NONLINEAR PHASE ESTIMATORS BASED ON THE KULLBACK DISTANCE
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ABSTRACT

This paper considers the design of phase estima-
tors by combining concepts of stochastic nonlinear
filtering and information theory. To propagate the
involved probability density functions, adequate fi-
nite representations are needed. This is accom-
plished in this work by adopting minimum Kull-
back distance criteria. Applied to the important
and paradigmatic cyclic phase estimation problem,
our approach leads to consistent and systematic de-
sign methods. The resulting simple and paralleliz-
able structure outperforms the commonly used ex-
tended Kalman-Bucy filter in tracking and acqui-
sition situations. These features make the devel-
oped nonlinear filter suited to digital communica-
tions (carrier synchronization).

1. INTRODUCTION

Phase estimation problems have been extensively
studied within the stochastic nonlinear filtering framework
[1]. In [2] an algorithm has been developed that explores
the prominent features of the problem and forms the ker-
nel of different specialized estimators. Besides cyclic esti-
mation, absolute phase acquisition and tracking have been
addressed. In absolute phase tracking, the nonlinear filter
clearly outperforms the phase locked loop (PLL) which is
the steady state extended Kalman-Bucy filter (EKBF). In
tracking Brownian motion, an improvement of about 50%
in the mean time between cycle slips has been reported
in [3]. Reference [4] studies the application of that algo-
rithm to real signals propagating under the Arctic ice crust,
showing a much better performance than the standard pro-
cedures, with additional flexibility. Absolute phase acqui-
sition, an inherently global nonlinear filtering problem for
which no local estimator such as the EKBF is adequate,
is the main subject of paper [5], which deals with ranging
in radar/sonar systems. Cyclic (modulo 2x) phase estima-
tion is the classical test bed for optimal nonlinear filtering.
Studies have been published showing the superior perfor-
mance of nonlinear filtering over the PLL [1}, [6].

To propagate the involved probability density func-
tions, appropriate finite representations are needed. The
algorithm developed in [2] used ad hoc fitting and match-

ing techniques. This paper reconsiders the design of subop-
timal nonlinear phase estimators by adopting a minimum
Kullback distance criterion {7]. The paradigmatic and prac-
tically important cyclic phase estimation problem is mainly
addressed. The resulting simple scheme achieves in steady
state (cyclic tracking), and under strong noise condition,
almost the maximal achievable performance gain over the
PLL. For high signal to noise ratios, both filters exhibit
the same cyclic tracking variances; they behave, however,
differently in acquiring the initial phase value. In fact,
the nonlinear filter pays more attention to the observations
than the PLL does, being able to converge to steady state in
a much smaller number of iterations. Also, and contrarily
to the PLL, the proposed estimator is hang up free [8].

II. PrROBLEM FORMULATION

A. Model

Consider a phase modulated carrier in an additive
white Gaussian noise channel. The receiver signal is z(t) =
cos{wot + z1(t)) + v(t), where wo is the nominal carrier fre-
quency, z1(t) is the modulating signal and »{t) is a white
(Gaussian noise. The carrier (known) amplitude is normal-
ized to one. Further assume that the received signal is down
converted to baseband with a local generator of nominal
frequency we.

The sampled (integration and dump) in-phase and
quadrature components of z(t), {Zn = [21,n, 22.n)7 }, are

given by
LN Cf)s(:rx,n) 4| 2 1
Z2m sin{z1,n) van
where {v1,,} and {vyn.} are mutually independent zero
mean white Gaussian sequences with variance r, and {z1,n}

is the first component of the discrete vector Markov process
{xn € R }, described by the stochastic difference equation

Xn41 = Axn + Bu, n=12, .. (2)

where {u, € IR™} is a vector zero mean white Gaussian
sequence with covariance matrix Q.

B. Optimal Bayesian Solution
Taking into account the preceding models and assump-
tions, consider the problem of estimating Xn, based on the
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set of present and past observations Z,, = {zx, 1 < k < n}.
The main task of a (global) nonlinear filter is to propagate
the conditional probability density function Fy = p(Xn|Zn)
herein referred to as the filtering density. The solution con-
sists in the recursive application of Bayes law (filtering step)
and Chapman-Kolmogorov equation (prediction step) [1]:

Pn
Fn

Sn* Foy (prediction), (3)
CnHno P, (filtering), (4)

where * denotes convolution, ¢ means pointwise multipli-
cation, and Cy, is a normalizing constant. The convolution
kernel, Sn. = p(Xn41(Xa), Teflects equation (2) and the as-
sumptions therein; it is Gaussian and given by

Sn < N(Xnt1 — Axn, BQBT), (5)

with the notation N(s, V) = exp{—(1/2) s"V~'s}. This
kernel actuates on the preceding filter density Fn—; to give
the prediction density P, = (Xn|Zn--1), which is updated
by the multiplicative effect of the observation factor Hn =
p(Zn|Xn). According to model (1), Hy is given by

i x «/\n cos(Li,n — bgl"), (6)

with

22,n

1
A= =422 422, and b = arctan ==,
T ' ! Zi,n

The optimal estimate X, is obtained by minimizing the
conditional expectation of a suitable cost function L(xn —
n).

111, PROPOSED APPROACH

To implement equations (3) and (4), adequate finite
representations of operands are required. The nonlinear
filter (NLF), whose structure is schematized in Fig. 2, in-
corporates the representation procedures developed along
this section.

A. Sensor factor representation

Each normalized period of H, is a Tikhonov function.
It approximates a (Gaussian function for large values of A»,
becoming flat as A, tends to zero. These features suggest
the substitution of H, by a train of Gaussian functions,

centered on b|H" = by " + 2, all having a common variance

H
o,

400
How Y N (ma=tne®) )

This representation should reproduce, as much as possible,
the shape of H, for all values of An.

Take, for simplicity, b;{" = 0; the normalized central
periods of Hn and H. are, respectively,

A cos(z)

h(z,2) 2xlo(N)

(8)

+ oo

Z s_(z—z,n‘)’/(za)

hz,0) = B (2’“’)% ' (9)

where Io(-) is the first kind modified zero order Bessel func-
tion.
The Kullback distance, or divergence [9],

D(hk) =/ k(z, A) log '}:2—2—2 dz (10)

is a measure of dissimilarity between the probability density
functions h(z, A) and k(z, o). The adopted representation
criterion consists in finding, for a given A, the value of o
that minimizes D(h||k). This implies the equation

%:—/—”h(z,)\)%d’:& (11)

Inserting (8) and (9) into (11} yields
T o> cos(a) o J
o= /_" N (z,0) dz, (12)

with

too o)
Z(z —2mi)? e_&;{.l_

&(z,0) = (13)

+o0 g

r=2m
-t
—o0

Fig. 1(a) shows a map of & versus A, obtained by nu-
merically solving equation (13). A lookup table containing
this map provides the optimal value ¥ corresponding to
any value of An, with a minor computational effort. Fig.
1{b) plots the minimal Kullback distance as function of A.
The quality of the representation can be assessed from Fig.
1(c); notice the apparent coincidence of h and h, when the
Kullback distance is practically zero (A; and A3), and the
similarity between k and k in the worst case situation (for
A2)‘

Finally, it should be stressed that only two parameters
are needed to represent Hn: bg’" and of* both easy to
compute from the data.

B. Filtering

B.1 Multiplication
To implement equation (4), Hy is substituted by its
representation (7). Consider a Gaussian prediction density

P N (% —bP" VY

and assume that only the J nearest_modes of H,, contribute
significantly to the product P, e H,. Typically J = 3, or
even J = 1 for small values of r. The result is

J
Fa=) k"N (xa b, VT), (14)

i=1
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Figure 1: Graphical information concerning the sensor factor repre-
sentation. $ee subsection HI.A

with
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where k,F" are normalizing weight factors.

Equations (15) and (16) are discrete Kalman-Bucy fil-
tering (updating) steps working with observations given by
b" = z1,n + vn where {v,} is a white Gaussian sequence
of zeo mean and adaptive variance o*. The means b/’
of each mode of &, play the role of pseudo-measurements.
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B.2 Gaussian matching

We consider now cyclic phase estimatior problems
(e.g. carrier synchronization in digital communications)
in which only modulo 2x phase values are sought (i, €
[—x,+x]); as for the other components of x,, evolutions
along the real line (£1,, € R, 1=2,3,..,, K) are meaning-
ful. Accordingly, the adopted global cost function is

K
L(xn—%a) =Y Li(tn = &1,0), (18)
=1

with L1 (g1,n — E1,n) = 2[1 — cos (Z1,n — £1,n)] (the cyclic
cost function as in [6]), and L; (z1,n — £1,n) = (21,0 — F1,0)°
forl=2,. K.

Let X, be the estimate stemming from cost function
(18) and density (14). To get a regular, constant (low)
dimension structure, the following strategy is adopted: re-
place, at each iteration, the density F, by the single Gaus-
sian

Fo = (2m) KDV En -1 2y (xn — %, vf") . Qa9

with covariance matrix V*» obtained by minimizing the
Kullback divergence D(F,||F.). Density F, still leads to
the same estimate X, while preserving the information con-
tent of Fr. in a Kullback sense.

C. Prediction

Given the form of expressions (5) and (19), prediction
(3) is a standard Kalman-Bucy prediction step. This closes
the loop in the block diagram of Fig. 2.

Minimum Kullback distance cmng\

Filtering
z fi X
ll. Sensor factor | Hn P Fn Gaussian -

representation matching -

Py

[Prediction

2l

[ i Foy Delay

Is,

Figure 2: Schematic structure of the NLF

D. Simulation results

The results herein reported concern the estimation of
Brownian motion. The noise condition is expressed in terms
of the steady state error variance that would be achieved
if the observations were linear. This variance, provided by
the corresponding Ricatti equation, is denoted as V. The
NLF exhibits, in steady state and under strong noise con-
dition, essentially the same performance as the point mass



filter studied in [6], which is known to reach the maximal
achievable gain over the PLL. As the signal to mnoise ra-
tio increases, both estimators tend to the same asymptotic
steady state error variance predicted by the linear theory.
Transient behavior (acquisition) is however very different,
as can be concluded from the following experimental data.

For a given value of Vo, 10* runs (of length N = 150)
are performed and the mean squared errors (modulo 27) pry
are computed at each iteration. For comparative purposes
the PLL, the EKBF, and the NLF are driven by the same
noise sequences.

Fig. 3(a) shows, for Voo = —20dB, the evolutions of
% for the 3 estimators under study. Two different initial
conditions are considered:

1. Initial phase value uniformely distributed on the in-
terval [~ , +x] (curves 1, 2 and 3). For the NLF and
the EKBF, this condition is expressed by assuming
that P, is Gaussian with zero mean and infinite vari-
ance. The PLL, being the steady state EKBF, starts
with P, being zero mean Gaussian with variance Vio.

2. Initial phase value generated according to P =
p(z1) = 16(z1 — %)+ $6(z1 + ) (curves 4, 5, and 6).
This distribution simulates the conditions where the
PLL typically suffers from the hang up phenomenon
(phase errors close to +x) [8]. All filters are initial-
ized as above.

There are remarkable differences concerning the con-
vergence times. As expected, the EKBF exhibits better
performance than the PLL in both conditions. The NLF,
besides showing much better performance than the EKBF
and the PLL, also reveals independence from the initial
phase errors (notice the coincidence of curves 1 and 4); as
a corollary, the NLF is hang up free.

Fig. 3(b) is equivalent to Fig. 3(a), now for Vo =
—10dB. Notice the significantly faster convergence of the
EKBF and the PLLL, when compared with the Voo =
—20 d B situation; as for the NLF, its convergence pattern
remains practically unchanged.

1V. CONCLUDING REMARKS

In this paper, we considered the design of nonlinear
phase estimators according to minimum Kullback distance
criteria. This approach, applied to cyclic phase estimation,
leads to a simple and parallelizable (open-loop) structure
suitable for parallel architectures and VLSI implementa-
tion. Furthermore, it is a very fast acquisition and hang up
free algorithm. A bank of such filters has been proposed in
[10] to perform simultaneous phase estimation and symbol
detection in digital communications.
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