TURBO LIKE DECODING OF LDPC CODES

Jin Lu and José M. . Moura
Department of Electrical and Computer Engineering, Carnegie Mellon Univerity,
5000 Forbes Ave., Pittsburgh, PA, U.S.A.

Introduction

Low-density parity check (LDPC) codes exhibit performance close to the Shannon limit. High-rate
LDPC codes are actively being considered in magnetic recording because, when decoded by the
iterative message-passing algorithm, they show better decoding performance than turbo codes as
the block length increases. However, their decoding complexity is 4 challenge,

In this paper, we develop a new decoding scheme for LDPC codes that effectively reduces the decoding
complexity. We refer to it as turbo like decoding. By graph transformations, we divide systematically an
arbitrary factor graph with cyctes into several cycle-frec parts that are connected to cach other by interleavers,
forming an equivalent turbo-like structure. Turbo-like decoding then decodes in each cycle-free component
and shares probabitisiic information among them. We show that turbo-tike decoding converges 10 decoding
success faster than the sum-product decoding algorithm at comparable BER performance.

Graph Partition Algorithm
We present now an algorithm that partitions a factor graph with cycles into several cycle-free
components (trees or forests) connected by interleaver-like structurcs. The algorithm is as follows:
1. Generate a tree T, from the original factor graph G . Let G, =G =T . ie.. G, is the
remaining graph when ull edges in 7; are deleted from G . Let C=T,; andm = I.
2. If the remaining graph G, is cycle-free go to step 4,
If NOT, m = m+l, go to step 3.
3. Assume G, contains 7 disconnected parts £y, Py, ..., P,.
Fori = 1:n
Generate a tree T, for the 7 th disjoint part P,

End
Let €, =T, VT, 0T, and G, =G, ~C,, . gotostep 2.
4. C,, =G, End
From this algorithm, G =C, UC, W---UC, ,, and C,’s are cycle-lree. Fig, 1 shows that this

£ fi 1, ™ .)
Parity checks " 3 s Tree 1 T'ree 2 lmer!ea\er
N

- /‘,Q;
PN
PaaN
.] i /\
Bits E AR A P Ny Ny x, Xy fi X /\
Fig. . (a) Fig.1. (b) Fig. 1. (c)

algorithm splits the graph in fig.1.{a) into the (wo trees shown in Fig 1.(b). During the partition process, some
variable nodes and thase edges incident on them may split into different cycle-free components, e.g., see the
variablc node ¥, in figure Ha) that is sphit into two, sce fig. 1.(b). When interchanging information hetween
different components, we need 1o remerge those edges together, as shown in fig. 1.(c). We reler to these
merged parts as an interleaver.

1:K
Decexle the 7 th cycle-free component €. using the updated information from its inferleaver
and then (ransmit the new probabilistic information to its interleaver,
End
Step 3: Compute the decoding output. [f success is achieved, £0 to step 4. Otherwise, go back to step 2.
Step 4: End.
The message updating equations are the same a those for the sum-product decoding algorithm,
Advantages of turbo-like decoding algorithm
1t is well known [F. R. Kschischang and B. J. Frey, Feb. 1998] that wilh a cycle-free factor graph, the
sum-product algorithm terminates in a finite number of steps and yields minimum symbol error
probability. Therefore, in isolation, the local decoding for each cycle-free component is optimal.
TLDA is still iterative: each component transmits its a posieriori probability (APP) information to
the others through interleavers and, in twrm, these components use these APPs as a priori
information to start their own decoding process.
BER performance and computational cost
We consider a randomly generated regular LDPC code with uniform column weight 2. Its block
length is 5850 bits and its code rate is 8/9. We compare by 10* Monte Carlo simulations in the plots
below the TLDA and the standard sum-product algorithm in an AWGN channel. The plot on the left
shows that the two algorithms have similar BER performance, while the plot on the right shows that
TLDA is 50 % faster than the sum product algorithm at low SNR (We have proved that the
computational cost per iteration of TLDA is exactly the same as the computational cost per iteration
of sum-product algorithm).

~ o i o TLoA
< pR T
BER P
* . T
Dl .
[; . —
| Do : -
Te g1 s ve ez 7 72 T4 718 % a2 ea ss e i T T

SNR

Fig2. SNR Fig.3.

Acknowiedgment: This work is supported by the DSSC at Carncgie Mellon University.

DT-11

HHAL €00T@ 00°0€$/€0/1-LP9L-C08L-0

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

