. Finally, Section 5 de-
scribes preliminary experiments and concludes this proposal.

2 Pre-Processing

The pre-processing component isolates the walker from the background
and estimates the position of the walker. First, we estimate the motion of the
background for every two consecutive frames. We assume that the background
motion between two consecutive frames is parameterized accurately by 2-
D motion models such as the affine model or perspective transformations.
Currently, we use the affine model. The computation framework is based on
an iterative multiscale approach.

After determining the image background motion, we register consecutive
images using this motion. As a result, we null the image background motion;
the remaining motion is due to the walker. Following this, we detect for each
consecutive pair of registered images the region corresponding to the walker.

Finally, we track the walker to obtain the position and height of the walker.
Experimental evidence reveals that the motion between the head and torso of
a walking person is negligibly small; thus, we treat these two parts as a single
rigid body. We estimate the 2-D affine motion of the head-and-torso between
two consecutive frames. This gives us the evolution of the 2-D position of the
walker between frames.

3 Human Modeling

Human models facilitate the recognition described in Section 4. There
are two major components to setting up a model for the human walker: (1)
the model of the human body, which provides the geometrical knowledge
about the walker; (2) the model of the walking, which provides the topolog-
ical knowledge about the walker. We use these two types of knowledge to
synthesize the walker.

Modeling the Human Body: The purpose of our modeling scheme is
to generate the contour information of a walker. It suffices for our purposes
to adopt an articulated cone-shaped model. This model is similar to that
adopted by Hogg [3] and Rohr [6] in their work. The human body is considered
to be composed of 12 rigid parts (head, torso, plus two primitives of arms and
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three primitives of legs). Each part is represented by a truncated cone with
an elliptical cross section and a semi-oval sphere attached to each end of the
cone.

Modeling Human Walking: We adopt a kinematic approach in modeling
the human movements. Murray [5] conducted experiments on measuring gaits
of males and females in a wide range of ages and heights. Their results
reveal that the movement patterns of different body parts are similar for
different people. Rohr [6] used the average measurements of the movement
patterns [5} in his work. Encouraged by his results, we adopt the same set of
measurements in modeling the human walking. We assign every two jointed
parts a joint angle; there are 11 joints and joint angles 8;, (i = 1,2,---,11).
For each of the joint angles, we take a set of equally-spaced samples from a
walking cycle of its corresponding average measurement [5] to build the model

d
posture ©ps(p) 4 [ 0r1(p) Oar2(p) -+ Orr10(P) Oarr1(p) ]T where p € [0,1),
referred to as the pose, is the index of the angle series. These series are
periodic with period of 1.

4 Recognition of Human Walking

We define the walker detected from the real video as the data walker,
Wp(k), where k is the corresponding frame number, and the walker synthe-
sized from the model as the model walker, Wy (p), where p € [0,1) is the pose.
Since we track a walker in a dynamic scene, we expect the edges to be clut-
tered. To reduce the noise introduced by these cluttered edges, we consider
only edges falling within the region corresponding to the walker extracted by
the motion detection process described in Section 2.

We estimate the posture by matching edge information of the data walker
with edge information of the model walker by a generate-and-test approach.
We introduce below a similarity measure that quantifies how close a data
walker Wp is from a model walker Wjy,. This similarity measure involves a
phase filtering operation. This is based on constructing a distance map and
a phase map.

Distance and Phase Maps: For the model walker with pose p, Was(p), we

create the edge map Ep(p) by using the Canny edge detector. We construct
the distance map T'ps(p; x,y)

&+ B(6r = min fle,(@,9)l) if min fle, (2, )| < or

(1)

0 otherwise

FM(p;x,y) = {

where (z,y) is a pixel position, « and 3 are positive constants, e is the position
of an edge pixel in Ejp,(p), and ér is a given threshold. Then, we construct
the phase map @ (p; z,y)

—1 Vy(Wr*G)

@M(p;x7y> — tan Vo (W G) if eré%?l”e? (z:y)u < ‘SF (2)
0 otherwise
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where V, and V, are the components of the gradient operator and G is a
Gaussian lowpass filter.

The distance map indicates the distance of a pixel to its closest edge pixel.
The phase map is derived from the gradient of a blurred model walker; it
possesses the orientation information of the edge map. We use these two
maps as geometry filters to measure the geometrical similarity between the
model walker and a data walker. Functionally, our distance map is similar
to the chamfer image [1] used for measuring the similarity between two sets
of edge pixels. The chamfer matching method in [1] computes the similarity
between two sets of edge pixels by only measuring the distance between them.
It doesn’t consider the orientation information between these edges, which we
believe is as important as the distance information. Qur phase map provides
this information by measuring the orientation between these two sets of edge
pixels.

Similarly, we construct for the data walker Wp (k) an edge map Ep(k) and
a phase map ®p (k). In this step, we choose ér = 0, i.e., I'p(k;z,y) = Ep(k).

Similarity Measure: For the data walker in frame k, Wp(k), we determine
its closest pose in the model by

Psim (k) = arg max s(Wp(k), Wu (p)) 3)
p€E[0,1)
where s(Wp(k), W (p)) is the similarity measure

> Sulk,pizy) - Ta(pio,y)

(z,y)
Wpk), W 4
s(Wp(k), Wu(p)) = S Sw(bpe.g) . (4)

(z,y)

where
1 if (z,y) € Ep and

Su(k,pyz,y) = { [®p(k;z,y) — Pm(piz,y)| < do
0 otherwise

where d¢ is a given threshold. We call the procedure defined by Sp(k,p; 2, y)
in the equation above phase filtering.

Fittest Posture: We find the closest pose, Ypsim(k), for each of the data
walkers in a number of consecutive frames Wp(k),k = 1,2,---, K, by using

the aforementioned approach; then, determine the period, T}, 4 fp_l, (in
frames/cycle) and the phase, ¢,, (or the pose of the walker in the first frame
of the video) by a line fitting algorithm

[ f» ¢p]~argmm2npm folk = 1) + pll (5)

We designate pyi (k) g fp(k—1)+ ¢, to be the fittest pose of the data walker
Wp(k), and O (k) 4 Onr(pyi(k)) the fittest posture.
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5 Experiments and Conclusion

We present results on recognizing the posture of a walker in the Pedro
sequence. The Pedro sequence is a real video of an outdoor scene. We first
apply the pre-processing component described in Section 2 to extract for each
image the walking subject, which we refer to as the data walker. For each data
walker, the recognition module searches the pose space: synthesizing a model
walker, generating a distance map and a phase map for the model walker, and
then determining the similarity measure to find the best match as explained
in Section 4. To test the robustness of our approach, we apply our recognition
algorithm to the first 30-frames segment of the Pedro sequence. We determine
the pose for the data walker in each of the 30 frames by searching the entire
pose space, i.e., from 0 to 1, with a pose increment of 0.01.

Figure 1 shows the results of matching the data walker of Frame 2. The
horizontal axis is the percentage of pose in a walking cycle. The vertical axis
is the similarity measure defined in (4). The result suggests that the model
walker with pose of 0.77 is the best match to the data walker. We may notice
in Figure 1 (a) that there is another peak centered around the 0.26 pose,
which is about half a period apart from the major peak. This is due to the
symmetric characteristic of walking. This large secondary peak may cause
large errors (or outliers), see below.
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Figure 1: Initial posture recognition.

We perform the matching mentioned above on the data walkers for Frame1
through Frame 30. The result is shown in Figure 1 (b). As can be seen, most
of the data points scatter around a straight line except for three outliers, the
three data points corresponding to Frames 14, 18, and 23. The outliers are
due to the symmetric characteristic of walking as discussed above. These
three data points will fall within the desired range if we compensate them by
+0.50. We then determine the period and the phase of the posture for the data
walker by applying equation (5). We obtain f, = 0.0267 and ¢, = 0.7129.
This result shows that the fittest posture of the walker in frame k of the Pedro
sequence is O si(k) = Onr(prie(k)) where prir(k) = 0.0267(k — 1) + 0.7129.
This indicates that the fittest pose for Frame 1 is py; (1) = 0.7129, and that
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the period of the walking cycle is T}, 2 37.4 frames/cycle.

We then superimpose the contours of the approximate model walkers to
their corresponding data walkers. Some of the resulting images are shown
in Figure 2. The results demonstrate that the posture recognition module is
higly reliable.

frame5, pose: 0.82 framel0, pose: 0.95 framel5, pose: 0.09 frame20, pose: 0.22

Figure 2: Superimpose contours of model walkers to walkers of real video.

In conclusion, content-based representation of humans in real video de-
scribes the humans according to their motion, shape, and texture. It involves
solving the problems of action recognition, part segmentation, human mod-
eling, and texture recovery. In this paper, we focus on action recognition.
We propose a model-based recognition scheme for estimating the posture of a
walking subject. We obtain promising results by testing our algorithm with
real video. Our approach provides useful dynamic constraints for further
segmentation of the body parts of the walking subject.
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