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ABSTRACT

Extension of the operational range of underwater loca-
tion techniques has been related to the incorporation of
reliable acoustic propagation models, that closely pre-
dict oceans’ behaviour. In this paper, the performance
of ocean tomography and passive localization of un-
derwater acoustic sources is studied, by analyzing the
coupling of performance degradations imposed by mod-
eling mismatches on the ability to estimate the position
of acoustic sources.

1. INTRODUCTION

Source localization uses parametric models of the un-
derwater propagation, to invert the acoustic field re-
ceived from a distant source. The correctness of these
models is of paramount importance, these systems be-
ing particularly sensitive to errors on the parameters
related to the description of the sound speed profile.
Acoustic tomography solves a dual problem: using a
receiver/transmitter pair at fixed known positions, the
ocean parameters are determined by fitting the received
field to that predicted by the parametric model.

In this paper we analyze the performance of acoustic
source localization under modeling errors arising from
imprecise physical knowledge. The coupling between
the localization and the tomography problems is cap-
tured by considering that the propagation model used
for source localization is tuned using parameters de-
rived from an independent tomography experience. In
paper, 8, denotes the true source location, v, the true
ocean parameters estimated by the tomography expe-
rience, and § and 4 the corresponding estimates.

We base our study in the tool for global perfor-
mance analysis under model mismatch presented in [5],
see also [6]. This tool is based on the Kullback-Leibler
divergence, and describes the increase in dispersion and
eventual introduction of biases that can be expected
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due to use of wrong a priori physical knowledge:

S0 : 04l7,7a).

This function is the ambiguity between the true source
location 8, and a distinct location #, when the propa-
gation model is tuned for parameters 4, while the true
ocean parameters are 7,.

The study is carried out for a deep water scenario,
using a bilinear approximation to the sound speed pro-
file. The sound speed in the lower layer is assumed to
be known, and the parameter defining the upper layer
is estimated by a tomography experience, and then fed
to the localization device. Both source localization and
ocean tomography are based on fully coherent fitting
operations.

The paper is organized as follows. In Section 2 the
sensitivity measure is shortly reviewed. In Section 3
the problem of characterizing the errors in the ocean
parameters generated by the tomography experiment
is addressed. We outline two possible approaches: the
first leads to the determination of the exact error proba-
bility distribution under finite data; the second is based
on an asymptotic analysis and yields a characterization
of systematic biases due to model ambiguities. Finally,
in Section 4, we show the result of applying this analysis
to a deep water scenario for a tomography /localization
system with imperfect knowledge of antenna depth.

2. SENSITIVITY MEASURE

The sensitivity analysis presented in this paper is based
on the definition of ambiguity proposed in [5]. In this
section, we briefly present the definition of the function
of interest to this study, referring the interested reader
to [5], where a detailed presentation of the tool is given.

Statistically motivated parametric estimation meth-
ods are based on knowledge of a family of conditional
pdf’s, that describes the dependency of the observed
data (r) distribution on the parameter of interest (v):

g’y = {p(rl‘y),'y € r}'
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When G, perfectly reflects the behaviour of the
physical environment, the ambiguity function defined
in [5] can be used to predict the global performance of
the parametric estimation mechanism, identifying pos-
sible large errors or configurations of poor observabil-
ity of the parameter y. Motivated by the close rela-
tionship between Maximum Likelihood estimators and
the Kullback-Leibler directed divergence between prob-
ability density functions (pdf’s) for exponential dis-
tributions. That function defires ambiguity between
two values 4p,7 € T' as a normalized version of the
Kullback-Leibler distance between the corresponding
elements of G,.

In this study, we are interested in quantifying the
impact of imperfect world knowledge, i.e., the fact that
the true world’s behaviour is described by a given fam-
ily of distributions G = {p%(rly),y € T'}, while a dis-
tinct model is used in the fitting operation done at the
receiver site: G, # g,?. The observed data r is gov-
erned by a single member of gf,’, that we denote by
p° = p%(r|y0). The ability to correctly predict v, us-
ing r under model mismatch can be analyzed studying
a normalized version of the Kullback-Leibler distance
between p® and the elements of G.:

s 21 Mpe) g

In this equation I(p : ¢) = E, {In(p/q)} is the Kullback-
Leibler directed divergence between pdf’s p and ¢, where
E, {-} is expectation with respect to the pdf p, and
Lyup(p®) is an upper bound on I(p° : p(r|y)). This sen-
sitivity index is proposed in [5], where its relation to
optimal estimation procedures is discussed.

The normalization in (1) is suitable to analyze the
performance of a single method. However, when com-
paring several methods, it is more convenient to work
directly with the Kullback directed divergence I(p° :
p(r|y). In this way, we can not only compare the global
performance, but also local performance, making use of
the relation between the gradient of the Kullback di-
vergence and the Fisher information matrix (see [2]).
Ideally, I(p" : p(r}y)) is zero for 4 = 4o, and has large
values for all ¥ # v9. Modeling errors induce system-
atic biases in the estimation procedure, that are flagged
by the fact that I(p® : p(r|y) has its minimum at an
erroneous value v* # vp.

3. STATISTICAL CHARACTERIZATION
OF OCEAN PARAMETERS

In this section we outline two possible approaches to
the statistical characetrization of the estimates of the
ocean parameters generated by coherent tomography

processing. The first approach (subsection 3.1) eads to
an estimate of the error density of the estimates over
finite time horizons, and is based on nop-linear filtering
tools. The second approach (subsection 3.2) is based on
the use of our sensitivity measure, and allows the iden-
tification of systematic biases (which must correspond
to the important lobes of the pdf determined by the
first approach). It is an asymptotic analysis, consider-
ing large observation intervals. The price paid for the
fineness of the first method is the increased numerical
complexity. In the examples presented in this paper,
we consider the effects of biases in the estimation of
the ocean parameter of interest (gradient in the upper
layer of a bilinear velocity profile), using the approxi-
mate approach of subsection 3.2.

3.1. Density Estimation

The procedure outlined in this section was originally
proposed [1, 3] to compute the error probability den-
sity in non-linear filtering problems. It has a numer-
ical complexity orders of magnitude lower than stan-
dard Monte-Carlo techniques, by directly assessing, in
each Monte Carlo run, a realization of the error density.
Consider the following (discrete-time) model of the to-
mography antenna outputs: r, = s(n,¥,) + wy,, where
wp is (white Gaussian) observation noise, and s(n,7)
is the information bearing signal, corresponding to the
propagation of the (known) signal (s(-)) emitted by a
distant source (at a known location) to the receiving
antenna: s(n,v) = (hy(-) * s(-)) (tn)- In this last equa-
tion, hy is the medium’s impulse response, which we
consider to be of the ideal multipath type

P(v)

hy(t) = Z ap(7)8(t ~ (7).

p=1

The propagation model describes the dependency of
P,ay and 7, on 7.

The set of physical parameters to be estimated (7)
are modelled using the following degenerated state equa-
tion:

Tn+l = Tn.

The initial condition for this state equation, vy, is as-
sumed to have a fixed distribution on a given interval I':
Yo ~ P, (7o) This initial pdf models prior information
that may result, for example, from previous measure-
ments.

The error probability estimation technique of [1]
can be applied to the non-linear estimation of v from
observations following the previous model to compute
pe(€l7a). This technique uses the equations of non-
linear filtering that establish the conditional density of
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the state (yn) given the observations received up to
time t,: ™ = {re, £ < n}. We denote this density by
P(nlr™,9s), to emphasize the fact that the informa-
tion bearing component of the observations is gener-
ated using a fixed vaue of the oceans’ parameters v,.
For each possible realization of ", a new realization of
this conditional density is obtained. The conditional
density of the state (ocean parameter) is obtained by
averaging over r: py(Yn|¥a) = Ern {p(¥n|r",7a)} . To
compute the error density at time t,, we have sim-
ply to translate this pdf by the known true value v,:
Pe(€n|va) = Py(¥n ~ Yal7a)- This conditional error den-
sity may then used to compute a mean sensitivity for
the source localization problem

= A o
S(0 : 6alva) = E5 {S(0 : 6al9,74)},

that reveals the impact of environmental uncertainties
on localization performance.

3.2. Important Biases

Instead of trying to describe exactly the evolution of
the information about the environemental parameters
as observation interval increases, we can aternatively
evaluate the impact of those errors that are ecpected to
occur more often. The sensitivity measure eq. (1) yields
exactly this information. To analyze coherent receivers,
as the ones assumed in this paper, requires the com-
putation of the Kullback directed divergence between
the data records themselves. Invoking a large observa-
tion interval assumption, we use the asymptotic charac-
terization of the directed divergence between station-
ary Gaussian processes derived in [4], that expresses
I(p° : p(r]y) in terms of the power spectral densities of
the observations:

60 prh)) = Jim 276 : p(rh) @

=% / [tr[So(/\)S7(A)'1] —K—ln%%;ll da.

4. EXAMPLES

The model used at receiver assumes that the ocean
is horizontally stratified, with two distinct homoge-
neous layers. In the superficial layer (up to depth
Yduet = 914m), the sound speed decreases linearly with
depth (with rate go = —.035ms™!), increasing linearly
from ygu.: until the ocean bottom. The ocean bound-
aries are perfectly flat, with reflection coefficients de-
pending on the grazing angle. The duct and ocean
depths (equal to 914 m and 4 Km, respectively) and the
sound speed gradient in the deep layer (g; = .013ms™1)

N L L -
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gradient

Figure 1: Kullback divergence, gradient estimation
with wrong array depth.

are assumed to be perfectly known at the receiver, as
well as all other parameters relating to receiver array
(geometry, localization, gain). For all surfaces shown,
the distance between the tomography source and the
receiving array is 6 Km, and source and receiver immer-
sion are 200m. The array is vertical, linear, uniform,
with K = 30 sensors, and sensor spacing is half wave-
length at the higher frequency of analysis. The source
signal spectrum is flat in the band [3.5,4.5] KHz.

We present next examples of the sensitivity sur-
faces that result from a small mismatch on knowledge
of the antenna immersion. Figure 1 shows the ambi-
guity function (Kullback divergence) for estimation of
the velocity gradient in the first layer, under a small
error on the value of the antenna immersion (receiver
is using, as a perfectly known value, a depth of 190 m,
when antenna is actually placed at 200 m). We can see
that this small mismatch in antenna depth results in
a small bias in the estimation of go: go =~ —.0335s~1
instead of the true value of go = —.035. The dashed
curve in Figure 1 illustrates the performance of this to-
mography experiment under no mismatches, i.e., for a
correct value of antenna immersion. We can see that
aside the introduction of a small bias, the variance of
the estimate is not significantly affected. The next fig-
ures illustrate the performance degradation due to the
accumulated effect of wrong antenna immersion (the
same erroneous vaue of 190 m is used in all cases) and
resulting wrong estimate of the velocity gradient in the
upper layer (using the biased value at which the Kull-
back divergence in Figure 1 is centered). Four source
positions around the position of the emitter used in
the tomography experiment are considered: Figure 2:
(7 Km, 150 m); Figure 3: (7 Km, 200 m); Figure 4: (5
Km, 200 m) and Figure 5: (5 Km, 250 m). All plots
show the same rectangular area centered at the posi-
tion of the tomography source: [4 Km, 8 Km]x[100 m,
300 m]. The errors are larger for the second ex-
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range

Figure 2: Source at (7 Km, 150 m).

range

Figure 3: Source at (7 Km, 200 m).

range

Figure 4: Source at (5 Km, 150 m).

range

Figure 5: Source at (5 Km, 250 m).

ample, Figure 3, about 1.2 Km in range and 80 m in
depth. In the other three cases, the errors are approxi-
mately equal, in the order of 500 m in range and 50 m
in depth.
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