
Scanning the Issue

Special Issue on Program Generation, Optimization, and
Platform Adaptation

This special issue of the PROCEEDINGS OF THE IEEE offers
an overview of ongoing efforts to facilitate the development
of high-performance libraries and applications for engineers
and scientists.

The fast evolution, increasing complexity, and increasing
diversity of today’s computing platforms pose a major chal-
lenge to developers of high-performance applications: soft-
ware development has become an interdisciplinary task that
requires the programmer to have specialized knowledge in
algorithms, programming languages, and computer architec-
tures. Furthermore, tuning even simple programs tends to be
expensive because it requires an intense and sustained ef-
fort—which can stretch over a period of weeks or months,
if not years—from the technically best expert programmers.
But the manual tuning or adaptation of software implemen-
tations to a particular platform also leads to a vicious cycle:
the code developer invests tremendous energy tinkering with
the implementation to exploit in the best way the computing
resources available, simply to realize that the hardware in-
frastructure has become obsolete in the interim as an effect
of the relentless technological advances reflecting Moore’s
Law. This has led to large repositories of applications that
were once well adapted to the existing computers of the time,
but continue to persist because the cost involved in updating
them to the current technology is simply too large to warrant
the effort. To break this cycle successfully, it is necessary to
rethink the process of designing and optimizing software in
order to deliver to the user the full power of optimized im-
plementations on the available hardware resources.

This special issue of the PROCEEDINGS presents an
overview of recent research on new methodologies for the
design, development, and optimization of high-performance
software libraries and applications.

The special issue contains 13 invited papers grouped into
four main areas:

• program generators;
• parallel library design;
• domain-specific compiler optimizations;
• dynamic (runtime) software adaptation.

Digital Object Identifier 10.1109/JPROC.2004.840488

We now provide a brief overview of each of these areas and
of the papers in each group.

Program generators: The first group of four papers
adopts as basic strategy to automatic performance tuning
and optimization the generation of routines or complete
applications starting with either mathematical descriptions
or program templates. The formulas representing the space
of possible algorithms can be derived from an initial set
of formulas by applying algebraic rules and mathematical
theorems. Alternatively, the space of possible implementa-
tions can be derived from a program template by applying
well-known code transformations such as loop unrolling,
loop tiling, and statement reordering.

To obtain an optimal or near-optimal algorithm implemen-
tation, the space of possible algorithms and/or implementa-
tions is searched. The search can be exhaustive, based on
heuristics, or guided by intelligent mechanisms. The function
to be optimized can be the actual execution time measured on
a real machine or the predicted execution time based on: 1) a
functional description of the target machine or 2) analytical
models of the target architecture.

The first paper in this area, “The Design and Implemen-
tation of FFTW3,” by Frigo and Johnson, describes the
latest version of FFTW, a widely used library for computing
the discrete Fourier transform (DFT) in one and multiple
dimensions. FFTW is highly optimized and, furthermore,
adapts to the underlying hardware to maximize performance.
This is achieved through FFTW’s architecture, which imple-
ments a flexible compositional framework that decomposes
large DFT problems into smaller problems. FFTW supports
a relevant set of alternative decompositions, which are
searched to find the best match or adapt to the platforms
memory hierarchy. Small DFT problems are computed
through so-called codelets consisting of highly optimized
straightline code (code without loops and control structures)
automatically generated by a special purpose compiler. The
paper shows that this approach yields a performance that
matches libraries that are hand optimized for a particular
machine. Beyond the DFT, FFTW serves as a good case
study on how to build a self-adaptable numerical library.

The second paper in this area, “SPIRAL: Code Generation
for DSP Transforms,” by Püschel et al., describes a code gen-
erator for digital signal processing (DSP) transforms. These

0018-9219/$20.00 © 2005 IEEE

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005 211

include the DFT, various discrete trigonometric transforms,
filters, and the discrete wavelet transform (DWT). SPIRAL
generates its code from scratch. It is highly optimized and
tuned to the given computing platform. SPIRAL formulates
the implementation tuning as an optimization problem and
exploits the domain-specific mathematical structure of dis-
crete signal processing transform algorithms to implement a
feedback-driven solver. For a specified transform, SPIRAL
autonomously generates and explores alternative algorithms
and their implementations and, by measuring their perfor-
mance, searches among the many alternatives or learns di-
rectly how to create the “best” implementation. At the heart
of SPIRAL is the signal processing language (SPL), which
uses a small number of primitive symbols and operators (e.g.,
tensor product or direct sum) to compactly describe a large
class of algorithms. Further, this compact description is used
in SPIRAL to optimize algorithms at the high, algorithmic
level, thus overcoming many of the limitations of current
compilers. The code generated by SPIRAL is competitive
with the best available hand-tuned libraries.

The third paper in this area, “Synthesis of High-Perfor-
mance Parallel Programs for a Class of Ab Initio Quantum
Chemistry Models,” by Baumgartner et al., presents a pro-
gram generator for a class of quantum chemistry problems
that are described as tensor contractions. Starting from a
high-level mathematical description of the computation, the
generator produces high-performance code that is tuned to
the characteristics of the computing platform. The optimiza-
tion of the code starts at the mathematical level, where the
input expression is formally manipulated to minimize com-
putational cost. Then, memory requirements are minimized
and the data is partitioned for the parallel system. Finally, the
actual code is generated; various code types are supported.
The system described in the paper provides a solution in a
domain where manual optimization is not only difficult, but
often practically infeasible.

The fourth paper in this area, “Self-Adapting Linear
Algebra Algorithms and Software,” by Demmel et al., dis-
cusses automatic performance tuning for dense and sparse
linear algebra computations. The authors describe general
ideas for the design of adaptable numerical software. Then,
they explain how these ideas are instantiated in LAPACK,
a widely used library for dense linear algebra problems.
LAPACK is implemented on top of the computationally
most expensive kernel routines, which are provided by a
different library or application programming interface (API)
called BLAS (an acronym for “basic linear algebra subrou-
tines”). The BLAS, in turn, is generated and tuned for every
platform by a code generator called ATLAS, which performs
an empirical search over different coding options such as
block sizes and the degree of instruction interleaving. Fur-
ther, the authors discuss automatic performance tuning for
sparse linear algebra problems. In contrast to dense linear
algebra, adaptation in this domain has to take partially place
at runtime. The reason is the structure of sparse matrices,
which is not available at compiler time, but crucially deter-
mines the performance of different storage schemes.

Parallel library design: The second group of two papers
targets the problem of high performance library design for
parallel architectures. Well-designed interfaces, supported
by object-oriented features of the base language, facilitate
the use of these libraries.

The first paper in this area, “Parallel VSIPL++: An Open
Standard Software Library for High-Performance Parallel
Signal Processing,” by Lebak et al., describes the Parallel
Vector, Signal, and Image Processing Library (Parallel
VSIPL++). The goal of Parallel VSIPL++ is to enable the
user to write programs for parallel real-time embedded
signal processing while still maintaining both portability
and high performance across platforms. This is achieved
through an object-oriented framework that enables the
mapping of data and functions onto parallel hardware. To
achieve high performance, Parallel VSIPL++ supports var-
ious adaptation mechanisms—for example, at compile time,
hardware specialization of functions by the compiler, or, at
runtime, through explicit run stages to accelerate communi-
cation operations. Parallel VSIPL++ is developed to comply
with community-defined interfaces and is compatible with
many proprietary high-performance embedded computing
platforms.

The second paper in this area, “Parallel MATLAB: Doing
it Right,” by Choy and Edelman, discusses an extension
of MATLAB for parallel computing. The main idea is
conceptually simple and elegant. A single operator, p,
is used to specify which arrays are to be distributed. The
MATLAB functions that manipulate arrays are overloaded
so that parallel versions are invoked when the parameters are
distributed objects. This approach enables the development
of parallel programs that are easy to read and debug because
they look very much like conventional MATLAB programs
and all the parallelism is encapsulated within MATLAB
functions.

Domain-specific compiler optimizations: The third
group of four papers adopts a different strategy to code
optimization and tuning. They develop new compiler frame-
works to support optimizations that work effectively for
certain classes of computations and then apply them to con-
ventional languages, such as Fortran and C. The constructs
to be optimized are identified via pattern matching or by
annotations. The transformations can be fully automatic
or make use of profiling information and directives. These
could, for example, specify the layout and distribution of
data structures, semantic information that is difficult to infer
from the source program, or the range of values assumed by
some variables.

Compiler techniques for the optimization of domain-spe-
cific language constructs have also been developed. These
techniques take advantage of semantic information about
these domain-specific constructs.

The first paper in this area, “Broadway: A Compiler
for Exploiting the Domain-Specific Semantics of Software
Libraries,” by Guyer and Lin, describes the Broadway
compiler, which is designed to perform domain-specific
optimizations on conventional languages. The basic assump-

212 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

tion is that library routines can be seen as domain-specific
operations that extend the base language. The Broadway
compiler is not designed for any specific domain, but is ex-
pected to be applicable to a range of domains. To this end, the
compiler uses generic analysis and optimization algorithms
that rely on annotations describing the input–output and
the behavior of each routine in the library. The annotations
also specify the condition under which code replacements
and inlining can be applied. Thus, the annotation file is a
mechanism that specializes the Broadway compiler to the
domain of the annotated library. The paper presents as a case
study the annotations that were used in the optimization of
PLAPACK programs and presents performance results for
three such programs.

The second paper in this area, by Yotov et al., asks
the question: “Is Search Really Necessary to Generate
High-Performance BLAS?” The paper considers the BLAS
code generator of ATLAS. The original ATLAS generates
the BLAS code by empirical search. It tries various code
variants with different degrees of blocking, loop unrolling,
instruction interleaving, among others, according to a spe-
cific search strategy and selects the best as final output. The
authors replace the empirical search by analytical models
that are used to compute, rather than search, the parame-
ters. Experiments show that the model-based approach can
perform as well as the empirical approach in most cases.
The paper may provide a first step toward future compilers
that use knowledge of the underlying computing platform
to a much larger extent and in more sophisticated ways than
current compilers.

The third paper in this area is “Telescoping Languages: A
System for Automatic Generation of Domain Languages,”
by Kennedy et al. It describes a novel strategy to generate
compiler optimization passes capable of manipulating
codes containing invocations to library routines. The core
of the strategy is implemented in Palomar, a sophisticated
module that accepts user-specified transformations, gener-
ates transformation rules, and analyzes library routines to
generate multiple versions that match the transformation
rules and are then made available to the program optimizer.
The paper presents several application studies: MATLAB
for signal processing, library maintenance using LibGen,
computationally intensive statistics, image processing, and
component integration.

The fourth paper in this area, “Efficient Utilization of
SIMD Extensions,” by Franchetti et al., addresses the
problem of compiling a numerical program to take optimal
advantage of short vector single-instruction multiple-data
(SIMD) instructions. These instructions are a recent addi-
tion to most available computer architectures and enable
processors to perform several integer or floating pointing
operations as fast as a single operation. Compiler support
for these instructions is rather limited, which motivates the
two domain-specific approaches presented in this paper.
The first approach is a back-end compiler that extracts the
fine-grain parallelism for vector instructions from a dataflow
representation of a straightline program. The second ap-
proach, called formal vectorization, targets specifically

signal transforms. Vectorization is achieved in this case by
manipulating a mathematical representation of the algorithm
to make explicit vector parallelism. Experiments show the
success of both methods.

Dynamic (runtime) software adaptation: Finally, the
fourth group of three papers uses runtime information to
attempt, in some cases, to significantly improve the opti-
mization of applications and libraries over what is possible
by relying exclusively on static information. The runtime
information can be used to perform on-the-fly optimization
or used across several executions for long periods to pro-
gressively improve the code and enable its adaptation to
changing runtime environments and input data sets.

The first paper in this area, by Reed and Mendes, is
called “Intelligent Monitoring for Adaptation in Grid Ap-
plications.” Grid computing takes place in an environment
in which users can simply and transparently access dis-
tributed computers and databases as if they were a single
system. Grid computing offers great potential for large-scale
distributed application; however, ensuring and adapting
performance for the grid poses problems rather different
from classical platforms, due to shared resources and their
unpredictable dynamic behavior. This paper offers a solution
based on performance contracts and contract monitors. Per-
formance contracts formalize and specify the relationship
between application performance and resources. During
execution, the contract monitors continuously verify that the
contract is met; if not, the application can be readapted or
rescheduled. Further, the contracts use “soft control” based
on fuzzy logic to ensure robustness in decision making on
the grid resources, which have an inherent high performance
variability. A representative application example shows the
viability of the approach.

The second paper in this area, “Design and Engineering
of a Dynamic Binary Optimizer,” by Duesterwald, presents
an overview of dynamic binary optimizers. It discusses their
overall organization and the techniques they apply. Dynamic
binary optimizers inspect and manipulate programs during
execution in order to improve the performance of the exe-
cuting code and perhaps translate the code onto the native
language of the target machine. The main advantage of dy-
namic optimizers over their static counterparts is that they
can take advantage of information only available at execu-
tion time such as the value of input data and the frequency
of execution of code fragments. This enables the application
of optimizations that would in general be impossible to carry
out statically. The paper discusses techniques to deal with
one of the main challenges in the design of a dynamic bi-
nary optimizer: namely, the need to minimize the overhead
ensuing from the need to maintain control over the executing
code.

The third paper in this area, “A Survey of Adaptive
Optimization in Virtual Machines,” by Arnold et al., gives
a comprehensive overview on the history and state of the
art in optimization for virtual machines (VMs), which are
software programs that execute high-level programming
languages. The most prominent example is the widely used
Java Virtual Machine that executes Java programs. VM

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005 213

architectures provide several advantages over static libraries,
including portable program representations, dynamic pro-
gram composition, and enhanced security. However, VMs
face performance challenges, since most optimizations have
to be deferred to runtime. The paper explains in detail the
various optimization strategies that have been developed
in the past three decades, including selective optimization
techniques that apply an optimizing compiler at runtime to
critical program components and feedback-directed opti-
mization techniques that use dynamically collected profiling
information to improve performance.

The editors take this opportunity to thank the approxi-
mately 75 authors and the more than 50 reviewers who sur-

vived and labored through several rounds of reviews to shape
and “tune” (manually) the papers and the special issue.

JOSÉ M. F. MOURA, Guest Editor
Department of Electrical and

Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890 USA

MARKUS PÜSCHEL, Guest Editor
Department of Electrical and

Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890 USA

DAVID PADUA, Guest Editor
3318 Digital Computer Laboratory
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

JACK DONGARRA, Guest Editor
Computer Science Department
University of Tennessee
Knoxville, TN 37996-3450 USA

José M. F. Moura (Fellow, IEEE) received the engenheiro electrotécnico degree from Instituto
Superior Técnico (IST), Lisbon, Portugal, in 1969 and the M.Sc., E.E., and D.Sc. degrees in
electrical engineering and computer science from the Massachusetts Institute of Technology
(MIT), Cambridge, MA, in 1973, 1973, and 1975, respectively.

He has been a Professor of Electrical and Computer Engineering at Carnegie Mellon Univer-
sity, Pittsburgh, PA, since 1986. He held visiting faculty appointments with MIT (1984–1986
and 1999–2000) and was on the faculty of IST (1975–1984). His research interests include
statistical and algebraic signal and image processing and digital communications. He has pub-
lished over 270 technical journal and conference papers, is the coeditor of two books, and
holds six U.S. patents. He currently serves on the Editorial Board of the ACM Transactions on
Sensor Networks (2004-).

Dr. Moura is a Corresponding Member of the Academy of Sciences of Portugal (Section
of Sciences). He was awarded the 2003 IEEE Signal Processing Society Meritorious Service

Award and the IEEE Millennium Medal. He has served the IEEE in several positions, including Vice-President for Publications
for the IEEE Signal Processing Society (SPS) (2000–2002), Chair of the IEEE TAB Transactions Committee (2002–2003),
Editor-in-Chief for the IEEE TRANSACTIONS ON SIGNAL PROCESSING (1975–1999), and Interim Editor-in-Chief for the IEEE
SIGNAL PROCESSING LETTERS (December 2001–May 2002). He currently serves on the Editorial Boards of the PROCEEDINGS

OF THE IEEE (2000-) and the IEEE Signal Processing Magazine (2003-).

Markus Püschel received the Diploma (M.Sc.) degree in mathematics and the Ph.D. degree
in computer science from the University of Karlsruhe, Karlsruhe, Germany, in 1995 and 1998,
respectively.

From 1998 to 1999, he was a Postdoctoral Researcher in the Department of Mathematics
and Computer Science, Drexel University, Philadelphia, PA. Since 2000, he has held a Re-
search Faculty position in the Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA. He was a Guest Editor of the Journal of Symbolic Com-
putation. His research interests include scientific computing, compilers, applied mathematics
and algebra, and signal processing theory/software/hardware. More details can be found at
http://www.ece.cmu.edu/~pueschel.

Dr. Püschel is on the Editorial Board of the IEEE SIGNAL PROCESSING LETTERS and was a
guest editor of the PROCEEDINGS OF THE IEEE.

214 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

David Padua (Fellow, IEEE) received the Ph.D. degree in computer science from University
of Illinois, Urbana-Champaign, in 1980.

He is a Professor of Computer science at the University of Illinois, Urbana-Champaign,
where he has been a faculty member since 1985. At Illinois, he has been Associate Director of
the Center for Supercomputing Research and Development, a member of the Science Steering
Committee of the Center for Simulation of Advanced Rockets, Vice-Chair of the College of
Engineering Executive Committee, and a member of the Campus Research Board. His areas
of interest include compilers, machine organization, and parallel computing. He has published
more than 130 papers in those areas. He has served as Editor-in-Chief of the International
Journal of Parallel Programming (IJPP). He is a Member of the Editorial Boards of the Journal
of Parallel and Distributed Computing and IJPP.

Prof. Padua has served as a Program Committee Member, Program Chair, or General Chair
for more than 40 conferences and workshops. He served on the Editorial Board of the IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. He is currently Steering Committee Chair of ACM SIGPLAN’s
Principles and Practice of Parallel Programming.

Jack Dongarra (Fellow, IEEE) received the B.S. degree in mathematics from Chicago State
University, Chicago, IL, in 1972, the M.S. degree in computer science from the Illinois Insti-
tute of Technology, Chicago, in 1973, and the Ph.D. degree in applied mathematics from the
University of New Mexico, Albuquerque, in 1980.

He worked at the Argonne National Laboratory until 1989, becoming a Senior Scientist.
He is currently a University Distinguished Professor of Computer Science, Computer Science
Department, University of Tennessee, Knoxville. He also has the position of Distinguished
Research Staff member in the Computer Science and Mathematics Division at Oak Ridge Na-
tional Laboratory (ORNL), Oak Ridge, TN, and is an Adjunct Professor, Computer Science
Department, Rice University, Houston, TX.

He specializes in numerical algorithms in linear algebra, parallel computing, the use of ad-
vanced computer architectures, programming methodology, and tools for parallel computers.
His research includes the development, testing and documentation of high quality mathemat-

ical software. He has contributed to the design and implementation of the following open-source software packages and systems:
EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS, and PAPI. He has
published approximately 200 articles, papers, reports and technical memorandums, and he is coauthor of several books.

Prof. Dongarra is a Fellow of the American Association for the Advancement of Science (AAAS) and the Association for
Computing Machinery (ACM) and a Member of the National Academy of Engineering.

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005 215

	toc
	Special Issue on Program Generation, Optimization, and Platform
	Department of Electrical and
	Department of Electrical and
	3318 Digital Computer Laboratory
	Computer Science Department

