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ABSTRACT

In order to achieve good quality very low bit rate video
coding, new techniques leading to highly compact re-
presentations for video sequences must be investigated.
We present a novel video codec framework, where video
sequences are represented in terms of stochastic non-
parametric 3-D object models and motion script esti-
mates. Multi-property object models, carrying both
shape and color information, are incrementally built
from video and range sequences. Motion estimates are
obtained by depth map registration. We refer to this
framework as 3-D Video Compositing, or 3DVC for
short. In this paper, we will describe 3DVC in de-
tail, and present experimental results where interframe
compression ratios in the range of 102 to 10® have been
achieved.

. Keywords: Video sequence representation, Model
based coding, VLBR video coding, non-parametric 3-D
object modeling, range and image sequence processing.

1. INTRODUCTION

Digital video handling entails dealing with massive amo-
unts of data. Without compression, a bandwidth of
more than 9 Mbit/s is required to deliver color stamp-
sized QCIF images at 30 frames per second. For NTSC
quality video, the bandwith requirements increase to
more than 160 Mbit/s. Cost effective video transmis-
sion over low cost 8 to 64 Kbit/s channels demand cod-
ing techniques capable of producing compression ratios
in the range of 103 to 10 [1].

Techniques for VLBR video coding can be classified
into two major groups: waveform based coding and
model based coding. In waveform based coding, the
video sequence is considered a multidimensional signal,
while in model based coding the images that compose
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the video sequence are seen as 2-D projections of a 3-D
scene [2].

In this paper, we present 3DVC — a model based
video coding technique that relies on incremental sto-
chastic non-parametric 3-D object modeling.

During encoding, 3-D stochastic object models are
incrementally built without user interference. This is
accomplished by the integration of depth and intensity
information in a Bayesian framework. Redundant in-
formation is used to reduce model entropy, before being
discarded by the transmitting end.

Motion is estimated by depth map registration, and
is sequentially stored in a motion script for the given
object. The final set of constructed object models and
motion scripts provides a compact representation for
the original video sequence.

To reconstruct each video frame at the receiving
end, the 3-D scene is recreated by positioning the con-
structed 3-D object models in space according to the
corresponding motion scripts. The 2-D frames are then
reconstructed by a first opacity raycasting volume ren-
derer.

To be able to recreate each frame at the receiving
end, 3DVC requires the transmission of object model
updates and current motion estimates. As frames are
processed and model entropy converges, fewer model
updates are transmitted per frame. If motion ceases,
no data transmission is required. The variable bit rate
characteristic of 3DVC can be explored in packet video
based on ATM networks [3].

The stochastic nature of the object models enables
robust operation when dealing with inconsistent and
noisy measurements. It also enables 3DVC to support
both active exploration and passive integration of sen-
sory data. Model entropy is used to guide explora,tlon
if active sensors are available.

The non-parametric 3DVC object models are com-
pact uniform tessellations I' = {C;} of a 3-D space,
where each cell C; represents multiple properties in a
probabilistic way.



This non-parametric volumetric description is suit-
able for model based coding because free-formed ob-
jects are supported with selectable spatial resolution,
frame rendering performance is independent of object
and scene complexity, and the parallel nature of ray-
casting algorithms can be explored [?].

Besides being compact, 3DVC enables content ba-
sed video handling and editing. Distinct video sequen-
ces can be created at the receiving end by altering the
motion scripts and/or object models generated at the
transmitting end. Variable focus of attention, cast se-
lection, content based search, and insertion/deletion of
virtual and real entities are some of the explorable fea-
tures of 3DVC. These issues are explored elsewhere.

In this paper, we present the 3DVC framework and
demonstrate its suitability for VLBR model based cod-
ing. In Section 2, we present the 3DVC codec frame-
work in detail. In Section 3, the experimental results
that illustrate the framework potential for VLBR, com-
pression are shown. Section 4 concludes the paper.

2. 3DVC FRAMEWORK

2.1. Object Model Structure

A 3DVC object model I' = {C;} is a uniform tessella-
tion of a compact volume. Each cell C; of this 3-D reg-
ular grid has multiple properties, as occupancy O(C;)
and color T(C;). The properties may assume discrete
values from a finite set, i.e., O(C;) € {occupied, empty}.
Each cell C; holds a probability distribution function
for every property. For instance, the function p(O(C;))
is stored for occupancy.

Holding distributions instead of current estimates is
what makes I' a useful representation for integration of
multiple measurements. Initial lack of knowledge is ex-
pressed by assigning equiprobable probability density
functions to all properties.

Earlier work on sensor fusion for robot navigation
and object modeling for robotic manipulation have suc-
cessfully explored this stochastic model structure [5].

2.2. Motion Estimation

We perform motion estimation by depth map registra-
tion using a variant of the ICP algorithm capable of
dealing with incomplete models [6]. The depth mea-
surement associated with the k** frame is registered
with respect to the model I' being built, and an object
position and orientation estimate ¢ is obtained.

For the first frame, the model T holds no informa-
tion to allow registration. For this frame the current
object position and orientation is assumed to be the
canonical position ¢g.
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2.3. Incremental Object Model Construction

The integration of a set of multiple measurements Ry =
{ro,71,...,7} into a single model T'y can be treated
as the classical random parameter estimation problem
in a Bayesian framework. If we select a uniform cost
function, the optimal estimator for a given property z
accessible through the measurements Ry is the MAP
estimator 2 [7]. We introduce the notation:

p(z|Re)
arg max p(z)

1)
@)

where p(z|Ry) is the the conditional probability distri-
bution of the property z given the set of measurements
Ry.

Considering that the measurements Ry, are inde-
pendent, and applying Bayes’ theorem, the incremental
update rule follows:

p(2)k
2

P(re41|2)p(2)e
p(Tk41)

P(k+1 = (3)
The conditional probability distribution p(r|z) of the
observation r given property z, is known as sensor
model. It is specified by prior knowledge and assump-
tions regarding the sensors. The estimate % is com-
puted by equation (2), and is recursively updated in
time through (3). X

We consider the estimation of shape O(C;) from a
sequence of depth measurements Ry. Occupancy O(C;)
is a property that is not directly measurable, but can
be estimated by:

O(C;) = argmax P(O(C;)|r) 4)
P = HIZEPTEE) )
p(rlO(Cy)) = > p(rl0(C),G)P(G) (6)

Ge{G(Ci)}
p(rlG) = p(rlzmin) (7)

In equations (4-7), we assume that the set of measure-
ments Ry correspond to the same physical property,
taken with respect to the same reference, and by the
same device.

If distinct sensors are available, we generalize equa-
tions (4-7) to include the corresponding sensor models
p*(r|z). If measurements are taken with respect to
distinct references, we pre-process and transform the
measurements and the sensor model to a canonical ref-
erence before integration. It is important to notice that
the subset of cells of I'x-; that are affected during the
integration of measurement r; depend both on the sen-
sor model p(r|z) and on the reference system used while



measuring rr. This is the case when there is relative
motion between object and sensor. The transformation
required to have the current measurement and sensor
model refer to a canonical reference is obtained from
the canonical and k** frame position and orientation
estimates ¢p and gx [6].

3. EXPERIMENT

We produced a synthetic video and range sequence of
150 frames, 100 x 100 pixels per frame, 8 bits per pixel.
The scene is composed of a single rigid object perform-
ing 6DOF 3-D motion in front of a static background.
In Figs. 1 and 2 sample frames from the described input
range and video sequences are shown.

Fig. 1: Samples from input video sequence.

Fig. 2: Samples from input range data sequence.

In this experiment, the depth sensor is considered
ideal, segmentation is obtained by thresholding depth
information, and the object position and orientation ¢
is known for all frames. Using these assumptions, the
stochastic model I'y is then incrementally built accord-
ing to Section 2.3.

In order to provide means for visual inspection of
the constructed 3-D object model, we create a visual
representation in terms of constructive solid geometry
(CSG) primitives. For each cell C; of the tessellation T,
we create a small sphere positioned in 3-D space accord-
ing to the position of the cell, with radius proportional
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to the occupancy probability P(O(C;) = occupied). In
Fig. 3, several rendered views of the CSG represen-
tation of the 3-D model are presented for two distinct
time instants 'y and T';59. In Fig. 3(a), two frames have
been processed. Eventhough the model T's is clearly
incomplete, it is sufficient for the reconstruction of the
2 frames already processed. In Fig. 3(b), 150 frames
have been processed achieving a higher level of model
completeness.

(b)

Fig. 3: Views of 3-D object model in distinct time
instants (a) 'z and (b) T'150.

3DVC provides a compact representation for video.
For each frame, 3DVC requires the transmission of ob-
ject pose and model updates. The transmission of a
6DOF pose estimate, without source coding, requires
24 bytes. Each occupied cell C; requires 4 bytes to
carry position and color information. The total amount
of data required by 3DVC is given by equation (8).
Compression ratio is evaluated through equation (10).

(8)
)

4M + 24F,,
100*F

Sspve
Sraw



Sapvc
Sraw

In equations (8-10), M is the number of occupied cells
in the object model, F,, is the number of frames re-
quiring transmission of motion updates, and F' is the
number of frames in the sequence.

The worst case scenario for compression is when
pose estimates are required for all frames and a com-
plete model is required due to complex motion pat-
terns. This case is represented in this experiment by
model I'159, which has M = 3962 occupied cells, and by
setting Fy, = F. This leads to Csport = 1 : 77 for a se-
quence of 5 seconds, and Ciong = 1 : 304 for a sequence
of 1 minute.

In a more realistic scenario, pose estimates are re-
quired for a fraction of the frames, and an incomplete
model suffices. We assume that 30% of the frames re-
quire pose estimates, i.e. Fp, = 3F/10, and that the
incomplete model Ty, with M = 1056 occupied cells
suffices. The compression ratios obtained are Csport =
1: 277 for a sequence of 5 seconds, and Ciong = 1: 967
for a longer 1 minute sequence.

It is important to notice that these compression ra-
tios are achieved without further source coding, and
refer mainly to interframe coding. Additional compres-
sion results by intraframe coding, e.g. transform based
coding, or by choosing a tessellation I' with lower spa-
tial resolution.

c

(10)

Fig. 4: Samples from reconstructed range sequence.

3DVC provides selectable compression rate and recon-
struction quality. The number of cells in T' per unit
of volume defines the spatial resolution of the object
model. High resolution models provide high quality
reconstruction, but the size of the model M is large.
Theoretically, lossless compression is achievable. Low-
ering the model’s resolution leads to higher compres-
sion, but it also introduces subsampling artifacts on
the reconstructed frames.

Figure 4 presents six samples from the reconstructed
range sequence. We can see that even after three or-
ders of magnitude compression, the frames in Fig. 4 are
a very good reproduction of the original presented in
Fig. 2, with practically no noticeable artifacts.
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4. SUMMARY

We introduced 3DVC - a video codec technique that
provides a compact representation for video sequences.
By representing video sequences with perceptually sig-
nificant 3-D elementary building blocks, constructed
object models and motion scripts, 3DVC furnishes ad-
ditional functionality to video handling and eliminates
interframe redundancy.

In the experiment described, we showed that the
interframe compression ratio grows linearly with video
sequence length, and also depends on the complexity of
scene dynamics. High quality results with interframe
compression ratios in the range of 100 to 1000 have
been achieved in the absence of further applicable in-
traframe coding. This illustrates the compactness of
3DVC, and its potential applications to VLBR video
coding.
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