
SPIRAL: JOINT RUNTIME AND ENERGY OPTIMIZATION OF LINEAR TRANSFORMS

Marek Telgarsky, James C. Hoe, José M. F. Moura

Carnegie Mellon University
Department of Electrical and Computer Engineering

5000 Forbes Ave.
Pittsburgh, PA 15232

ABSTRACT

There is much interest into joint runtime and energy opti-
mization of implementations of signal processing algorithms.
Applications in domains such as embedded computing, sen-
sor networks, and mobile communications often require pro-
cessing of signals under simultaneous runtime, energy and/or
power constraints. Hence, in addition to runtime, power and
energy are first-order design considerations for both hardware
and software developers in those domains. This paper studies
the automatic generation of software implementations of digi-
tal signal processing (DSP) transforms that are optimized with
respect to both runtime and energy. We explore the impact
of algorithm selection (a software technique) and voltage-
frequency scaling (a hardware technique) on the runtime and
energy of computing fast linear transforms. We use SPIRAL,
a code generation system, to enumerate automatically many
alternative algorithms for the discrete Fourier transform. We
measure the runtime and energy of these algorithms at dif-
ferent voltage-frequency settings of an Intel Pentium M mi-
croprocessor. We report experimental results supporting that
algorithm selection and voltage-frequency scaling do achieve
the following: (1) have large impact on the runtime and en-
ergy of computing the discrete Fourier transform on a micro-
processor; and (2) enable the optimization of important joint
runtime-energy objectives.

1. INTRODUCTION

The SPIRAL code generation system [1] generates platform-
adapted linear transform implementations whose runtime is
competitive with the best-available hand-coded implementa-
tions and/or vendor libraries on a given platform. SPIRAL
achieves optimization by exploring and evaluating automati-
cally the space of algorithm design for fastest runtime. This
basic approach also has potential for impacting the optimiza-
tion of energy and other joint runtime-energy optimization
metrics.

This research is supported in part by DARPA through the Department of
Interior grant NBCH1050009 and by NSF grant ACI-0325687.

Energy and power have become major concerns for not
only the traditional low-power applications but also increas-
ingly for high performance computing applications (due to
power delivery and cooling concerns). Recent microproces-
sors, whether for lower-power embedded computing, mobile
computing or high-performance servers, have begun to sup-
port voltage-frequency scaling where the performance of the
processor can be reduced to conserve energy when perfor-
mance is not critical.

In this paper, we study the automatic generation of soft-
ware implementations of signal processing transforms that
achieve joint optimization of runtime and energy. We con-
sider two promising degrees of freedom, algorithm selection
and voltage-frequency scaling, and evaluate their impact on
the runtime and energy of linear transform computations on
microprocessors. Specifically, we evaluate a broad range of
SPIRAL-generated algorithms for the discrete Fourier trans-
form at varying voltage-frequency settings available on the
Intel Pentium M microprocessors. We demonstrate that al-
gorithm selection and voltage-frequency scaling have large
impact on the runtime and energy of computing the discrete
Fourier transform on a microprocessor. There is no single uni-
versally applicable joint runtime and energy optimizing crite-
rion. Rather, there is a Pareto optimal set of designs in the
runtime-energy optimization plane. Different algorithms and
different voltage-frequency scaling settings can create a large
population of runtime and energy choices. A subset of these
forms the Pareto optimal set.

Paper outline. We begin in Section 2 with an overview
of the joint runtime-energy optimization problem. Section 3
next presents the two degrees of freedom we employ to affect
runtime and energy, namely algorithm selection and voltage-
frequency scaling. Section 4 describes our experiments and
presents our results. Section 5 discusses our findings based on
the experimental results. Section 6 provides our conclusions.

2. JOINT RUNTIME-ENERGY OPTIMIZATION

This section provides an overview of the joint runtime-energy
optimization space. We review the metrics for joint runtime-
energy optimization and Pareto optimality.

III ­ 10481­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

Fig. 1. The conceptual design space for optimizing runtime
and energy.

2.1. Runtime and energy

Computing a linear transform on a processor requires some
time (T) and energy (E). For a given transform, factors,
such as algorithm, compiler, and processor performance, af-
fect the runtime and energy. Each possible instantiation of the
transform’s execution would correspond to a point on a two-
dimensional plot with runtime and energy as the x- and y-axes
respectively (Fig. 1). An execution with lower runtime would
be further to the left; an execution with lower energy would
be further in the down direction.

In a joint optimization, one not only reduces runtime and
energy, i.e., moving towards the origin in Fig. 1, but also con-
siders the tradeoff between them. Such joint-optimizations
often are formulated as the optimization of a scalar composite
objective function f(E, T). For example, an often minimized
composite metric is power (E/T). Another well-known com-
posite metric is the energy-delay-product (EDP or E · T) [2].
By balancing the gain and loss between runtime and energy,
many different points in the runtime-energy plane can achieve
the same EDP (as indicated by the EDP isogram in Fig. 1).

In addition to the scalar objective, a joint optimization can
also be constrained by inequalities such as ceilings on runtime
and/or energy. The exact formulation of the objective func-
tion and any associated constraint is decided by the specific
requirements of the application context.

2.2. Pareto optimality

Considering all possible factors that could affect runtime and
energy, all possible executions of a given transform would
populate the runtime-energy plane with a large number of
points as depicted in Fig. 2. Regardless of the choice of ob-
jectives and constraints, Pareto optimality theory requires that
the optimal solution be a member of the Pareto optimal set [3].
A point is a member of the Pareto optimal set only if there
does not exist another point with both lower runtime and en-
ergy. In Fig. 2, we show the Pareto optimal front, which is the
line through the Pareto optimal set. A joint runtime-energy
optimization corresponds to finding the Pareto optimal set and
optimizing the objective function over the members that sat-

Fig. 2. Pareto optimal front for joint runtime-energy opti-
mizations.

isfy all given constraints.

3. FACTORS AFFECTING RUNTIME AND ENERGY

In this paper, we examine two factors that affect runtime and
energy to achieve joint optimization of linear transform com-
putation on a processor. The first factor is the algorithm de-
sign and selection. The second factor is the operating volt-
age and frequency of the processor, which can be adjusted on
modern low-power processors including the Intel Pentium M
and Intel X-Scale.

3.1. Algorithm Design in SPIRAL

SPIRAL, [1], produces platform adapted code for linear trans-
forms (such as the discrete Fourier transform, discrete trigono-
metric transforms, wavelets, and filters). Inside the SPIRAL
framework, knowledge about the algorithmic implementation
of transforms is captured symbolically as parameterized fac-
torization rules (e.g., the Cooley-Tukey rule for the discrete
Fourier transform). By choosing different rules and factor-
ization parameters in the recursive applications of the factor-
ization rules, SPIRAL can generate fast1 linear transform al-
gorithms with different memory access patterns and different
operation mixtures and orderings. In addition, SPIRAL ap-
plies a set of parameterizable high-level code optimizations.

To optimize for runtime, SPIRAL enumerates and evalu-
ates different algorithmic implementations of a given trans-
form with the help of a feedback-driven search engine. For
runtime optimizations, SPIRAL can find transform implemen-
tations that are competitive with the best-available vendor li-
braries for a given platform (e.g., Intel Integrated Performance
Primitives for the Intel P4 microprocessors). The question of
interest is whether algorithm selection and code optimization
can have the same impact on energy and other joint runtime-
energy objectives.

1We stress that all these algorithms are O(n log n) where n is the dimen-
sion of the transform. Their different runtimes arise from their data flows and
the impact of the memory hierarchy of the computing platform.

III ­ 1049

3.2. Voltage-frequency scaling

To minimize energy when performance is not critical, modern
low-power processors allow software to adjust the operating
voltage and frequency, a mechanism commonly referred to
as dynamic voltage and frequency scaling [4]. The operat-
ing voltage and frequency is increased or decreased together
in specific combinations. For example, the Intel Pentium M
model 770 can operate at six operating points: 2133MHz at
1.34V, 1866MHz at 1.27V, 1600MHz at 1.2V, 1333MHz at
1.13V, 1067MHz at 1.06V, and 800MHz at 0.99V [5]. When
the operating frequency is reduced, the first-order effect is an
approximately linear reduction in the effective performance
of the processor. On the other hand, reducing operating volt-
age leads to a much better than linear reduction in the power
dissipation of the processor. Thus, voltage-frequency scal-
ing results in a significant reduction in energy for a given
computation—longer runtime but much lower power.

4. EXPERIMENTAL RESULTS

For a transform, algorithm selection and voltage-frequency
scaling can be combined to generate different points in a joint
runtime-energy optimization plane. In this section, we present
an empirical study on the effects of algorithm selection and
voltage-frequency scaling on the runtime and energy of the
discrete Fourier transforms (DFT).

4.1. Methodology

The host system under test is an Intel Pentium M model 770
microprocessor on an AOpen i615GMm-HFS motherboard,
running Linux 2.6.10. The runtime of a DFT algorithm on the
microprocessor is determined using built-in cycle counters.
The energy of executing a transform cannot be measured di-
rectly. Instead, instantaneous power is sampled by measuring
the supply current to the microprocessor. Energy is computed
by integrating power over time.

In our test system, the chassis power supply feeds the mi-
croprocessor through two dedicated 12V supply lines. We
sample the supply current 1400 times per second using an Ag-
ilent 34134A AC/DC current probe and an Agilent 34401A
digital multimeter. The functionality of measuring the run-
time and energy of a transform implementation is fully auto-
mated in SPIRAL.

4.2. Results

We instruct SPIRAL to search over 100 randomly generated
fast algorithms for each two-power sized DFT transforms up
to DFT1M. We measure runtime and energy at all six voltage-
frequency settings. We observe two classes of behaviors dis-
tinct for large transforms (i.e., DFT64K and larger whose data
working set exceeds the 2MByte on-chip cache) and small

0 0.5 1 1.5 2

x 10
−5

0

0.5

1

1.5
x 10

−4

Runtime (s)

E
ne

rg
y

(J
)

Pareto Front

EDP = 4.5E−10 Joule⋅sec

2133Mhz
1866Mhz
1600Mhz
1333Mhz
1066Mhz
800Mhz

Fig. 3. Runtime and energy when varying DFT256 algorithms
and voltage-frequency scaling.

transforms (i.e., DFT32K and smaller whose data working set
fits entirely in the cache).

Fig. 3 and Fig. 4 report for DFT256 (representative of
in-cache DFT sizes) and DFT1M (representative of out-of-
cache DFT sizes) the runtime and energy of different algo-
rithms at different voltage-frequency settings. The data points
corresponding to different algorithms executing at the same
voltage-frequency setting form six discernible bands in each
graph. The distribution of data points in Fig. 3 and Fig. 4
supports that both algorithm selection and voltage-frequency
scaling have a large impact on the runtime and energy of com-
puting DFT on a processor. Furthermore, the data points form
a Pareto optimal front that permits interesting optimizations
of joint runtime-energy objectives.

5. DISCUSSION

In Fig. 3 and Fig. 4, for a given voltage-frequency setting,
the fastest algorithm is also the lowest energy algorithm. In
other words, algorithm selection for runtime optimization also
optimizes for energy. This is not surprising because more
runtime-efficient algorithms tend to perform less computation
and involve fewer data movements. Furthermore, due to the
proportional relationship between runtime and energy for dif-
ferent algorithms at a given voltage-frequency setting, pro-
cessor power dissipation is roughly constant independent of
the algorithm. On the other hand, voltage-frequency scaling
results in a wide range of power levels.

For the six points in the Pareto optimal set of DFT256, the
runtime varies linearly with the inverse of the operating fre-
quency. This is expected for on-chip computations because
the entire processor is slowed down, including the on-chip

III ­ 1050

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Runtime (s)

E
ne

rg
y

(J
)

 EDP =
0.43 Joule⋅sec

Pareto
Front

2133Mhz
1866Mhz
1600Mhz
1333Mhz
1066Mhz
800Mhz

Fig. 4. Runtime and energy when varying DFT1M algorithms
and voltage-frequency scaling.

caches. On the other hand, for the six points in the Pareto opti-
mal set of DFT1M, the runtime slows less than expected when
operating frequency is reduced. This is because the runtime
of large DFT computations is dominated by a large number
of expensive off-chip DRAM accesses due to frequent level-
2 cache misses. This dominating off-chip component in the
runtime of large DFT computations is not increased when the
frequency of the processor is reduced.

The minimization of the energy-delay-product (EDP) cri-
terion also illustrates the difference between compute-bound
and memory-bound computations. Fig. 3 and Fig. 4 include
EDP isograms through their respective lowest-EDP points.
Fig. 3 supports that for compute-bound small DFT computa-
tions, EDP is minimized at the highest performance voltage-
frequency setting (i.e., maximum frequency and maximum
voltage). For memory-bound large DFT computations, EDP
is minimized at a lower-performance setting.

6. CONCLUSION

SPIRAL explores the space of runtime and energy efficient
software implementations of linear transforms automatically.
The degrees of freedom exploited in the paper are algorithm
selection and voltage-frequency scaling. We study the impact
of these degrees of freedom on uniprocessor DFT implemen-
tations executing on the Intel Pentium M. An expected con-
clusion of the study is that with respect to algorithm selection,
the two goals of runtime and energy minimization are highly
correlated—fast implementations running at a given voltage-
frequency setting are energy efficient. Voltage-frequency scal-
ing provides the opportunity for tradeoff between runtime and
energy. This tradeoff, captured by the Pareto front, changes

with problem size. As the Pareto front changes, so does the
location of the optimal operating point for a given metric, like
EDP. Finding the optimal operating point for a given problem
size and optimization criterion is best done with a system like
SPIRAL. SPIRAL can find these optimal operating points au-
tomatically.

We are currently extending SPIRAL to generate multi-
threaded transform code to address the energy/power vs. run-
time tradeoff in the increasingly-popular multi-core proces-
sors. Although traditionally a performance optimization tech-
nique, parallelization is, in fact, an efficient joint runtime-
energy optimization. Under ideal parallelization by a factor
of N , runtime is reduced by a factor of N , but the energy
required by the computation is not changed, thus reducing
energy-delay-product by a factor of N . Furthermore, par-
allelization can be combined with voltage-frequency scaling
to achieve the same level of performance as a single-thread
execution but using lower energy and power (e.g., [6]), be-
cause voltage-frequency scaling reduces energy and power
more drastically than runtime performance. The SPIRAL de-
sign generation and exploration framework is particularly well-
suited for automating this complex optimization problem.

7. REFERENCES

[1] Markus Püschel, José M. F. Moura, Jeremy Johnson,
David Padua, Manuela Veloso, Bryan W. Singer, Jianxin
Xiong, Franz Franchetti, Aca Gačić, Yevgen Voronenko,
Kang Chen, Robert W. Johnson, and Nick Rizzolo, “SPI-
RAL: Code generation for DSP transforms,” Proceedings
of the IEEE, special issue on “Program Generation, Op-
timization, and Adaptation”, vol. 93, no. 2, pp. 232–275,
2005.

[2] Ricardo Gonzalez and Mark Horowitz, “Energy dissi-
pation in general purpose microprocessors,” IEEE Jour-
nal of Solid-State Circuits, vol. 31, no. 9, pp. 1277–1284,
September 1996.

[3] R. E. Steuer, Multiple Criteria Optimization: Theory,
Computation, Application, Krieger, 1989.

[4] Anantha Chandrakasan, William J. Bowhill, and Frank
Fox, Eds., Design of High-Performance Microprocessor
Circuits, Wiley-IEEE Press, 2000.

[5] Intel Corporation, Intel Pentium M Processor with 2-MB
L2 Cache and 533 MHz Front Side Bus Datasheet, July
2005, Reference Number 305262-002.

[6] Murali Annavaram, Ed Grochowski, and John Shen,
“Mitigating Amdahl’s law through EPI throttling,” in
Proceedings of the 32nd International Symposium on
Computer Architecture, June 2005, pp. 298–309.

III ­ 1051

