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We discuss coding of 2D data using a recursive framework
for noncausal Gauss Markov random fields (GMRY') defined
on finite lattices. This framework exploits to advantage the
structure of GMRFs providing the means to achieve recur-
sive optimal processing, while preserving the noncausality
of the field.

The compression scheme uses noncausal prediction cou-
pled to vector quantization (VQ). The noncausal prediction
fits first a noncausal GMRF to the data, then whitens the
data by an inverse filtering type operation, and finally vector
quantizes the prediction error field. In this paper, we ex-
plain the details of the noncausal prediction. Lack of space
prevents us to discuss the parameter estimation algorithm
that is needed to fit a 2D model to the data, see [1].

GMRF Recursive Structure

Important in the coding of GMRFs is the issue of pa-
rameterization. This leads to the question of when is a
positive definite matrix the covariance of a GMRF? Partial
answers are available only in very special cases. In general,
for GMRF's on finite lattices, it is not possible to answer the
question directly. It turns out that the right way to pose it
is in terms of the inverse of the covariance matrix which we
refer to as the potential matrix, see [2] for details.

Let {z;;},1<,j < N, represent the 2D field on a finite
lattice (taken as a square, for simplicity.) Woods [3]’s min-
imum mean square error representation of a homogeneous
first order GMRF (nearest neighbors) is

i = Pua(@ij-1+ Tije1) + Bo(@i-1 + Tig1,5) + €5, (1)

where B, and 3, are the strengths of the neighbor hori-
zontal and vertical field interactions, respectively. We call
these the field potentials. Collecting all N2 equations, tak-
ing care of boundary conditions (b.c.) (which here we as-
sume Dirichlet zero boundary conditions, see [2] for general
b.c.,) we get

Ax =e 2)

where the potentials are collected in the matrix A = I ®
B+ H®C, and ® is the Kronecker product. The N? vector
X = vec[x;], where the N vectors x collect the intensities
of the pixels of the ith - row. I is the N? identity matrix,
B = Iy - fyHy and C = —B,In, H is an N? matrix of
zero entries, except the upper and lower diagonal (all ones,)
and Iy and Hy are like I and H but of dimension N.

The noise e has correlation £, = 0?4. Apart the nor-
malizing factor of o2, the covariance Ix of x is then the
potential matrix A.
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By Cholesky factorization, A = UTU. Equation2) gives
Ux=w (3)

where the covariance of w is #2I. The Cholesky factor U is
not a full matrix. It is block diagonal with band N+1. The
diagonal and the upper diagonal blocks of U are obtained
from the iterates of a Riccati type equation. In [2], the con-
vergence behavior of this iterative scheme is studied. For
practical purposes, one may stop it after less than 10 iter-
ations, considerably reducing the associated computational
effort.

2D Coding

To code 2D data, we need the field parameter values
B, By, In [1], we analyze the parameter space of GMRFs
and study their maximum likelihood (ML) estimation.

We have used this to code two dimensional data. The
basic structure of the (lossy) codec is the following: (i) The
global mean is subtracted from the 2D data, which is then
input to an ML - estimator; (ii) a Cholesky factorization
of A leads to the unilateral representation of the field;
(iii) the field is whitened leading to the error field; (iv) the
error field is vector quantized; (v) lossless entropy type cod-
ing can be used to achieve further compression. When ap-
plied to image data, we have verified that we can get over
a factor of 3 — 10 of more compression ratio than DCT
based techniques. This procedure and modifications to it
are presently under study.
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