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ABSTRACT

In this paper we investigate algorithms to adaptively adjust
the coefficients of memoryless polynomial structures used to
precompensate for the nonlinear amplitude and phase dis-
tortion of the high-power amplifier in a terrestrial digital
television transmitter. The results of the investigation are
twofold. First the phase error is a non-Euclidean measure
of the absolute symbol error. For small inputs, noise caus-
ing a small Euclidean change can create a large phase error.
We compensate for this heuristically by not updating the
predistorter coefficients for small inputs. This thresholding
is shown to decrease the residual error of the phase predis-
torter. Second,the pre-compensation nature of the ampli-
tude correction requires a modification to the traditional
LMS algorithm. This modification will be seen to produce
a smaller residual error than traditional LMS. We demon-
strate the superior performance of our algorithms via simu-
lations based on the measured characteristics of production
high-power amplifiers.

1. INTRODUCTION

In terrestrial transmission the most expensive component in
the transmitter is the high power amplifier (HPA). Since the
HPA’s high cost largely comes from its RF power transis-
tors, the goal is to use as few RF power transistors as possi-
ble to create a given output power. However, using too few
transistors to meet a given design specification causes the
transistors to saturate for larger inputs, creating significant
nonlinear amplitude and phase distortion. The tradeoff is
between the system’s cost and its maximum output power
rating (linear amplification range).

Predistortion, the mapping of the input signal through
an approximation tc the inverse of the HPA’s nonlinear-
ity, has been used for years in analog terrestrial television
transmitters to help reduce the overall system cost. Low-
cost, manually-tunable circuits in the low power, intermedi-
ate frequency (IF) stage are the preferred technology. This
approach is well-suited to analog television, which experi-
ences a graceful degradation in picture quality with respect
to variations in the HPA’s nonlinear characteristic due to
temperature change and aging. However, digital television,
as a result of its increased data rates, suffers from the cliff
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effect'. This causes the received signal quality to be sen-
sitive to variations in the HPA characteristic. Fortunately,
the advent of digital television brings with it the ability to
use digital filtering, especially adaptive digital filtering.

Using traditional adaptive algorithms to compensate for
the time-varying nature of the HPA’s nonlinearity in a dig-
ital transmitter has already been proposed[1-5]. However,
there are problems with directly applying LMS and RLS.
In this paper, we modify the LMS and RLS algorithms for
updating the coefficients of memoryless polynomial predis-
torters. The modification to the RLS phase predistortion
algorithm is strictly heuristic, we do not update the filter
coeflicients for small symbol amplitudes because in this sit-
nation the phase information has an extremely poor SNR.
The modification to the LMS algorithm arises in re-deriving
the equations for amplitude predistortion. The update term
[7] gains an extra factor proportional to the gradient of the
nonlinearity. These new predistortion algorithms will be
shown to produce a lower residual error power than direct
application of unmodified LMS and RLS.

In this paper we present modified adaptive predistorter
algorithms which are to be incorporated into ITS corpora-
tion’s upcoming line of digital television terrestrial trans-
mission products. In section two we formally identify the
adaptive predistortion problem for digital television terres-
trial transmission. In section three we derive the general
form for using LMS to adjust the weights of the amplitude
predistorter and present a heuristic improvement to RLS
for phase distortion. Simulation results using the measured
characteristic of a production HPA as the nonlinearity, pre-
sented in section four, confirm the expected performance
gains of the new algorithm. Conclusions and future work
will be discussed in the final section.

2. PROBLEM STATEMENT

A typical transmitter is shown in figure 1. In this figure,
the data is separated into two channels representing either
QAM data, where each channel carries independent infor-
mation, or VSB data, where one channel is data and the
other is its Hilbert transform.

In either case the data is passed through pulse-shaping
filters to create the input to the adaptive predistorter. The

LCliff effect describes the phenomenon of error correction pro-
viding nearly perfect reception up to the point that the error
correction is overloaded when total picture loss is experienced
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pulse-shaping filters provide Nyquist shaping for zero ISI
and oversample. The oversampling allows the predistorter
to “see” outside the data channel and correct out-of-band
emissions created by the nonlinearity of the HPA. The pre-
distorted data is then modulated, amplified and transmit-
ted. We can now formulate the adaptive predistortion prob-
lem.

Since we are dealing with complex modulation we use
the following notation to represent the baseband data.

In+ jQn = Rpcos(8,) + jRasin(6y)

Rn =124+ Q3 and 6, = ~arctan (Qa/I.) (1)
The input to the HPA is given by,
R, cos(wt + 0) (2)

The output of the HPA(3) is known[1-5] to contain ampli-
tude distortion(AM/AM) and phase distortion (AM/PM).

®3)

It is important to note that both distortions, A, and ¢,,
depend only on the amplitude of the input to the HPA
and are independent of the input phase. This allows us
to correct for each of the distortions independently by first
compensating for the amplitude distortion and then adding
in a phase correction.

The demodulated baseband symbols are

jn = An (Rn) COos (én + ¢n(Rn))

An (Rn) cos (wt +0. + ¢n(R,,))

Qn = An (Rn) sin (é'n + ¢n(Rn)) (4)

The goal of predistortion is to generate warped values,

I, and Qn, so that the recovered baseband symbols I, and

Q- are equal to I, and Qn. This requires solving two inde-

pendent problems: First, the magnitude of the data must
be warped such that,

An (Rn) = B 5)
Second, the input phase must be warped such that,
On+ ¢n (Rn) = 6 (6)
The optimal solution to (6) problem is obviously,
bn =0n — ¢ (Ry) ()

This is a system identification problem. We identify and
then subtract out the AM/PM nonlinearity.

L}
—] z:lsin Adaptive
aping Predistorter|
AM/AM
Pulse AM/PM
. Shaping Q. Corrector
n
n .95

Figure 1: Digital Transmitter
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The magnitude problem is more difficult since we must
estimate the inverse of the AM/AM. It is this problem that
requires the development of the new algorithm in the next
section.

To proceed, we must choose structures for the amplitude
predistorter and the phase predistorter. It is well known in
the literature[6], and through our laboratory measurements,
that each of these distortions is well-modeled by a polyno-
mial, the AM/AM by an odd power polynomial and the
AM/PM by an even power polynomial. Figure 2 shows the
measured and modeled AM/AM distortion while figure 3
shows the measured and modeled AM/PM distortion of a
typical HPA. To choose structures for the predistorters we
assume that the predistorter/HPA interaction is memory-
less. This assumption is valid because the SAW filters used
in the IF and RF sections have group delays that are far
less than a symbol time and thus introduce no ISI into the
system.

Thus, the AM/PM predistortion structure is an even
power memoryless polynomial used to identify and then
subtract off the additive phase nonlinearity as indicated
in (6). A 16th order, even power (9 term) polynomial is
sufficient for the worst case.

For the AM/AM predistorter we, as have previous re-
searchers[1], use a higher order odd power memoryless poly-
nomial. The algorithm that we use to update this structure
is developed in the following section. A 9th order, odd
power (5 term) polynomial is sufficient for the worst case.
Note that in figure 2 that the amplification has been nor-
malized to one and that the corresponding maximum out-
put amplitude of the HPA is approximately .62. Thus, no
matter how large the input, the output can never exceed
.62. It is the goal of the AM/AM predistorter to make the
HPA appear linear over the entire input range of (-.62,.62).

3. ALGORITHM DEVELOPMENT

In this section we describe the algorithms used to update

the coefficients of the amplitude and phase predistorters.
Phase predistortion is a fairly straightforward system

identification problem except for the following caveats. First,
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the high order of the phase predistortion polynomial makes
LMS converge slowly. Thus, we use RLS to adjust its co-
effictents. Second, the phase error is not linearly related to
the symbol errors: If the symbol amplitude is small, a tiny
amount of noise can cause a large phase error that is not
representative of the actual symbol error (recall the goal is
to make [n=[, and anQ.,,). To combat this, we do not
update the phase predistorter unless the input amplitude is
above a chosen Jevel. We call this thresholding and feel it is
justifiable since the HPA is linear for small inputs and we
get to knowingly discard data with a very low SNR.

Adjusting the weights of the AM/AM predistorter re-
quires developing the predistortion LMS (PLMS) algorithm.
Since the AM/AM problem is independent of the AM/PM
problem we can use figure 4 to describe the problem. A
memoryless polynomial filter. 1,,( R,, ) operates on the data,
K. to compensate for the nonlinearity, An(ﬁn). The gen-
eral form for the polynomial predistorter is given by the
following.

Ho(Ru) = Rn = he(i)R} (3)

The error from this compensation, denoted by ey,is given
by the following.

€n = Rn — Ry = Rn — A[H (Rn)] ®

In LMS the procedure is to use steepest descent to find
the filter coefficients that minimize the mean square output
error, E (ei), by estimating the gradient of the mean square

error with its instantaneous value. Thus, the well-known
update equation is given by,

Bnt1(8) = hn(i) — aV4 |en]? (10)

The difference from traditional LMS created by the pre-
filtering configuration arises when we evaluate the gradient
in (10). The first step is to apply the chain rule.

Vich = ~2eaV A(Rn) - Vi B (1)
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Figure 3: BJT class AB PM Char.

V;,,I%n is obtained by considering a single clement of the
gradient vector along with (8).

‘d ~
—2 _R.=R.. 2
Tl (12)
Thus, the PLMS filter update equation becomes

bt (i) = hni) = aeaRL V2 An (ién) 17

The difference between (13) and traditional polynomial LMS
[7] is the factor V;\ An (dAn
new factor reduces the magnitude of the update where the
nonlinearity is strongest and prevents the filter from over-
compensating. This will be evidenced by the superior per-
formance of the new algorithm in the next section.

), In looking at figure 2, this

In general, V5 An (c?n) is not known; however, we can

well approximate the saturation characteristic, An, with
an odd power polynomial and differentiate it explicitly. In
practice, a stairstep could be input to an amplifier and
the differences of the outputs used as the gradient. Since
the saturation characteristic varies slowly, these differences
could be calculated at startup each day and stored in a
lookup table.

4. SIMULATION RESULTS

In the last section we developed and discussed the algo-
rithms to adjust the coefficients of the AM/AM and AM/PM
predistorters. In this section we demonstrate the perfor-
mance of the algorithms via simulation. This section is
broken down into the following three parts: First, we ex-
amine the AM/AM corrector by itself. Second, we examine
the AM/PM corrector by itself. Finally, we examine the
overall performance. All of the simulations use the labo-
ratory measured characteristics of figures 2 and 3 as the
distortions.

For the AM/AM corrector figures 5 shows the ensemble
average of 60 runs. Uniformly distributed 8 level PAM sig-
nals were input to a pulse-shaping filter, a predistorter and
then the HPA saturation characteristic. The input range
is (-.62,.62), the maximum possible correctable range. The
output of this system was then subtracted from the input
to compute the error. The same seeds were used for both
LMS and PLMS. Each algorithm used a 9th order struc-
ture to correct for the saturation characteristic of figure 2.
The step sizes used for each algorithm were the best dis-
covered after many experimental runs. Notice in figure 5
that PLMS exhibits a smaller residual error than LMS and
a smaller deviation from the minimum error.

Ry ){( fn Racosiot \«ﬁn)ceu(d)
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Figure 4: Transmitter
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For the AM/PM corrector we demonstrate the improve-
ment available by thresholding. We ran simulations {same
noise and seeds) with and without thresholding and com-
pared the magnitudes of their respective phase errors. The
simulations were of a 64-QAM transmitter with -60dB of
measurement noise. Figure 6 plots the difference in phase
error with and without thresholding. Negative error indi-
cates that thresholding was detrimental, positive error in-
dicates that thresholding was beneficial. The proliferation
of positive error, even with an SNR of 60 dB, demonstrates
the benefit of thresholding. The lower the SNR the more
improvement thresholding offers.

Finally, we put it all together in figure 7 and plot the
magnitude of In+35Q, minus [,+35Q, for a 64-QAM trans-
mitter with -60dB of measurement noise. The signal levels
for each channel are -7,-5,...5,7. with an average magnitude
of 6.4. To correct to the noise floor (-60dB) requires the
average residual error magnitude to be .0064. The mea-
sured average residual error was 0.006376. This final sim-
ulation demonstrates the benefit available with predistor-
tion. We were able to create a perfectly linear transmitter,
up through the maximum possible output power.

5. CONCLUSION

In this paper we altered and improved adaptive algorithms
for use in memoryless adaptive polynomial predistortion.
Phase predistortion was improved with a heuristic modifica-
tion of the RLS algorithm. Amplitude predistortion wasim-
proved by deriving and implementing a predistortion LMS
algorithm. Simulations, based on laboratory measured non-
linearities, demonstrated the benefits of these modifications.
Issues such as implementation, phase jitter of the oscillators
and distortion of analog filters will be addressed in a future
full length paper.
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