
DISTRIBUTED ITERATE-COLLAPSE INVERSION (DICI) ALGORITHM
FOR L−BANDED MATRICES

Usman A. Khan and José M. F. Moura

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213
{ukhan, moura}@ece.cmu.edu

ABSTRACT

In this paper, we present a distributed algorithm to invertL−banded
matrices that are symmetric positive definite (SPD), when the sub-
matrices in the band are distributed among several processing nodes.
We provide a distributed iterate-collapse inversion (DICI) algorithm
that converges, at each node, to the corresponding submatrices in the
inverse of theL−banded matrix. The computational complexity of
the algorithm to invert an SPDL−bandedn×n matrix can be shown
at each node to beO(L4t) that is independent ofn, wheret is the
number of iterations used by the DICI algorithm. Local information
exchange is carried out after each iteration to guarantee convergence.
We apply this algorithm to invert the information matrices in a com-
putationally efficient distributed implementation of the Kalman filter
and show its application towards inverting arbitrary sparse SPD ma-
trices.

Index Terms— Sparse matrices, Distributed algorithms, Matrix
inversion, Kalman Filtering, Large-scale systems

1. INTRODUCTION

Banded matrices are found frequently in signal processing, e.g., in
the context of discretization of partial differential equations govern-
ing a random field and autoregressive or moving average image mod-
eling. When they are constrained to be symmetric positive definite
(SPD) matrices, they are the inverses of the covariance matrices of
causal or non-causal Gauss-Markovian random processes [1]. Fur-
thermore, in linear algebra, solving a sparse large linear system of
equations is a well studied problem, where a sparse matrix inverse is
to be calculated. By employing matrix reordering algorithms [2], we
can convert sparse SPD matrices to banded SPD matrices. Hence,
computing the inverse of banded matrices efficiently is an important
problem both in signal processing and linear algebra.

The direct inverse of banded matrices can be computed centrally
but that requires extensive storage, communication, and computa-
tion. Algorithms to compute direct inverses include Gauss-Jordan
elimination. Most inversion algorithms for SPD matrices involve a
Cholesky factorization that is efficient on a single processor imple-
mentation as long as computation power and memory requirements
are within limits. Incomplete Cholesky factorization is also an im-
portant method for solving large sparse SPD linear systems [3].

This work was partially supported by the DARPA DSO Advanced
Computing and Mathematics Program Integrated Sensing and Processing
(ISP) Initiative under ARO grant # DAAD 19-02-1-0180, by NSF under
grants # ECS-0225449 and # CNS-0428404, by ONR under grant # MURI-
N000140710747, and by an IBM Faculty Award.

Z(l)

O

Z

S=Z-1

Z(2)

Z(N)

S(N)

S(2)

Z(1)

Z =

S(1)

Fig. 1. Composition of theL−band ofZ from the local matrices,
Z(l), shown in the left figure. Central Implementation ofS = Z−1,
shown in the right figure.

Recursive inversion of banded matrices can be found in [4, 5]. In
[4], a forward-backward recursion algorithm is provided to compute
the inverse of a tridiagonal matrix, which involves a forward recur-
sion to start from the first node and reach the last node, and a back-
ward recursion that proceeds in the opposite direction. Since, the
iterations involve serial communication of the local matrices among
all the nodes, the associated latency is impractical, besides requiring
an inordinate amount of communication.

We study the banded matrix inversion when the band of the ma-
trix is distributed among several processing nodes, see figure 1 (left),
and hence a distributed algorithm with local communication is in-
trinsic to the nature of the problem. This arises in problems where
the information is distributed in a large geographical region, e.g.,
through distributed sensing, and hence the matrix to be inverted is
distributed among the sensors in the system [6]. On the other hand,
we may be interested in solving a very large linear system of equa-
tions on a multiprocessor machine where parallelizing the algorithm
is essential in load balancing and its real-time implementation, and
hence the matrix is distributed among different available processors.

ConsiderZ to be anL−banded matrix (we refer to a matrix as an
L-banded matrix (L ≥ 0), if the elements outside the band defined
by theLth upper andLth lower diagonal are zero) and we are inter-
ested in computingS = Z−1, when the non-zero submatrices along
the main diagonal ofZ are distributed amongN processing nodes.
This is shown in figure 1 (left). Thelth node has a diagonal subma-
trix, Z(l), termed as thelocal matrix at nodel. We note here that
theL−band ofZ should be preserved among all the nodes, i.e., each
element in theL−band ofZ must be a member of at least one local
matrix, Z(l). Collecting the complete matrix at a central location,

moura
Text Box
ICASSP'08, IEEE International Conference on Acoustics, Speech, and Signal
Processing, March 31-April 4, Las Vegas.

z11 z12 0
z12 z22 z23

z23 z33 z34

z34 z44 z45

0 z45 z55

-1

=

s11 s12 s13 s14 s15

s12 s22 s23 s24 s25

s13 s23 s33 s34 s35

s14 s24 s34 s44 s45

s15 s25 s35 s45 s55

=
-1

=

Fig. 2. DICI algorithm on a5× 5 L = 1−banded matrixZ.

as shown in figure 1 (right), where the inverse can be computed, is
infeasible because of the extensive computation and communication
requirements.

We provide a distributed iterate-collapse inversion algorithm,
named DICI (pronounced die-see to sound like spicy), forL−banded
SPD matrices. We point out here that the DICI algorithm will give
the diagonal submatrices,S(l), that lie in theL−band ofS at the
appropriate nodes. For the nonL−band elements inS, we provide a
theorem to calculate them, with only local communication, from the
elements in theL−band ofS. This process is also shown in figure 2
for a5× 5 L = 1−banded matrixZ.

We use the Jacobi algorithm [7] that solves linear systems of
equations, in theiterate stepof the DICI algorithm. We then employ
a non-linearcollapse stepthat exploits the structure of the matrixZ
to reduce the computation requirements of the ordinary Jacobi algo-
rithm. It is noteworthy here that when Jacobi or Gauss-Seidel type
(block) iterative algorithms [7, 8] are used to solve linear system of
matrix equations (ZS = B, for S,B matrices), they implementn
linear system of vector equations (Zs = b, for s,b vectors). On the
other hand, the DICI algorithm employs a non-linear collapse step
by exploiting the structure of the matrixZ. This collapse step makes
the computation complexity of the DICI algorithm independent of
the size,n, of the matrix. The algorithm scales efficiently when
compared toO(n3) direct inversion algorithms andO(n2) fast in-
version algorithms, e.g., [4].

We summarize the rest of the paper. Section 2 presents the
Jacobi algorithm with its extensions to matrices, section 3 gives
the distributed implementation of the Jacobi algorithm. We present
the DICI algorithm in section 4, and its application to distributed
Kalman filter in subsection 5.1 and to sparse matrix inversion in sub-
section 5.2. Section 6 concludes the paper.

2. JACOBI ALGORITHM

The Jacobi algorithm [7] is an iterative algorithm to solve

Zs = b (1)

for s, by successive substitution, wheres ∈ Rn andb ∈ Rn are
vectors, andZ ∈ Rn×n is a matrix. LetM = diag(Z), i.e., the
diagonal matrix with the main diagonal ofZ and zero elsewhere.
The Jacobi algorithm [7] is given by

sk+1 = Psk + M−1b, k ≥ 0 (2)

wherek is the iteration number and the multiplier matrix,P, is

P = M−1 (M− Z) . (3)

Note that sinceZ is L−banded, the multiplier matrix,P, in (3), is
alsoL−banded. It can be shown that the vectors is the fixed point

solution of the iteration in (2). We can extend (2) to solve

ZS = B (4)

for S, whereS ∈ Rn×n and B ∈ Rn×n are now matrices, by
writing (2) in matrix form as follows.

Sk+1 = PSk + M−1B (5)

Solving for
S = Z−1 (6)

is equivalent to lettingB to be ann × n identity matrix, I. The
iterative algorithm for the inverse of the matrixZ now becomes,

Sk+1 = PSk + M−1. (7)

3. DISTRIBUTED JACOBI ALGORITHM

When the matrixZ is L−banded and its local matrices,Z(l), are
distributed amongN nodes, as shown in figure 1 (left) , the Jacobi
algorithm, (7), can be distributed as follows. The iteration for the
ij-th element,sij , in Sk+1 can be written at timek + 1 as

sij = pis
j
k (i 6= j) (8)

sij = pis
j
k + mi (i = j) (9)

wherepi is theith row of the multiplier matrix,P, andsj
k is thejth

column of the matrixSk, andmi is theith element at the diagonal in
M−1. Since, the multiplier matrix,P, isL−banded, we note that the
only non-zero elements in theith row,pi, of P are located at most at
thei−L, . . . , i, . . . , i+L locations and can be represented by{pi}q,
whereq goes fromi−L, . . . , i, . . . , i+L. These non-zero elements
pick the corresponding elements,{sj

k}q, in the jth column,sj
k, of

Sk, from (8) or (9). Based on the dimensions of the submatrix at
thelth node,S(l), the elements{sj

k}q lie in the submatricesS(l−1),
S(l), andS(l+1) and hence can be communicated to nodel from the
neighboring nodesl − 1 andl + 1, see figure 2.

Thus, forL−banded matrices,Z, the iterative algorithm to find
its inverse in (7) can be distributed with communication only from
the neighboring nodes. To initialize the algorithm, we have

P(l) =
�
M(l)

�−1 �
M(l) − Z(l)

�
, (10)

S
(l)
0 =

�
Z(l)

�−1

. (11)

Drawbacks for distributed Implementation: Since the inverse,S,
of theL−banded matrix,Z, is, in general, full, we are required to
iterate on the elements that do not lie in theL-band ofS as can be
seen from (7). This can be shown by writing out the iteration on the
L−band elements45,k+1 from (8), see figure 2 forL = 1−banded
matrix,Z,

s45,k+1 = p43s35,k + p44s45,k + p45s55,k. (12)

Equation (12) shows that the iterations on anL−band elements45

requires a nonL−band elements35. The iterations on the non
L−band elements35 from (7) can be written as

s35,k+1 = p32s25,k + p33s35,k + p34s45,k. (13)

The computation in (13) involvess25,k that lies in the nonL−band
of Sk, iterating on which, in turn, requires another nonL−band ele-
ment,s15,k, and so on. Computing the elements outside theL−band,

thus, requires iterating on all the elements in a single row ofS, at the
node corresponding to that row. Hence, a single iteration of the al-
gorithm, although requiring only local communication, sweeps the
entire rows inS at the corresponding nodes and the complexity of
this approach scales with the size,n, of the linear system.

4. DISTRIBUTED ITERATE-COLLAPSE INVERSION
(DICI) ALGORITHM

To overcome iterating on the entire row ofSk at the corresponding
nodes, we present the DICI algorithm. The algorithm is a2−step
algorithm with aniterate stepand acollapse step. Before explaining
the steps, we present the following theorem forL = 1, [5]. Its
generalization toL > 1 can be found in Theorem3 in [5].

Theorem 1. LetZ beL = 1−banded andS = Z−1. Then any non
L−band element,sij , |i − j| > L, can be written as a function of
the elements inside theL−band.

sij = si,j−1 (si+1,j−1)
−1 si+1,j (14)

If any of the elements in (14) is a nonL−band element, then it
is written first in terms ofL−banded elements using (14). The DICI
algorithm is divided into the following two steps.

Iterate step: The iterate step is implementing (8)–(9) but only
for the elements inside theL−band ofSk, i.e., ij-th element when
|i − j| ≤ L. Each nodel iterates on the elements of its own local
matrix,S(l). To accomplish this, they need elements ofS(l−1) and
S(l+1) and so they are required to communicate with the neighboring
nodes (nodel − 1 and nodel + 1).

To start the iterate step, we need the initial conditions that are
provided in (10)–(11). We also set the nonL−band elements re-
quired in implementing the iterate step, see (12), to be zero, i.e.,

{sij}|i−j|>L = 0. (15)

Eachlth node performs an initial communication step where the rel-
evant elements of the neighboring multiplier matrices,P(l−1) and
P(l+1), required for the iterate step are communicated. Note that
these elements remain fixed throughout the rest of the algorithm.

Collapse step:The collapse step is to use (14) for the compu-
tation of those nonL-band elements that are required to implement
(8) of the iterate step. When we use equation (14), we are not re-
quired to do the entire row sweep, hence distributing the algorithm
completely.

Theorem 1 is only valid whenS is the inverse of anL−banded
matrix. But at eachk, Sk is not the inverse of anL−banded matrix,
instead it is converging toS, which is the inverse of anL−banded
matrix. Thus we call this step a collapse step, since it collapsesSk

to the space of matrices having anL−banded inverse.
Convergence:We note that the centralized Jacobi algorithm for ma-
trix inversion, in (7), has the error process,Ek+1, given by

Ek+1 = Sk+1 − S,

= PEk. (16)

Thus, the error process converges if the spectral radius (the largest
eigenvalue),||P||, of the multiplier matrix,P, is less than1. Since
the distributed Jacobi algorithm has no approximation involved in
going from (7) to (8)–(9), the convergence criteria are the same.

Let bEk+1 be the error process of the DICI algorithm. We show
the convergence of the DICI algorithm numerically by plotting the
difference error process,∆Ek+1, defined as

∆Ek+1 = bEk+1 −Ek+1, (17)

0 100 200 300 400 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

DICI iterations, k

∆
E

k+
1

||P|| = 0.998
||P|| = 0.993
||P|| = 0.97
||P|| = 0.94
||P|| = 0.82
||P|| = 0.67

Fig. 3. Trace of∆Ek+1, plotted versus the DICI iterations for sev-
eral different||P|| (curves are plotted in the same order from top to
bottom as||P|| appears in the legend).

in figure 3. Since∆Ek+1 goes to zero (we simulated for several val-
ues of||P||), from figure 3, the DICI algorithm converges whenever
Ek+1 goes to zero.

5. APPLICATIONS

We provide two applications for the DICI algorithm below.

5.1. Distributed Kalman filtering

Distributed Kalman filters are very important especially when we
have to estimate largen−dimensional dynamical systems and their
observations are distributed geographically, e.g., US power grid mon-
itored by a sensor network. Withn of the order of106 to 108 con-
ventional distributed approaches become practically infeasible. A
computationally efficient Kalman filter is implemented by spatially
decomposing the system intonl-dimensional local node (or sensor)-
driven models, see [9], wherenl � n. Local Kalman filters of much
lower dimension,nl, are now implemented at each node (sensor)l.
Shared observations and estimates across different local models are
fused using bipartite fusion graphs, see [6]. For the local prediction
step in the local Kalman filters, it can be shown that we are required
to compute the local error covariance matrices,S(l), from the local
information matrices,Z(l), see [6]. The relationship between their
centralized counterparts (centralized error covariance matrix,S, and
the centralized information matrix,Z) for n = 5 is depicted in fig-
ure 2, where the information matrices,Z, are approximated to be
L−banded (equivalent to approximating the Gaussian error process
of the Kalman filter to be Gauss-Markovian ofLth order, see [4]).
We employ the DICI algorithm to computeS(l) from Z(l). The sim-
ulation results for the distributed Kalman filter implementation with
a5−dimensional system and nearest neighbor model dynamics em-
ploying DICI algorithm to compute the inverse of the local informa-
tion matrices is shown in figure 4. Convergence of the DICI algo-
rithm can be verified as the trace of the error covariance matrix in
the centralized Kalman filter withL = 1−banded approximation on
the centralized information matrix can be seen to be exactly overlap-
ping with the trace of the error covariance matrices in the distributed
Kalman filter implementation.

0 200 400 600 800 1000
0

1

2

3

4

5

Kalman filter iterations, t

tr
(S

t)

Fig. 4. Kalman filter withL = 1−banded approximation on the
information matrices,Zt. Trace of the error covariance matrix,St,
is plotted for the centralized Kalman filter (-O-) and the distributed
Kalman filter (-©-).

5.2. Sparse Matrix Inversion

We show the extension of the DICI algorithm to invert sparse SPD
matrices after applying matrix reordering algorithms to the sparse
SPD matrices. These algorithms apply matrix bandwidth reduc-
tion methods, e.g., Reverse Cuthill Mckee (RCM) algorithm reorder-
ing [2], such that the sparse SPD matrices are converted to banded
matrices by permutation of rows and columns.

ConsiderZ to be an arbitrary sparse SPD matrix. We can apply
the RCM algorithm to convertZ into anL−banded matrix,Z. The
general reordering looks like

Z = PZPT . (18)

The inverse ofZ is given by

Z
−1

= PT Z−1P. (19)

We can parallelize the computation ofZ−1 on a multiprocessor ma-
chine using the DICI algorithm and computingZ

−1
reduces to com-

putation of orderO(L4t) at each processor (node)l, and two matrix
multiplications. The matrixP is a permutation matrix and multiply-
ing by it is a permutation of rows (and columns).

Remarks: It may seem that pre- and post-multiplication with
the permutation matrix,P, in (19), has to be implemented at a cen-
tral location. In fact, this step can also be distributed by realizing
that the permutation of rows and columns can be implemented by
imposing a communication graph on the nodes using the structure of
the permutation matrix,P. Hence,P, determines the communica-
tion topology required by the nodes to communicate the appropriate
elements among the nodes.

We show the result of the RCM algorithm on a100×100 sparse
SPD matrix,Z, shown in figure 5(a), which is converted to aL =
12−band matrix,Z, shown in figure 5(b), by the permutation ma-
trix given by the RCM algorithm [2]. Depending on the number of
nodes, theL = 12−banded matrix,Z, shown in figure 5(b), is di-
vided into overlapping local matrices. Note that the minimum size
of the local matrix isL + 1× L + 1, which in the case (L = 12) is
a13× 13 matrix.

6. CONCLUSIONS

We present a distributed inversion algorithm, DICI, for banded SPD
matrices that is distributed both in terms of communication and com-

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(a) A random sparse SPD

matrix, Z, with sparseness
density 0.03. Non-zero ele-
ments are shown in black.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(b) L = 12−banded re-

ordering ofZ, shown in fig-
ure 5(a), using RCM algo-
rithm [2].

Fig. 5. RCM algorithm

putations. Each node does local communication and performs com-
putation of orderO(L4t) with only local matrices, whereL << n
andt is the number of iterations of the DICI algorithm. The algo-
rithm has significant importance when applied to problems where
partial information about a global phenomenon is available at the
nodes and where parallelized solutions are sought under resource
constraints for load balancing.

7. REFERENCES

[1] N. Balram and J. M. F. Moura, “Noncausal Gauss Markov ran-
dom fields: Parameter structure and estimation,”IEEE Trans. on
Information Theory, vol. 39, no. 4, pp. 1333–1355, Jul. 1993.

[2] E. Cuthill J. McKee, “Reducing the bandwidth of sparse sym-
metric matrices,” inProceedings of the 24th National Confer-
ence, New York, 1969, pp. 157–172.

[3] G. Golub and C. Van Loan,Matrix Computations, The Johns
Hopkins University Press, Baltimore, MD, 1996.

[4] A. Kavcic and J. M. F. Moura, “Matrices with banded in-
verses: Inversion algorithms and factorization of Gauss-Markov
processes,”IEEE Trans. on Information Theory, vol. 46, no. 4,
pp. 1495–1509, Jul. 2000.

[5] A. Asif and J. M. F. Moura, “Inversion of block matrices with
L-block banded inverse,”IEEE Trans. on Sig. Proc., vol. 53, no.
2, pp. 630–642, Feb. 2005.

[6] U. A. Khan and J. M. F. Moura, “Distributing the Kalman filters
for large-scale systems,” Submitted to IEEE Trans. on Signal
Processing, http://arxiv.org/pdf/0708.0242.

[7] D. Bertsekas and J. Tsitsiklis,Parallel and Distributed Compu-
tations, Prentice Hall, Englewood Cliffs, NJ, 1989.

[8] V. Delouille, R. Neelamani, and R. Baraniuk, “Robust dis-
tributed estimation using the embedded subgraphs algorithm,”
IEEE Trans. on Sig. Proc., vol. 54, pp. 2998–3010, Aug. 2006.

[9] U. A. Khan and J. M. F. Moura, “Model distribution for dis-
tributed Kalman filters: A graph theoretic approach,” in41st
Asilomar Conference on Signals, Systems, and Computers, Pa-
cific Grove, CA, Nov. 2007, accepted for publication.

