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ABSTRACT

The paper reports on time-varying delay estimation in a
multisource single direct acoustic path environment. It follows
up the work already presented at ICASSP 85 [1] for the single
source case. The signals are stochastic nonstationary pro-
cesses. The time delays are deterministic time-varying func-
tions described by a finite dimensional vector 8 of unknown
parameters. The observation noise is spatially correlated. The
observation time interval is arbitrary.

The estimation structure, based on maximum likelihood
(ML) techniques. performs the joint estimation of the signals
along with the identification of the parameter vector 4.

Under stationary, long observation time interval (SLoT).
and time-invariant delay assumptions, two special problem cat-
egories are discussed. The first assumes signals with no over-
lapping frequency spectra. The second considers the mixing
of strong and weak signals. For both class of problems. non-
optimal simplified estimation structures are suggested. Monte
Carlo simulation results illustrate how the optimal and non-
optimal processors mean square error performances compare
to the Cramér-Rao bound.

1. PROBLEM FORMULATION

The signal observed at sensor s of the receiver is
L
2(t,s) = 3 aque(t — Dy(1)) +v(t,s) (1)
e=1

where t € T (T = [0,T]) is the time parameter, s (sensor) and
€ (source) are space variables that take values on the sets of
coordinates S (S = {1,2,-+-,5}) and L (L = {1,2,---, L}),
respectively: Dj(t) and oy represent, respectively. the delay
function and the attenuation coefficient associated to each path
(s,€): the time-varying delay function Dg(t). ¥Vt & [0, 7). sat-
isfies the following conditions:

(1) itis a continuous function of t;
(i) it has first derivative with respect to t:

(iii) it is described by a deterministic time-varying function
of a finite dimensional vector 8, of unknown parameters,

ie.,
D;(t) = (2, 8,) . (2)

The observation noise v(t, s) is a Gaussian white noise process
with cross-covariance matrix R, (t)6(t - o) (s,m € S). The
nonstationary signal y,(t) (£ € L) is

d

205(8) = A(t)ze(t) + Be(t)ue(t) (3)

ve(t) = Co(t)ze(t) , t >ty . (4)
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The state z,(t) initial condition z,(ty) is a Gaussian random
vector with mean 2,(t) and cross-covariance matrix Ty (to. ty)
6.k ¢ L). The dynamics disturbance u,(t) (¢ € L)is a
aussian white noise process. independent of the observation
noise v(t,s) and of the random vector z4(to) (k € L). with
cross-covariance matrix Qult)o(t — o).
On occasion, when no ambiguity arises, function arguments
may be omitted.

2. ESTIMATOR STRUCTURE
Let us define the time-varying delay matrix
D(t) = [Dy(t)] - (5)

The delay estimate D(t) is constructed based on the ML pa-
rameter vector estimate (see expression (2)) [2]. [3]

0(t) = arg rgle%xJ(t;D‘(G)) , (6)
where
D' ={D(0) =7(0,8) , 0< o <t} (7

represents the time-varying delay realization. The log-likelihood
function is [2]. [3]

J(t:D') = /()l[ZTR‘lf’ - %?TR"‘? - %tr(R‘le)]da ()
where
Z(t) = ["(t, 1):27 (8, 2) - 2T (¢, S))T (9)
is the observation vector, and R(t)6(t — o) with
R(t) = [Rom(t)] (10)

is the observation noise covariance matrix.
In (8). the received signal minimum mean square error
(MMSE) vector estimate is

Y () = V() (11)
where .
Vo) = 3 eddelt, D3(1)) (12)
=1
and the error estimate covariance matrix is
Py (t) = [Py™(1)] (13)
where .
PyM(t) = 3 ajof Pult, D;, DY) . (14)
tk=1
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Figure 1: Estimator structure

In (12) and (14). 2(t, D;) is the signal ye(t — D;) MMSE es-
timate and Py(t, Dj, DF*) the corresponding cross-covariance
matrices obtained with the generalized Kalman-Bucy filter
(GKBF) [2]. [3]. The GKBF generalizes to systems with mul-
tiple time-varying delays in the observation process, the filter
developed by Kwakernaak [4] for linear systems with multiple
time-invariant delays in both the dynamics and/or the obser-
vations. )

Figure 1 shows the time-varying delay estimator structure.
The delay estimate D(t) is computed on-line based on the ML

parameter vector estimate §(t). It represents a generalized
cross-correlator.

.0}

3. SPECIAL PROBLEM CATEGORIES

Introduction

Under stationary, long observation time interval (SLoT
and time-invariant delay assumptions along with the hypoth-
esis of observability and controllability of the emitted signals
model. the GKBF is asymptotically time-invariant [gl] In this
context, we are going to consider two special problem cate-
gories:

(i) separable signal processes:
(ii) uncorrelated strong and weak signals.

For both class of problems, non-optimal simplified structures
are suggested.

Separable Signal Processes

Denoting (0, the signal y,(t) equivalent rectangular band-
width [5]. let us assume the emitted signals ve{t). Ve e L.

(i) are almost band-limited. i.e.. its power spectral density
See(w) satisfies

Vw e R\ Qe , Splw)=0; (15)
(ii) have no overlapping frequency spectra, i.e.,
VeeL: 0#£k QN =10 (16)

where 0 represents the empty set.

If we further assume the signal y,(t — D3) estimation error
is small, the signal estimate e(t, D}) power spectral density
Sy (w) is
Si (W) = Sulw) , Yw R, Ve L, s€S. (17)
Factorization of the steady-state generalized Riccati equa-
tion [2]. along with expressions (15-17). lead to the condition
on the signal estimates f,(t, D}) and (¢, D) (£ # k) power
cross-spectral density [2]

GRBF :
signall L

y,(l./)’;)
)

GKBF

Be(t, D;)

Bt D) V(D)

signal?
P
it D})

GKBF .

signall :
it DY)

(. D7)

Figure 2: Generalized Kalman-Bucy filter: L frequency separated signals
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AZ?Z,Y‘:O,VWE,‘R, Ys,me< S, ke L: L+#k,

(18)

which gives rise to

PM(r,1)CT ~0, Yre(0,1), Vs,me S, L,keL: L#k,

(19)
where Pj"(r(,r2) is the steady-state state estimation error
cross-covariance matrix. In this case, the covariance matrix
Py*(r1,r2) description, as well as the GKBF gain matrix, is
not based on the cross-covariance matrices P (ry,72), Ve, k €
L: ¢ # k. Therefore the multisource GKBIE structure decou-
ples into L parallel one source GKBF, being the effect of the
reminder L —1 sources introduced through the innovations pro-
cess (figure 2).

Uncorrelated Strong and Weak Signals

Consider an L source configuration. At the array of hydro-
phones, the average power of arrival of L, (L, < L - strong
signals) of the total number L of signals is much greater than
that of the remainder L, signals {weak signals). For instance,
this may model the presence of L, remote sources superim-
posed to L, close signal sources.

Assume zero mean mutually uncorrelated stationary sig-
nal processes, and denote P, the signal y,(t) average power.
The observed process is described by equation (1) where we
consider the attenuation factor

if €€ Ly ={1,2,---,L;}

& l ¥
““{ a<l if €€Ly={L+1,---,L} (20)

Therefore. if we assume the emitted signals average power is

Po=P,VtkelL, (21)
at the receiver's array we have
Po> PE=a*P, Ve Ly, k€ L, . (22)

In (22) a? represents the weak to strong signals average power
ratio.

The delay estimate D(t) is given by expressions (6-8) with
D=r(8)=0. (23)

The received signal estimate Y (t) (expressions (11-12)) and
the error covariance matrix Py (t) (]expressions (13-14)) are
both functions of a. When « is small, a second order approx-
imation to the log-likelihood function (LLF) can be considered
[2]. ie..

2
J(t; D) = JOE D) + aV(t; D) + %J(")(t; D), (24)

where

JO ;DY = J(t; D)
JUED) =0,

(25)

(26)
and

. ¢ ~ Ny 1 5
J@(t: D) :/0[(Z—Yoﬁ;)rR"Y“Litr(R“P,(;))]do. (27)

In the above expressions, D! represents the delay matrix re-
lated to the strong signals subset L,. J(¢; D*t) and Yof,,‘ being,

respectively, the LLF and the signal estimate established for
the L, sources problem.

The LLF J(t; D) is not a function of the remainder L,
signal delay matrix D%:. On the other hand, a being small.
one should expect that J(t; DX1) dominates the second order

2
a?

term & J()(t; D). These facts suggest the following two steps
non-optimal delay estimate procedure [2]:

(i) compute DEt(t) by maximization of J(t; D&):

(ii) taking DX = DEi(t), maximize J®(t; DE1(t), D) to
get DE=(t).

Figure 3 shows this non-optimal delay processor structure.
Block PL, represents the optimal delay processor developed
for the L, sources problem. Block LLF? generates the log-
likelihood function second order term {expression (27)). If
there is no need on estimating D2, we just have to imple-
ment the reduced processor PL,.

20 J(t:0M) bh)
N LLF® max >
PL,
V()i
NZ. U
(. Hliple DE=(t)
N LLF? AMGRALAS N —

Figure 3: Non-optimal delay processor structure

4. SIMULATION RESULTS

In the presence of a perturbation source located broadside
to the receiving array. consider the problem of estimating the
time delay between the signals observed at two spatially sep-
arated sensors.

The observations are described by equation (1) with

s} 0 if s=1 or ¢=2
Dg“{ D* if s=2 and £=1 "~ (28)
where D = 0.002 sec is the actual delay value. The obser-

vation noise is spatially and temporally white. with spectral
height

R(s)=01,s=1,2.

(29)

PR

£ 0.30E+8

[==]

B 0.2E400

& 0.106:00

g 0.006:00

* B.OBE0 0136483 BUSEI BUBEI 858D
w {rad/sec)

Figure 4: Power spectral density
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Processes ye(t). € = 1,2. are low-pass (figure 4) mutually
uncorrelated stationary signals, modeled by equations (3-4).
The signal y,(t). emitted by the source to be located. and the
signal y»(t). radiated by the perturbation source, are given by

Cl = C'l =1 (30)
B =B,=10 (31)
A = —100 (32)
Ay = =200 . (33)

The dynamic disturbance covariance is 406,6{t — o).

Assume we can restrain the delay domain to the time inter-
val [-0.01,0.01] sec. and consider a discretization step of 0.001
sec. The optimal and the non-optimal (reduced processor P L,
- figure 3} delay processors are then implemented through a
bank of 21 blocks working in parallel.

For both the optimal and the non-optimal structures. a 200
sample Monte Carlo experiment was run. The delay estimate
ensemble average and the mean square error (MSE) are plotted
in figures 5 and 6. respectively. Although for each time instant
¢ the bias achieved with the optimal estimator is smaller than
the one obtained with the non-optimal structure, for both pro-
cessors the delay estimate is asymptotically unbiased, and the
MSE achieves the Cramér-Rao bound (CRB). The simulation
results presented show the delay processor robustness when
the emitted signals modeling is not accurately known. due to
the presence of a weak interference.

o B.18E-81 5 ) )
g j D(t),5¢ Py No.runs = 200
3 0.50E-82 4 :
& i
é 1.80E+08 T
E 0,500~ D)
‘B.iﬁE“ﬁi T I T ] T [ Al \
B .60E+08 8.63E-01 8.13€468 8.19E+20 B.25E+88
t tsec)
Figure 5: Delay estimate ensemble average
3 8.16E-83 No.runs = 200
S 940689
5 0.80E-91
g 0.40E-04
#.08E+00 T T T T T T T T ]
8.80E+00 8.63E-81 8.13E+88 8.19€+00 8.25E+88
L (sec)

Figure 6: Delay estimate mean square error

5. CONCLUSION

The work presented in this paper reports on maximum like-
lihood (ML) time-varying delay estimation with mutually corre-
lated stochastic nonstationary signals and mutually correlated
observation noises. The general ML estimation structure pre-
sented can be interpreted as a generalized cross-correlator. In
[3] we expand on the present processor, presenting its asymp-
totic study under stationary, long observation time interval
(SLOT) and time-invariant delay assumptions. In this con-
text, an approximate structure to this general ML processor
can be achieved, that generalizes [2]. [3]:

(1) Ng and Bar-Shalom [6] processor, developed for a muiti-
source environment with spatially uncorrelated observa-
tion noise;

{ii) Kirlin and Dewey 7] estimator, established for a single
source configuration with spatially correlated observation
noise;

(iif) Knapp and Carter [8] generalized cross-correlator, ob-
tained for a single source geometry with observation noise
uncorrelated among sensors.

Said in another way, these classical ML solutions are SLOT ap-
proximations to the general ML estimator structure presented
in this paper.
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