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Abstract

In this paper, two alternative ARMA estimators are
compared both theoretically and through simula-
tion analysis. The first is a dual algorithm which
estimates the MA and the AR components as the
solution of two linear and independent systems of
equations. On the second estimator, the AR co-
efficients result from a system of linear equations,
while the MA component is obtained from a fast
filtering algorithm initialized with the previous AR
estimated coefficients.

Introduction

The estimation of ARMA or AR+noise processes
is an area of active research. Techniques based on
Maximum Likelihood require a large computational
effort and may fail to converge. Here, we compare
by simulation two alternative methods recently pro-
posed [1], [6]. These use the reflection coefficient
sequence estimated directly from the data.

The first method, 6], is a dual algorithm that
estimates the MA and the AR components as the
solution of two linear, independent, and overdimen-
sioned systems of equations. These are obtained
from the coefficients of the innovation and predic-
tion error filters of increasing orders associated with
the ARMA process. With this method, the MA es-
timation does not depend on the determination of
the AR component. Likewise, the AR estimation
results independently of the MA estimation. The
method effectively decouples the two tasks of AR
and MA identification.

The second technique, [1], uses only the predic-
tion error filter coefficients. The AR component is
obtained by combining the first step predictor and a
transient Kalman gain in a two stage procedure that
solves a system of linear equations and implements
a set of linear algebraic relations. The estimation of
the MA component starts from the previous AR es-
timated coefficients and is based on a fast nonlinear
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iterative algorithm derived from the Chandrasekar
equations.

In Section 2, we formulate the estimation prob-
lem. The two ARMA estimation algorithms are
briefly presented and compared in Section 3. Sim-
ulation results are displayed in Section 4. Finally,
Section 5 concludes the paper.

Problem Formulation

Let {y,} satisfy the ARMA(p,q) recursion

» q
Yn + z %iYn—i = €p + Z bien_i, Vn (1)
=1 i=1

where {¢,} is a white noise process with zero mean
and variance 02, We assume that (1) is stable,
minimum-phase, and that the associated transfer
function has no common poles and zeros. The model
structure, i.e., the number of poles, p, and zeros, q,
is known a priori, see [7], [9] for an order deter-
mination algorithm. For the sake of simplicity, we
assume that p > ¢, although both estimation algo-
rithms apply for p < ¢. The problem is to estimate
the AR and MA coefficients from a finite sample of
the process. Define {v,}

(2)

as the innovation process associated with the
ARMA process and let {a?*, 0 < ¢ < n} be the
coefficients of the prediction error filter of order n,

Un = Yn — E|y1L | Yo, Y1, - -yyu—l.]

n

Up = E @ Yn-i, ay =1, n2>0.

=0

3)

In (3), a? is the n'" order reflection coefficient as-
sociated with the ARMA process.

From the definition of the innovation sequence, y,
may be represented as (3],

n
Yn = ng‘n'-'u—i) W{? =1, n> 0, (4)

i=0




known as the innovation filter of order n. The set
{Wr, 0 < i < n} collects the coefficients of the
innovation filter of order n. We use the notation of
6], (7] and assume that

;' =aj=0for j<O. (5)
Let W;,l be the triangular matrix of order N+1,
wil=| 1
v at 1 0
3 2
asz aj 1 (6)
ax ax_l S af' 1

where each line collects the increasing order predic-
tion error filter coefficients (up to order N). The
inverse of this matrix, Wy, has a dual meaning.
Line n corresponds to the coefficients of the innova-
tion filter of order n, 0 < n < N, [3],

(Wal, = Wr..Wwr10...0] (7)

ARMA Estimation

We present briefly two alternative algorithms for
ARMA estimation and comment upon its imple-
mentation from a finite lenght sample. Unless other-
wise stated, we assume exact knowledge of the pre-
diction and innovation filter coefficients. Let Ay be
the (¥ + 1) x (N + 1) Toeplitz matrix,

An =] a, 1 [

ay a, 1 @)
ay a2 a; 1
)]
X L T I
and define the matrix Gy as
By Wit =Ap. (9)

Algorithm 1 [6]

Using the Cayley-Hamilton theorem and the the-
ory of the invariant directions of the Riccati equa-
tion, it is proved in [8] that Sy has the following
structure for p > ¢,

By =

1,(N)

Further, (8],
Nlim Qi(N)=b;, 1<i<q. (11)

The algorithm obtains the MA and the AR com-
ponents by dual, independent procedures that solve
systems of linear equations.

MA Component

For p+ ¢ < n < N, by equating the elements
of line n on both sides of (9), corresponding to the
first n — p zeros of line n of Apy, yields the system
of n — p linear equations,

al +y(n)af T + ..+ Q,(n)a}7Y =0,
p+1<j<n
(12)
The solution of (12) is the set of coefficients
{f%(n),1 < ¢ < g} which converge with n to the
MA component (see (11)). Note that n is the high-
est order reflection coefficient present in (12).
AR Component

For p < n < N, the a; coefficients satisfy the
system of linear equations,

-1
Wi+a WD +. . +a, W), =0
9+1<5<p
+1 —
Wit raW!  +.. +e,W, =0
9+1<j<p+1

WY +a Wity e, WP =0
+1<j<N

o

(
obtained by equating the lines {p,p+1,..., N} on
both sides of

AyWy = fy. (14)

At least for n > p+q, (12) and (13) are overdimen-
sioned systems of equations. For the full derivation
of the algorithm see [8], [9].

Algorithm 2 [1]

The algorithm obtains the AR component by a
two stage procedure that solves a system of linear
equations. The MA component is obtained through
a fast iterative algorithm whose initial condition de-
pends on the previously computed AR component.

AR Component

1. Particularizing {12) for n = p + ¢, obtain
{Ulp+q), 1<i<q)

2. Compute the p AR coeflicients by replacing the
(lls in the linear relations

¥
a;=a* 4 Zﬂj(p+ q)af'f]'-’_], 1<:<p
=1



This AR estimator uses only the set of p reflection
+1 p+q

coeffients {a,a]l,...,a} 1]} and the correspond-
ing prediction error filters. See also [5].

Points 1 and 2 above are derived in [1], {2] by
equating the corresponding coefficients of (3) and
an alternative representation of the prediction er-
ror filter of order n. The filter is written as a lin-
ear combination involving the previous observation
data, the previous one-step predictors, the AR co-
efficients, and the coefficients of a transient Kalman
gain. Alternatively, {15) clearly results from line
p+q of (9).

MA Component
1. Obtain the AR coefficients as above, form

Ko ={0(p) ... 02(2) 0, (1)]7  (16)

by solving the system of linear equations
n .

a?+2a?_—;ﬂ,~(n) =a;, 1<1<n,1<n<p
=1

and evaluate the initial smoothing vector

Lu = f{o + [—a,,... - az = aI]T.

2. Solve sequentially the fast filtering equations,

e Ku—l - HLn—IJLn—A
n = 17
K 1- (HL,_,)? (17)

L,=JL,-, — HLn—lﬁm (18)

When convergence is attained (i.e., L, — 0}, the
MA coefficients are the last ¢ elements of K,,. The
vector K,, is the time-varying Kalman gain for a
particular state space representation of (1), [2]. See
also [4]. For full details on the algorithm derivation,
see [2].
Algorithms’ Implementation

The two algorithms use the Burg technique to es-
timate the coefficients of the prediction error filters
of increasing orders directly from the data. The es-
timated values of the innovation filters coefficients
used in algorithm 1 are obtained through a recur-
sive inversion of Wx!. This matrix is computed
from (6) by replacing {al'} by {c’z?}
Algorithms’ Comparison

The similarities of the algorithms are their start-

ing point based on the reflection coeflicients se-
quence directly estimated from the data, the use of
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increasing order prediction error filters and the fact
that both MA estimation procedures have an as-
symptotic character. The main differences between
them are the following:

i) algorithm 1 is dual, i.e., the AR and MA com-
ponents are obtained using the same type of
operations;

ii) the AR and MA estimation procedures are de-
coupled in algorithm 1, whereas in algorithm
2 the MA estimation depends on the AR esti-
mated values;

iii) algorithm 2 does not use the innovation filters’
coefficients;

iv) algorithm 1 can use overdimensioned systems;

v) the AR estimation in algorithm 1 may use lower
order reflection coefficients than it does in al-
gorithm 2;

vi) in algorithm 1, the assymptotics of the MA pro-
cedure are in the order, N, of the highest re-
flection coefficient used, aﬁ. In algorithm 2,
this is in the iterative procedure propagating
the Kalman gain. This last method does not
use the af for N > p +¢;

Simulation Results

We present the results of 3 simulated experiments.
Figures 1, 2 and Table 2 show the true pole/zero
pattern ( x-true poles, o-true zeros) and the mean
estimated pattern (FF-estimated poles, o-estimated
zeros ) over 100 Monte-Carlo runs and 512 points
on each sample. Diagrams a) in all figures refer to
algorithm 2, while the remaining refer to the results
of algorithm 1 for successively higher number, N,
of reflection coefficients retained. Table 1 shows the
experimental parameter values used.

Model Poles Zeros o
ARMA(4,2) | 0.95%/%¢7 0.7¢E7108 1
0.9 eFio¥"
ARMA(4,4) | 095372 | 0.356e2/74" [ 15105
0.95¢E/107" | .85GeEs 11967
ARMA(6,4) | 0.85¢F%%" 0.95 ¢£67-57 1
09:*9“" Olgsctll’.’.b”
0.85¢% 138"

Table 1-True pole/zero location

Figure 1 illustrates the assymptotics of algo-
rithm 1 with N, showing the existence of an optimal
N. For N = p+ ¢ = 6, both algorithms use the same
number of reflection coefficients, the assymptotics
of algorithm 2 leads to better zero estimates (c.f.,
Fig.1-a) and b)). For N = 9, algorithm 1 uses an
overdimensioned system to estimate the {1; leading
to an overall better zero estimate (c.f., Fig. 1-a) and



—

Figure 1: Simulation results for ARMA(4,2)

¢)). Finally, for N = 20, errors in the estimation of
higher order reflection coefficients produce bias and
degradation in the estimation of the zeros of algo-
rithm 1 (c.f, Fig. 1-c) and d)). This process is also
studied in [5].

In Table 2 we display the mean estimated
pole/zero locations for the ARMA(4,4) process.

Algorithm Estimated Estimated
Poles Zeros

1 0.972:£773.07 0.857¢%774"
N=8 0.943¢%/105.17 | g go7etsLoe.2”
1 0.934¢T770-37 1 0 g12%s608"
N=9 0.937ets100.3" 0.823¢Ls113.47
2 0.979eX773-L7 | 0.843,E/71.37
0.934¢7102.8" | g gpgetsLve.s”

Table 2-Simulation results for ARMA(4,4)

We conclude that the MA assymptotic procedure
of algorithm 2 does not seem to improve on the zero
locations when compared with those obtained with
algorithm 1for N =p+g¢=8aud N = 9.

For the ARMA(G,4) process, algorithm 1 can use
to its advantage the reflection coefficients at least
till N = 30. For this value of N, this algorithm
performs better than the assymptotics of algorithm
2, see Fig. 2.

Conclusions

Although the paper presented only a preliminary set
of comparisons between the two algorithms, it seems
plausible to conclude that when algorithm 1 can use
a significant degree of overdimension, the resulting
statistical stability leads to better MA estimation
(c.f., examples 1 and 3). However, when this is not
the case, like in example 2, this study is inconclusive.

{ I
Figure 2: Simulation results for ARMA(6,4)

Besides further more exaustive comparison stud-
ies addressing also issues like bias and variance, we
will in the future pursue a combined MA procedure
where the starting values for algorithm 2 are pro-
vided by algorithm 1.
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