EFFICIENT 2D SHAPE ORIENTATION

Vietor H. S. Ha

Samsung Electronics
Mobile Solution Lab
Digital Media R&D Center
Suwon, Korea
victor.ha@samsung.com

ABSTRACT

1n this paper, we study the reorientation of 2D shapes. We
describe an algorthm that removes orientational ambiguity
from arbitrarily oriented 21> shapes. The algorithm is ro-
bust to error int pixel locations as well as in the presence of
occluded or added pixels. After reorientation, the resulting
shape is in a normalized oriemation and can then be used
effectively in post-processing stages of such applications as
pattern detection, recognition, and registration. The algo-
rithm combines a new measure of shape orientation, the
variable-size window orientation indicator index (A-OI1),
and the point-based reorientation algorithm (PRA) that we
presented before. We test the new algerithm against an ex-
tensive database of complex 21D shapes.

1. INTRODUCTION

Determining the orientation of 2D shapes is an important
research topic. In application areas such as automatic target
detection, recognition, and registration, it is essential that
the patterns extracted from the image be brought consis-
tently to the same orientation before any further processing
can begin. Yet, the existing techniques do not provide an
efficient and complete solution to the problem of 2D shape
orientation. Existing methods solve the problem only for
certain shapes while failing with others or they require ex-
tensive computational etfort. We briefly describe the limi-
tations of these methods below and contrast them with the
new algorithm that we propose in this paper.

Review of the Literature The ptincipal axis of a shape is
the axis of the least moment of inertia [1]. It is defined as
the straight line through the origin that makes an angle @
with the z—axis where # is computed from the second or-
der central moments of the shape. The principal axis cannot
be used for cenain shapes: for example, it is noted in [2]
that the principal axis fails with shapes that are rotation-
ally symmetric. Other techniques extending the principal
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axis approach include the generalized principal axis [2} and
the fold principal axis {3]. These techniques are applicable
only to rotationally symmetric shapes (RSS) when the fold
number of the shape is known a prieri. Techniques such as
shape matrices [4], mirror-symmetry axes [3], shape spc-
cific points [6], fold-invariant shape-specific points |7}, and
modified Fourier descriptor [8], are short of being universal.
That is, either they work only with certain classes of shapes
(e.g., RSS, non-RSS, non-mirror symmetric) or fail with
certain shapes [9], such as for example the shapes in Fig-
ure 1. The Shen-Ip symmetries detector | 10] is concerned
with the problem of detecting the reflectional and rotational
symmetry axes ol a shape. The algorithmn requires the com-
putation of all orders of the shape’s generalized complex
{GC) moments, not just a finite number of them. A prac-
tical implementation of this algorithm attempts to find at
least three non-zero GC moments by computing up to 30t
order GC moments of the shape, which is still inadequate
for some of the shapes tested in their experiments.

PRA-A-OII In {11}, we presented the point-based reori-
entation algorithm (PRA) to remove the orientational am-
biguity of 2D shapes. The PRA determines the fold num-
ber of the shape and removes both the rotational and reflec-
tional ambiguities. The algerithm is efficient with compu-
tational complexity (N log N}, where N is the numbet of
feature points in the shape. In practice, however, the ex-
act locations of the feature points may be measured inac-
curately due to the finite resolution of the input device and
due to background noise. The PRA may be sensitive to such
disturbances. To improve the robustness of the PRA to er-
ror and noise, we introduce here a moment-based measure
of the orientation, referred to as the variable-size window
orientation indicator index (A-OII). This measure is com-
puted rom the 3*-order central moments of the shape and
improves the orientation indicator index (OII) that we intro-
duced in[12]. The coupled PRA-A-OI1 algorithm is robust
to errors, such as round-off errors in pixel locations or miss-
ingfadded feature points as shown by testing the algorithm
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against 200 complex 2D shapes from the database [10].
Qutline of the paper Scction 2 introduces the variable-size
window OIl {A-CIl), illustrating it with several difficult
shapes from the database. Section 3 combines the A-OIl
with the PRA into a robust algorithm for shape orientation
and demonstrates its good performance with several cxam-
ples. Section 4 summarizes the paper.

2. VARIABLE-SIZE WINDOW OII (A-OIl)

This section defines the variable-size window orientation in-
dicator index (A—OIT) that monitors the orientation of 2D
shapes. We verify the properties of the A-OIT with the
shapes in Figure 1 that other methods have failed to work
with. Although not presented here due 1o lack of space, we
have successfully tested the A-OII against 200 symmetric
and non-symmeiric shapes provided by the database [10].
The shape is assumed to be centered with respect to its
center of mass. The A-QIl is defined from the third or-

der central moments of the centered shape, hut computed -

from the portion of the shape falling within a '-"’l—window
where A = 4k for a positive integer k. The =T-window
is the region W of the coordinate plane enclosed between
the positive x-axis and the straight line through the origin
that makes the anple 22 <L rads with the x—axis. This is the
window that contains all points (x,%) where = > 0 and
y < ztan(3F). For example, the F-window is the first
quadrant of the coordinate plane.

The A-OII of the shape X consisting of N feature points
is defined as

A-Ollx = /rd+pg
e = Zai and gy, = Zyi

kew kEW
W = {(zx, ) € X,Vag, g € Z~Window}

The third order central moments tx and p, as computed
for the A—QIT do not vanish (except for the trivial shape
of a single point at the origin). This is because every 3T
window i located within the first quadrant of the coordinate
plane where ihe coordinate values of the points (. ) are
greater than zero. Moreover, whenever the shape rotates
by an angle &, the A-OIll is computed from the different
portion of the shape that currently falls within the window.
The A-QII plot is therefore generated by plotting the value
of A-OII at each position rotated by an angle ¢ = [0, 2xl.
We now list properties of the A-QIL

Property 11f a shape is r-fold rotational symmetric, we can
find a A such that the A-OII plot is periodic it the rotation
angle § with the peried T’ = 27 /r.

Property 2 If the A-OII plot of a shape is periodic with
T = 2x/k, the shape is r-fold rotational symmetric where
1<r<k

Property 3 If a shape is a circle or a union of rings, its A—
OII plot is flat at a constant K > 0 over the entire rotation
range 8 = [0,2x].

Property 4 The rotation of a shape circularly shifts its A-
Ol plot while the reflection of a shape reverses its A-Oll
plot.

These properties are easily verified and readers are re-
ferred to [13] for details. The next paragraph illustrates
the above propertics of the A—OI1I plot by testing the index
against the two hundred complex 2D shapes in [10].

We show below cach of the shapes in Figure | with the
corresponding A-Olf plot. As discussed before, many ex-
isting methods fail with with shapes. We easily observe that
the A-OII plots of these shapes rellect the rotational sym-
metry of the shape through their periodicity, Le., the fold
number of the shape equals the periodicity of the plot as
stated in Property 1.

Y]

(d) Shape 4

(2) Shape 1 (b} Shapc 2

%O

(e) Shape 5 (f) Shape 6 (g) Shape 7 {h) Shape 8

Fig. 1. Difficult Shapes and their A-OII Plotg

We used A = /2 for all shapes in Figures 1, except for
Shape 1 in Figure 1 (a) for which we used the w/4-window.
We have also computed the A-OIT for about 200 symmet-
ric and non-symmetric shapes from the database [10]. The
A—OII plots using the /2-window (i.e., the first guadrant)
exhibit the correct periodicity representing the fold number
of the shape for all but nine of these shapes. The A-OII
plots using the 7/4-window resolved the problems with the
/2-window for these nine shapes.

We also consider the robustness of the A-Oll to errors,
such as round-off errors in the coordinate values of the pixel
points, missing or erroneously added pixel points. We illus-
trate this with the shape of the airplane shown in Figure 2 (a)
defined by 1208 feature points and its A-OII plot shown in
Figure 2 (b). We randomly add erroneous pixel points to
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(a) Airplane Shape

(c) 242 Added Points (20%) (d) A-OT1 of (c)

Fig. 2. Robustness to Error

this shape. Figure 2 (c) shows the resulting shape when 242
erroneous points are randomly added. This is 20 % of the
total number of points in the original shape. Figure 2 (d)
shows that the corresponding A-OIT plot is essentially un-
affected. The A~OII plot is still fairly unaffected even when
the shape is corrupted by up to 50 % additional pixel peints.
More importantly, this distortion has little impact on the lo-
cation of the peak of the A-OIl plot, which is the significant
feature needed to orient the shape.

3. SHAPE ORIENTATION: PRA-A-OII

We present an algorithm for shape orientation using the A—
Ol and the PRA. Readers are referred to {11, 13} for details
on the PRA. The basic idea for the combined algorithm is
as follows. Since the A-OII plot is a function of the rota-
tion angle 9 over the full range & = [0,2n), if we locate
a unique peak point of the plot and crient (i.e., rotate and
retlect) the shape until this unique point is brought to the
origin at & = 0, the shape is uniquely normalized in its ori-
entation. To achieve this, we first determine the fold number
of the shape from its A—-OII plot. Then, we select one period
of the plot and denote this partial A-OIlI plot as L. Next, we
apply the PRA to L to find the unique peak in L; the PRA
requires that we compare the right-side and left-side neigh-
bors of the maxima in L to locate the unique peak. Once this
unique peak is found, we perform an appropriate rotation
and reflection to bring the shape to its unigque orientation.

Lemma 1 The periodicity of a O~OI plot Is obtained by
computing the circular autocorrelation of the plot and count-
ing the number of peaks with magninide 1 in the resulting
autocorrelation plot

A A-OII plot with periodicity d is periodic in the rotation
angle @ with period 7" = 2m/d. That is, the plot is indistin-

i)

LB I

(a) A—OII Plot of Shape 1 {(b) Circular Autocorrelation

(¢) One period of A-OIT (d) Reoriented Shape 1

Fig. 3. Exampie: orienting Shape |

guishable every time it is circularly shifted by the rotation
6 = 2x/d. This happens d times over the circular shift of
the plot in the computation of the circular autocorrelation,
resulting in d peaks with magnitude 1 in the autocorrelation
plot. For example, consider 2 A-OIl plot with periodic-
ity d = 2 in Figure 3 (a). This is the plot obtained from
Shape 1 in Figure 1 (a) using a w/4-window. Its circular
autocotrelation is shown in Fipure 3 (b). We see that there
are two peaks in the autocorrelation plot with magnitude 1
as expected.

Conjecture 1 The fold number of a shape is determined by
the periodicity of that A-OI plot whose periodicity is un-
changed across the window sizes A = 2w [ 4k and 2w /4(k+
1) for an integer k.

Althongh we have been unable to prove this conjecture yet,
we have verified it for all the 200 shapes in the database [10].
In our experiments, we have observed that the window size
of A = = /4 solves the fold number problemn for every shape
tested. )

Given the A-Oll plot with periodicity d matched to the
fold number of the shape, we designate the fundamental pe-
riod of the plot in the domain 6 € [0, 2x/d] by L. We apply
to L the PRA, see [11], to locate in a unique way a specific
value §* € [0}, 2n /d] that defines the so called reorientation
point, and then rotate and reflect the shape until this unigue
reorientation point is brought to the origin at ¢ = 0. Ap-
plying this for example to Shape 1, we take the first half of
the A-OII plot to be the non-periodic portion L as shown
in Figure 3 (¢). There is a single peak in the list L located at
0 = 3x/16. We also observe that the left-side of this peak
in L has larger values than the right-side of the peak. Ac-
cording to the PRA, this defines the reorientation point. We
thus first rotate the shape by an angle § = —3x/16 and then

1-227



reflect it about the x—axis to arrive at the unigue orientation,
This unigue normalized orientation for Shape 1 is shown in
Figure 3 (d).

The shape reorientation algorithm using the A-OII and
the PRA is as follows. To starl, we first set the counter
f = 1. Then, we carry out the following steps.

Step 1 Given a shape, generate a pair of A-OIl plots us-
ing 27— and ﬁ%;—windows,

Step 2 Compute their periodicities d; and do.

Step 3 If d, = d,, define L as the portion of the OII plot
generated by the FE-window for ¢ = [0,2r/dy]. Other-
wise, set k = k + 1 and go to Step 1.

Step 4 Locate and denote the unique peak in L using the
PRA and denote it as the reorientation point,

Step 5 Rotate and reflect the shape until this unique reori-
entation point is brought to 8 = 0.

4, SUMMARY

The paper presents a novel algorithm to reorient automari-
callv it a unique way arbitrarily oriented 2D shapes. This
is an important problem in pattern recognition, shape de-
tection, automatic target classification, and numerous other
applications, The algorithm described is robust to distor
tions such as errors in pixel location, or missing or extrane-
ous pixcls. The algorithm combines the point reorientation
algorithm (PRA ) described in [} 1] with a moment based ori-
entation indicator index (OII). The Oll is defined for a vari-
able window A. We presented the properties of the A-OQII
and related its periodicity to the r-fold symmmetry of the
shape. The combined PRA-A-OII is shown to reorient in
a unigque way arbitrarily rotated shapes, including difficult
shapes that have caused other exisling algorithms to fail.
We also show through cxamples that the algorithm is ro-
bust to significant shape distortions. In [}, we show that
the reorientation step is onc of four steps in finding what
we term there the infrinsic shape of an object—the shape
of the object that is robust to affine and permutation dis-
tortions. Affine distortions include translation, rotation, re-
flection, and also non-isotropic scaling and shearing. Per-
mutation distortions arise when the actual scanning order is
unknown, which is commonly the case when an object is for
example rotated or translated. When combined with the re-
maining steps in [ 1], the PRA-A-OlI algorithm provides a
robust algorithm to find the infrinsic shape of an arbitrarily
affine-permutation distorted object.
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