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Abstract

In this paper, we implement a recursive procedure for
the enhancement of noncausal Gauss Markov random
fields. Experimental results for the enhancement of
synthetic as well as real images corrupted by additive
white Gaussian noise are provided. These are con-
trasted with equivalent results obtained by processing
the images with recursive filters derived by imposing
a causality constraint upon the fields. The results
show that the noncausal recursors provide consider-
able reduction in the mean square error (MSE) of the
noisy images without the introduction of undesirable
visual effects, such as streaking, that are produced
when causality constraints are imposed. o

1. Introduction

In almost any form of image acquisition some degree
of noise degradation is unavoidable. Consequently,
image enhancement procedures are required to im-
prove the image quality. For practical purposes these
procedures must be fast as well as optimal. This is
the problem we address in this paper.

Since, in general, images are noncausal phenom-
ena, we model them using noncausal Markov random
fields. Such models have been widely used for image
processing applications, see, for e.g., [1], [2]. For rea-
sons of computational efficiency, recursive image pro-
cessing algorithms are desirable, but those that have
been implemented are based on causal 2D fields, see,
for e.g., [3]. The use of causal field models to pro-
cess noncausal images produces undesirable effects,
such as streaking, in the processed images. As an
alternative, in this paper we implement an optimal
recursive enhancement procedure based on a non-
causal image field model. This produces significant
improvement in the mean square error (MSE) of the
noisy images without introducing undesired artifacts.

*The work reported here was partially supported by NSF
grant # CDA-8820575 and by ONR grant # N0014-91-J-1001

Our approach makes use of a recursive framework for
noncausal finite lattice Gauss Markov Random Fields
(GMRF) that was developed recently, see [4], [5].
The noncausal field parameters are estimated from
the image data using Maximum Likelihood (ML) es-
timation. Then the recursive framework is applied
to produce an equivalent one-sided model which pro-
vides the basis for the Rauch-Tung-Striebel (RTS)
formulation of the optimal fixed interval smoother.

The approach is demonstrated using synthetic and
real images corrupted by additive white Gaussian
noise. The visual quality of the results produced us-
ing noncausal image field models is compared with
that of the corresponding results produced using
causal field models.

The organization of the paper is as follows. The
recursive framework for noncausal finite lattice GM-
RFs is briefly reviewed in section 2, and a sample
of a noncausal field synthesized using this framework
is provided. In section 3, the procedure that is fol-
lowed for recursive enhancement of noisy images is
described, along with the results of experiments con-
ducted using a synthesized image as well as a real
image. Conclusions are presented in section 4.

2. Recursive framework

It has been shown that a noncausal finite lattice
GMRF can be characterized by the structure of its
inverse covariance matrix, A, which we refer to here-
after as the potential matrix, see [4], [5] for details.
The noncausal field can be represented by an autore-
gressive (AR) model driven by a correlated noise field,
expressed in terms of the potential matrix as

AX =73, 7~ n(0,0%4), (1)
where each row of the N x M lattice is mapped
lexicographically into an M x 1 random vector and
these are stacked one on top of the other to form
the NM x 1 vector, X = [T,%%,---, 757, wherg
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Figure 1: (a) Neighbors for first order noncausal MRF
marked by “x”. (b) Neighbors for the equivalent back-
ward regressor (c) Neighbors for the equivalent forward
regressor (d) Coefficients of the forward regressor.

Z; = [zi1, iz, -+, zim)T . This is equivalent to the
minimum variance representation in [6].

Two equivalent one-sided representations can be
obtained by a suitable transformation of (1): a “back-
ward” or “anticausal” representation

UX =, @ ~ (0, oI). 2)
where U is upper triangular, 1 is a white noise vector
defined as w = (UT)~13, E(XuT) = 02U-!, and a
“forward” or “causal” representation which is a mir-
ror image of the “backward” one. Since U is upper
triangular, (2) is a “backward” or “anticausal” repre-
sentation of the field in the sense that any pixel (%, )
depends only on those pixels that lie in its “future”.
Here “future” and “past” are defined using a Non-
Symmetric Half-Plane (NSHP) partitioning at (i, j).

Using the structure of U the representation in equa-
tion (2) can be expanded as an (M x 1) “backward”
vector AR process:

Uifi + ©;Fi1 = W, @ ~n(0,0%I), i< N -1,
UNEy = Wy, UN~ 7](6, 0’21) 3)
where U; and ©; are M x M blocks, with the U;’s
being upper triangular, @; L w; for i # j, w; L &; for
i< j,and E(£;u7) = 02U for 1 <i < N, ie., the
driving noise {w;;} is white and uncorrelated with
all pixels that lie in its “future”.
At the pixel level, the result of the above transfor-
mation is the replacement of the noncausal neighbor-
hood set by au “anticausal” one. For example, for

first order fields, the ©;’s are lower triangular, so the
noncausal neighborhood set of 4 pixels (see Figure 1
(a)) is replaced by an “anticausal” one with M pixels
(see Figure 1 (b)). Figure 1 (c) shows the correspond-
ing set for the “forward” or “causal” representation.

The matrices, {U;,©;}, define a set of spatially
varying regressors that comprise the equivalent one—
sided representation. Defining ¥; = U,T U;, the Ric-
cati iterative scheme,

L, =B-CTs ! C, (4)

with initial condition ¥; = By, is used to compute
{U:}}L,, and the ©;’s are computed from the corre-
sponding U;’s by using the relationship UT©; = C.
The sequence {Z;}, defined by (4) converges with a
geometric rate of convergence.

As an example, consider a first order noncausal
GMRF defined on a 128 x 128 lattice, assuming free
boundary conditions (b.c.), with horizontal interac-
tion parameter 8, = 0.395, vertical interaction pa-
rameter §, = —0.1, and field conditional variance
0% = 400. A sample from this field was synthesized
using the equivalent “backward” representation (3),
which was computed using the Riccati iteration in (4)
(see Figure 2 (a)). The geometric rate of convergence
of the iteration (4) is of practical importance because
it means that convergence of the Riccati equation to
any given precision, ¢, is obtained after a small num-
ber of iterations. Using ¢ = 10, we obtained conver-
gence at the 10th iteration. The one-sided regressor
coefficients were found to decay monotonically with
distance from the “present” pixel. The regressor tails
are truncated at the pixel at which the coeflicient is
less than 1% of the first coefficient, i.e, with refer-
ence to Figure 1 (d), hy = 0 if | # |< 0.01, and
v = 0if | 5’: < 0.01. Consequently, the steady
state regressor has 3 neighbors in the same row, with
coefficients hj, hq, h3 given by —0.54084, —0.01192,
—0.00727, respectively, and 11 in the previous row,
with coefficients vg,v1,...,v10 given by —-0.13177,
—0.07127, —0.04011, —0.02350, —0.01431, —0.00904,
—0.00590, —0.00396, —0.00273, —0.00192, —0.00137,
respectively.

3. Recursive enhancement
The noisy image Y is given by
1<i<N, 1<jisM (5)

Yij = 2ij+ i,

where n; ; is additive white Gaussian noise indepen-
dent of the original image pixels z;;. The follow-
ing procedure is used to compute the optimal MMSE
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smoother estimate of the image X, given the noisy
image Y.

Step 1. Identification of the noncausal field: The
noiseless image is modeled as a noncausal finite lattice
GMRF. The parameters of this model are estimated.
Step 2. Equivalent one-sided representation: The set
of spatially varying regressors (i.e., {Ui,©:}) that
comprise the equivalent “backward” or “anticausal”
representation (3) are obtained using the Riccati iter-
ation in (4). As demonstrated in the example above,
the geometric rate of convergence considerably re-
duces the computational and storage requirements.
The “forward” regressors are easily obtained by re-
flecting the “backward” regressor matrices.

Step 8. Recursive Smoothing: The equivalent one-
sided representation (3) is formulated as a “back-
ward” state space model:

& = FZi+ G, 1<i<N-1(6)

-

IN

where F} = —U;7'©; and G! = U;7!. The “forward”
state space model is easily obtained from the “back-
ward” one by a series of reflections. This is then used
as the basis for the Rauch-Tung-Striebel (RTS) for-
mulation of the optimal fixed interval smoother, see
for e.g., [7].

Gy N

3.1 Experimental Results

The first experiment was conducted using the field
that was synthesized in the last section. This field
has a predominantly horizontal wood-grain like tex-
ture (see Figure 2 (a)). White Gaussian noise of vari-
ance 1980 (chosen so that the noisy image had SNR
of approximately -3 db) was added to the field pro-
ducing a noisy image with MSE = 1991 (see Figure 2
(b)). Below, we will use MSE as a form of merit
although we have not investigated the issue of field
ergodicity and corresponding statistical meaning of
this quantity. To provide an upper bound on the en-
hancement performance the actual field model that
was used to synthesize the image was applied as the
noncausal model for the enhancement procedure. The
equivalent one-sided representation was derived, ex-
actly as described above, and the RTS smoother was
applied. The MSE of the enhanced image, shown in
Figure 2 (c), was reduced to 461, while retaining the
prominent texture characteristics. Although some de-
tail has been lost due to smoothing, the predominant
horizontal grain texture of the original field is unob-
scured by any artifact of the enhancement.

The second experiment was conducted using a
128 x 128 Lenna image (see Figure 3 (a)). White
Gaussian noise of variance 630 (chosen so that the

noisy image had SNR of approximately 7 db) was
added to the field producing a noisy image with MSE
= 633 (see Figure 3 (b)). The noiseless image was
modeled as a first order GMRF with free b.c., with
an ML estimation procedure (to be discussed in a
forthcoming paper) being used to estimate the pa-
rameters. In practice, the image model parameters
have to be estimated from the noisy data, but to
simplify the experiment, here we used the original
image data. Prior to the processing, the sample
mean was subtracted from the image to make it zero
mean. The ML parameter estimat.gs\ obtained were
Bn = 0.241857, B, = 0.258286, and o2 = 137.790778.
Next, the equivalent one-sided representation was
computed. Applying the same truncation rule for the
regressor coefficients as before, we got a steady state
regressor with 6 neighbors in the same row having
coefficients hi,...hs given by —0.35441, —0.02416,
—0.01293, —-0.00782, —0.00516, and —0.00363 respec-
tively, and 8 neighbors in the previous row with
coefficients vg, ..., v7 given by —0.32191, —0.11409,
—0.04821, —0.02400, —0.01366, —0.00860, —0.00582,
and —0.00416, respectively (see Figure 1 (d)). The
RTS smoother produced an enhanced image with
MSE = 168 (see Figure3 (c)).

To contrast the effect of the noncausal image field
model with that produced by a causal field, the
RTS smoother was applied directly with a 3 neighbor
causal model (see Figure 4) whose parameters 55, 55,
and J§, representing respectively the West, North,
and North-West neighbor interactions, were esti-
mated from the noiseless image using least squares.
The estimeies obtained were [’?E = 0.666224, BE =
0.863320, A5 = —0.556740, and for the field condi-

tional variance, ;? = 118.731850. The output of the
RTS smoother has MSE = 155 (see Figure 3 (d))
which is slightly better than the MSE of the enhanced
field produced using a noncausal model, but a visual
comparison (see Figure 3 (c) and (d)) reveals that
the causal model produced streaking in the enhanced
image while the noncausal model did not. This un-
derlies the importance of utilizing a noncausal image
model.

4. Conclusions

The main point of the paper is that is possible to ap-
ply recursive optimal procedures for image processing
without sacrificing the important field model prop-
erty of noncausality. Currently, work is in progress to
enable the identification of the noiseless image model
parameters from the noisy data. Another issue that
is under investigation is the segmentation of the im-
age into homogeneous regions, each of which can be
modeled as a homogeneous GMRF and processed ac-
cordingly.
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(c)
Figure 2: (a) 128 x 128 sample of 1st order GMRF with
Pr = 0.395, By = —0.1, 0* = 400 (b) Synthesized image
with -3 db noise added: MSE = 1991 (¢) Image enhanced

using noncausal field model: MSE = 461. Figure 3: (a) 128 x 128 Lenna (b) Lenna with 7db noise
< x added: MSE = 633 (c) Image enhanced using noncausal
x o field model: MSE = 168. (d) Image enhanced using causal

. field model: MSE = 155.
Figure 4:Neighbors for causal field model marked by“x”, cla mode

- 3000 -



