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Abstract

In this paper, we introduce a new technique for com-
pression of images. The method models the images as
noncausal random fields. Our approach couples a non-
causal predictive technique with vector quantization to
provide image compression of quality largely superior
to that provided by DCT based techniques or by vector
quantization (VQ) alone.

1. Introduction

In this paper, we present a new technique for com-
pression of images which is based on predictive coding
with vector quantization. The distinctive feature of
our method lies in the paradigm used to describe the
images. The images are modeled as noncausal ran-
dom fields, i.e., fields where the intensity at each pixel
depends on the intensities at sites located in all direc-
tions around the given pixel. This is in contrast to
conventional predictive coding methods (see, for ex-
ample, [1]) where causal image models are used with
2D causality being defined arbitrarily by designating a
portion of the image plane (usually the upper left quar-
ter plane) as the “past”. It has been shown, e.g., [2],
that noncausal field models are a superior paradigm to
causal models for image processing. The latter have
often been favored because of the attractive computa-
tional characteristics of the recursive processing meth-
ods they lead to. The compression technique presented
here is able to retain the use of recursive process-
ing while modeling images as noncausal random fields.
This is made possible by the use of the equivalent re-
cursive representations that all finite lattice noncausal
Gauss Markov random fields (GMRF’s) have, see [3].
Experimental results from our technique are con-
trasted with two alternative methods, a DCT based
method that is the baseline JPEG procedure with some
optimizations in the parameters, obtained from [4], and
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vector quantization (VQ) alone. To reduce computa-
tional complexity, we used first order GMRF’s as the
image model in our algorithm. Our results demon-
strate that the technique presented here produces good
quality results at low bit rates without introducing any
significant artifacts such as the blocking that is char-
acteristic of DCT based methods.

The paper is organized as follows. In section 2,
the salient features of the noncausal image model are
outlined briefly. The compression/decompression algo-
rithm is described in section 3. Experimental results
are presented in section 4, and conclusions in section 5.

2. Noncausal image model

After subtracting the global sample mean, the im-
ages are modeled as zero mean Gauss Markov random
fields (GMRF). For simplicity, a square (N x N) image
lattice is assumed. For a first order GMRF, the MMSE
representation [5] is:

@i j=Bu(bij—1+0ij41)—Br(di—1j+ditr;) = & (1)

Collecting in a matrix format:

Ap=c¢ (2)

where,
¢ = [¢'--4"] (3)
¢ = [$i1- din] (4)

and A is referred to as the potential matriz, see [3], [6].
It is well known that

Cov(e) = Z.=024A (5)
Cov(g) = Ty=old~? (©)
Lge = E¢el =0l (7)

In (3], we presented two recursive representations
which are equivalent to the noncausal model (2). For
example, the “backward” representation is

Uid' + 0i¢* ! = ¢ (8)
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where ¢; is white noise with variance ¢2. The U;’s and
Oi’s are obtained from A by a Riccati type iteration

Siy1=B-0T871¢c, 9)

where B and C are submatrices in A4, and
S, =Uru;, (10
vfo:=c. (11)

This Riccati equation converges quite rapidly. See {31,
[6], for details of these matrices and theorems speci-
fying the geometric rate of convergence of the Riccati
iteration.

From (8), it is straightforward to generate a state
space field representation

¢' = Fi¢'t! 4+ Gi€?, (12)
where

F = U0, (13)

G = Ul (14)

It is important to stress that (8) or (12) are statistically
equivalent to the original noncausal autoregressive rep-
resentation (2). Results for general order GMRF’s,
proofs, and details are provided in the references men-
tioned above.

To be able to use these models (2) - (14) with real
images, we need to fit the models to the images. For
the first order GMRF, this means determining the
three parameters (8, , B5, 02). In [7], we have described
the parameter space for general first order noncausal
GMREF for a variety of boundary conditions (Dirichlet,
Neumann symmetric, and Neumann asymmetric). For
general fields, results are in [8], [6]. The model pa-
rameters may be estimated using a conjugate gradient
based algorithm which is described in [8], [6].

3. Compression/decompression
procedure

The compression procedure in the noncausal codec
involves the following steps (see Figure 1 (a)):

1. Parameter estimation: A (first order) noncausal
GMRF model is fitted to the image after subtract-
ing out its sample mean. The parameters are es-
timated using the conjugate gradient estimation
method outlined in [8].

2. Construction of recursive predictor: An equiva-
lent recursive representation, e.g., the backward
one given in (8, is constructed using the Riccati
iteration (9). See [3] for details.
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Figure 1: Noncausal predictive codec: (a) Compression,
(b) Reconstruction.

3. Generation of error field: The recursive predictor
is used to generate a residual error field from the
image (minus its sample mean).

4. Quantization of error field: The residual error
field is quantized using vector quantization (VQ).
This may be followed by entropy coding or some
other form of lossless coding for additional com-
pression. We have not added this at present.

The quantized error image, the global sample mean,
and the noncausal model parameters are the output of
the compression procedure.

The decompression procedure reconstructs the im-
age through the following steps (see Figure 1(b)):

1. Reconstruction of error field: The error field is



decoded, if entropy coding was used, and then re-
constructed using the VQ code book.

2. Construction of state space regressor: The state
space equivalent of the recursive predictor used
in the compression, (12), is constructed using the
noncausal model parameters in the Riccati itera-
tion (9), and the relationships in (13) and (14).

3. Reconstruction of image: The state space regres-
sor is used to reconstruct the zero mean image
from the reconstructed error image and the global
mean is added back in.

4. Experimental results

A 128 x 128 portion of the Lenna image from the USC
database was compressed to 0.375 bits per pixel (bpp)
using our algorithm with the image being modeled as
a first order GMRF with Dirichlet boundary condi-
tions. In the first step of the compression procedure,
the image sample mean was computed to be 110.4 and
subtracted from the image prior to parameter estima-
tion. The first order model parameters were estimated
as

Br = 0.1038, (15)
By = 0.3943, (16)
2 = 130.4488. (17)

The error field was quantized using a simple implemen-
tation of VQ based on the LBG algorithm [9] with a
block size of 4 x 4 and 64 code vectors. The original
and reconstructed images are shown in Figure 2 (a)
and (b), respectively. A comparison shows that the
reconstructed image reproduces most of the detail of
the original image, such as the structure of the eye
and the eyelashes, without introducing any significant
artifacts. For comparison, the Lenna image was com-
pressed to 0.375 bpp using the VQ algorithm alone,
Le., without the predictive coding steps. The recon-
structed image, which is displayed in Figure 2 (c),
shows significant blocking, as expected. A more mean-
ingful comparison is with the JPEG procedure for still
image compression. An optimized version of the base-
line JPEG procedure using the 8 x 8 DCT was used to
compress the Lenna image to a comparable bit rate,
0.3826 bpp. This bit rate includes lossless coding of
the DCT coefficients using Huffman coding (while the
bit rate given above for our algorithm does not.) The
details of this procedure may be found in [4]. The re-
constructed image is shown in Figure 2 (d). It shows
considerable blocking as well as significant loss of de-
tail, for example, around the eye.

5. Conclusions

A new image compression algorithm was presented in
this paper. The algorithm combined the recursive pro-
cessing characteristic of predictive coding with the use
of a noncausal image model. The experimental results
demonstrated the high quality of the reconstructed im-
age at a low bit rate (0.375 bpp) and contrasted this
with the significant loss of detail and blocking arti-
facts introduced by a JPEG type DCT method at the
same bit rate. Work is in progress on improving the
algorithm by introducing a more elaborate model for
the deterministic component of the image to replace
the global sample mean. This is expected to produce
further improvements in image quality. A VLSI imple-
mentation of the algorithm for real-time image com-
pression is also under development.
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(c) (d)

Figure 2: (a) Original 128 x 128 Lenna, (b)-(d) Comparison of reconstructed Lenna after com-
pression: (b) to 0.375 bp using the compression procedure in Figure 1 with a first order GMRF as
the noncausal image model and VQ (4 x 4 blocks, 64 codevectors) to quantize the error field, (c)
to 0.375 bp using VQ (4 x 4 blocks, 64 codevectors) to quantize the image with the global mean
removed, (d) to 0.3826 bp using the optimized baseline JPEG procedure (8 x 8 DCT).
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