STOCHASTIC ACTIVE CONTOUR FOR CARDIAC MR IMAGE SEGMENTATION
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ABSTRACT

We develop an energy based automatic image segmentation algo-
rithm using a novel active contour scheme. The algorithm over-
comes some unigue challenges arising in cardiac MR images. Two
features are particularly relevant. The first is that it uses region-
based information captured by a stochastic model. As a result, our
method is robust to assumed initial conditions and can be applied
to a large range of images, particularly when the contrast is low.
The second feature is the incorporation of prior knowledge on the
shape of the organ to be segmented. For cardiac image segmenta-
tion, it is sufficient to assume that the shape resembles an ellipse.

1. INTRODUCTION

To quantitatively analyze the dynamic function of the heart, it
is necessary to segment various parts of the heart chambers in a
magnetic resonance {MR) image sequence. In clinical stdies, the
segmentation task, particularly delineating the epicardium and the
left and right ventricular endocardia, is often performed manually,
which is time consuming and highly subjective. As a result, the
analysis has been limited to only short time sequences per cardiac
¢cycle. To help expedite the process and facilitate the analysis of
more comprehensive MR data sets, an automatic and more quanti-
tative approach for analyzing cardiac MR sequence data is desired.

Most of the current active contour methods [1, 2, 3, 41 for med-
ical image segmentation are edge-based, which is very sensitive to
noise and initialization. If the initial contour is not close enough
to the true boundary of the object, the contour may not evolve or
may be trapped at spurious edge points. To overcome these prob-
lems, often, 4 constant external force is added [2, 5]. However,
this leads to another difficulty — the leaking of the evolving con-
tour where the edges of the organ’s boundary are weaker than the
added force, which is often the case in cardiac MR images.

To provide robustness to initial condition without adding a
constant external force, we propose an active contour scheme, which
we refer to as stochastic active contour. The algorithm includes an
additional force that accounts for region-based information mod-
eled under a stochastic assumption. Other active contour methods
that also utilize the region-based information are {6, 7, 8].

2. STOCHASTIC ACTIVE CONTOUR

Our goal is to segment a homogeneous object (the left or right ven-
tricular cavity of the heart) from the background (the chest wall or
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other anatomy) in a cardiac MR image. First, we model the im-
age as a sample from a random field. This stochastic model can
be applied to a large range of images, particularly when the con-
trast between distinct regions is difficult to distinguish by human
eyes, and other methods may fail. Second, we develop a new ac-
tive contour scheme that utilizes the stochastic region-based infor-
mation in addition to the ¢dge information of the image. While
the region-based information is obtained directly from the original
image assuming the stochastic model, the edge information comes
from the edge map of the image. The region-based information
provides forces on the contour front where the edge information is
missing or when the contour front encounters spurious edges. Asa
result, our method is robust to noise and to the initial condition of
the contour. n addition, since our algorithm does not include any
constant image-independent force, the problem of contour leakage
does not occur. Third, we incorporate the prior knowledge about
the shape of the object into the segmentation scheme to overcome
the problem with the papillary muscle, which frequently appears
in cardiac MR images. Finally, we implement the algorithm using
the level set method [9].

Given an image, our goal is to develop a method that auto-
matically finds a contour C that separates the pixels of the image
into two groups: the object (the heart) and the background. The
method is motivated by the following:

1. Model matching: We assume that the pixel intensity of the
abject and the background follows different stochastic mod-
els: for pixels belonging to the heart, their corresponding in-
tenisities are modeled by the stochastic model M ; for pixels
belonging to the background, the corresponding intensity val-
ues are described by the stochastic model Ma.

2. Edge information: The contour should capture any nearby
salient edges present in the image.

3. Prior knowledge about the shape of the heart: The heart
has a nominal contour. We choose to describe it by a generic
shape Cyy (@) parameterized by the parameter vector
8 =106, .., Gn]T. The values of these parameters 8;
may determine the detailed size and shape of the object.

4. Smoothness of the contour: The contour of the segmented
heart should be smeoth, not jagged or too noisy.

We translate these four requirements into an objective functional
J{CY with four terms

J(C) = M (C) + Aa(C) + Aad3(C) + Ad{C), (1)

where J; (C), incorporating the model matching requirement, is
calied the region-based term; J2(C) is an edge-based term; J5(C)
incorporates the prior knowledge on the shape of the contour; J4(C)
is the contour smoothing term; and A1, Az, Ag, and A4 are parame-
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ters that control the relative strength of Jy, J2, Ja, and Jy, respec-
tively.

Comparing the functional (1) to the classical snake algorithm,
the first two terms, Ji (C) and J2(C), are equivalent to the external
energy and the last two terms, J3(C) and J4(C), are the internal
energy because they control the regularity of the contour. The first
and the third terms, J,(C) and J4{C}, are usually absent in the
work reported in the literature.

2.1, Model Matching Term

The goal is to segment the domain Q2 of a given image into two

“homogeneous” regions separated by the contour C. The region .

inside the contour, £2,, represents the object region. The region
outside the contour, 22, corresponds to the background region. A
homogeneous region is a region whose intensity is well described

by the same statistical model, or equivalently, the same probabil-

ity distribution. We consider two stochastic models: the model
M describes the statistics of the object and the model Mz rep-
resents the statistics of the background. We partition the image

pixels {{i,7) € Q} into two groups separated by the contour .

If the pixels belong to the object, then the corresponding random
variables {ui;} should be described by the statistical model A;.

On the other hand. if the pixels belong to the background, the cor- .

responding random variables {w.; } are described by the statistical
mode! Ma.
Suppose that the image domain 2 is initially segmented into

two regions by a contour Cl, the region inside Co called €21 and .

the region outside Cy called Qs. Let ui{Co) be the vector form
of the intensity of the image pixels residing within the contour Co

and u2{Cyp) the vector form of the intensity of the image pixels'

that lie outside Ch.
Given uy (Co) and uz(Cs), we update the contour Cy to max-
imize the probability that u; and uy are samples drawn from the

object model M and the background model Ada, respectively. .

To achieve this, we change the contour Cy to 1, thereby mov-.

ing some pixels from Q1 to {22 and vice-versa. It is reasonable to
control this updating of Cy to C, by attempting to maximize the
following functional

Jo{C) = Pr{{wi(C)|Ma} and {ua(C)|Ma}} .

Equation (2) represents the probability that all the pixels inside the
contour C' are generated from the object model Ay and all the
pixels outside the contour ' are generated from the background
mode! M3. If the two events are independent, we have ’

Jo(€) = Pri{ui(CHM,} - Pr{ua(C)| Mz} . 3)
Let p; and py be the probability density functions (pdf’s) of the
models My and M2, respectively. Then, it can be shown that
equation (3) is equivalentiy rewritten as !

Jo(C) = p1(wi(C))  Pa(ua(C)), @
Taking the negative log, equation (4) becomes ‘
JUC) = ~lIn{p: (m(C))) +1n(pz (uz(CY)], ()

and maximizing Jo(C) in equation (4) becomes minimizing J,{C)
in equation {5).

@

If we assume further that ali pixels {u;;} within each region
are independent, then

(= [ muy), k=12  ©
(3,5)€ 82
and equation (5) becomes
IOy == | 3 In(@i{uiy) + Y n(p2(ui)) )]

(4,5)€50 (i.5)€80

Using level sets [9], C is embedded as the zero level of the level
set function ¢ and equation (7} becomes

2@ = = [ [ (oo ) Moot )
1 (2 (1l ) {1 — Halz, ) | dody,  (8)
where
He(p) = % [1 + %arctan (%)] , )

is the regularized Heaviside function representing the pixels within
the contour, and 1 — H. (¢(x, »)} is the function representing the
pixels outside the contour and the integral is taken over the entire
domain £2 of the image. This is the generic form of the main func-
tion we want to minimize, and p; and ps are the assumed pdf’s of
the object and background models, respectively.

If we assume both the object and the background to be Gaus-
sian with means m and ma, and variances o3 and o3, respec-
tively, then equation (8) becomes

51 = [ [(merety+ LR 0 o0,
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+ (3 In(2nod) + CE2m% ) (1 - 2, (4(2,1)))| dedy.(10)

2.2. Edge-based Term

Our second objective is for the contour to capture the nearby salient
edges present in the give image ¢ (z, y). Therefore, we want to

1(C) = fc Vu(C(s))? ds,

where Vu is the gradient of the given image u(x,y). Let the reg-
ularized delta function,

(In

d
Se i 3 1
5(6) = M. (9) (12)
represents the pixels on the contour €. We can express (11) in
terms of the level set function ¢ as

1a(g) = [ Vule, y)P5 (3, 1) dedy.  (13)

2.3. Prior Knowledge Term

Most current active contour methods [1, 4, 5, 6, 7, 8] only attempt
to smooth the curve; they do not impose a particular shape omto
the contour. In our application, however, we know that the my-
ocardium part of the heart that we desire to segment resembles an
ellipse shape. Therefore, we can exploit this fact and regulate the
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shape of the contour not just to be smooth but also to resemble the
shape of an ellipse. In this section, we explain how to incorpo-
rate the elliptical shape condition into our active contour. We note
that the ellipse shape is a crude model. We can possibly use more
detailed models for the contour of the myocardium.

An ellipse can be described by a conic equation

am2+bzy+cy2+dz+ey+f=0, (14)

under the constraint

tae — b > 0. (15)
If we collect the ellipse parameters into the vector
B=[c b ¢ d e f]¥ andletthe variable vector
v=[z> ay y* 2 y 1]7,wecanwrite the ellipse equation
compactly as

8Tv =0, (16)
under the constraint
97K >0, (17
where
0 0 2 0 0 G
9 -1 0 0 0 O
2 0 0 0 0 O
K=lqa 0 0000 (18)
0 0 0 0 0 O
¢ 0 0 0 ¢ O

Furthermore, define the ellipse distance function to be
D(z,y) = aa’ +bay + oy’ +du-tey+ f, (19

such that the ellipse constraint (15) holds. This function gives the
distance from any arbitrary point {z,y)} in the ellipse plane to the
ellipse parameterized by & [10].

Forcing the shape of the evolving contour C to resemble the
ellipse contour C'x (8),

Ca(6) = {(e.9): 67v=0 amd 6"K8>0}, (0)

is captured by minimizing the squared distance to the ellipse con-
tour Cr (8) of the pixels on the contour C. In other words, we
minimize
H(©) = [ D) *ds. ay
(&

With the level set method, since 8, (¢) represents the pixels on the
contour C, equation {21) becomes

Ty(4) = f D(x,4)| 6.z, ))dlzdy.  (22)

2.4. Contour Smoothing Term

The last desired goal for our method is that the contour of the seg-
mented heart must be smooth, or not 1oo noisy. To achieve this, we
minimize the total Euclidean arc length of the contour C' [6, 9, 11],

J(C) = fc ds, o3

where ds represents the Euclidean arc length of the contour &, If
we minimize J;(C) alone, the contour C' will evolve to become
a circle and eventually disappear. However, when we simultane-
ously minimize .J5(C') along with the other terms in equation (1),
the effect of the J4(C) teom will be o force the contour 1o be

smooth. Equation (23) can be rewritien in terms of the fevel set
function as

i

) f | VH. (¢, )| drdy (24)

i

]n 5o, )|V iz, )| dedy.

3. EVOLUTION OF THE CONTOUR

We evolve the level set function ¢, thus the contour C, so that it
minimizes the functional (1). Applying the Calculus of Variation,
the function ¢ that minimizes J{¢) in equation (1) must satisfy the
Euler-Lagrange equation

(’H. - m1)2

0 = Al[%ln(vaf)+ 57 ]&(qﬁ)

At [% In (2me3) + 5"—%5&)—] 5.(¢)

+22 [Vu(z, y)|” 6.(¢)
+)‘3 " ,‘D(E: y)|2 55 ((]5(2.', y))

div [ YO
A d:v(lv d)l)as(as), 25)

where &, (p) is the derivative of 8, (¢) with respect to ¢.

We solve for ¢ in equation (25) by first letiing ¢ be a func-
tion of time and replace the zero on the left hand side of (25) by
the time derivative of ¢, then iterating it to convergence using the
gradient descent method. The algorithm includes an adaptive an-
nealing schedule on the parameter Az. Details are omitted due to
lack of space.

4. RESULTS

{a) {b)
Fig. 1. Object ~ A(0, 4), background ~ A0, 25).

To demonstrate the effect of the model matching term, we are
to segment an image whose object and background are difficult to
distinguish by human eyes. such as the one in Fig. . The texture
of the object, resembling a whistle with a hole in it, is normally
distributed with zero mean and variance 4. The background pixels
are normally distributed with the same mean but different variance
at 25. The initial contour, the dashed line, is an ellipse at the center
of the image. The result of the Chan and Vese algorithm [6], as
seen in Fig. 1{a), fails to segment the object, i.., the final contour
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stays the same as the initial contour. The result of our stochastic
active contour algorithm in Fig. 1(b), however, shows that the final
contour converges to the true boundaries of the object.

Fig. 2(a), (b), and (c) show the successful segmentation results
of a heart in an MR image using the snake algorithm {4], the Chan
and Vese active contour algorithm [6], and our stochastic active
contour algorithm, respectively. The initial contours are in dashed

lines and the final contours are in solid lines. We can see that the -

lower part of the contour in the snake algorithm fails to capture
the left ventricular endocardium. It evolved out to the edges of the
epicardium instead. This is because the edge information at the
bottom part of the left ventricular endocardium is too weak. The
result in Fig. 2(b) with the Chan and Vese algorithm can delin-
eate the whole boundary of the left ventricular endocardium, but
fails to separate the papillary muscles out of the left ventricle, as
desired. The result when applying cur stechastic active contour -
algorithm in Fig. 2(c), however, solves the papillary muscle prob-
lem and correctly segments both cavities and the heart from the .
chest wall because we impose the condition about the shape of the
contours to resemble an ellipse. '
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(a) Snuke algorithm.

£r .. -
(b) Chan and Vese active contour algorithm

(c) Stochatic active contour algorithm

Fig. 2. Segmentation results of a cardiac MR image using different
algorithms.
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