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ABSTRACT

In sensor networks, many sensors cooperate and collaborate
to monitor overlapping subsets from a set of targets. We
consider the important issue of fusing their soft decisions.
These soft decisions depend on the sensors’ measurements
and take the form of probability densities. Consequently,
data fusion becomes a problem of probabilistic inference on
a factor graph of arbitrary topology, which can be accom-
plished by belief propagation. This paper studies the con-
vergence of belief propagation when the soft decisions are
Gaussian densities, that is, studies the convergence of the
variances and means computed by belief propagation. We
show that if the spectral radius ρ of a certain matrix is less
than one, the means resulting from belief propagation con-
verge to the true means. This extends to general topology
sensor networks the results for a fully-connected network of
two sensors and m targets in [1].

1. INTRODUCTION

Advances in wireless communications and distributed em-
bedded systems have fueled the growth of research in the
field of sensor networks [2]. In this paper, we focus on data
fusion in sensor networks by analyzing belief propagation
over a general graph topology with Gaussian densities. This
paper gives a sufficient condition on the spectral radius of a
certain matrix for convergence of the means as computed by
belief propagation to the true means.

Sensor networks involve many sensors detecting multi-
ple, perhaps different, targets. Like in [3], we assume that
local processors collocated at the sensors map the measure-
ments into probability density functions, which we call soft
decisions. For example, given a sensor network with n sen-
sors and m targets, if sensor yi detects targets x1, x3, xm−1,
then the corresponding soft decision of the sensor’s proces-
sor is p∗i = p(x1, x3, xm−1|yi). From these decisions, we
desire to obtain the marginal densities p(xi|y1, . . . , yn) of
the joint density p(x1, . . . , xm|y1, . . . , yn).
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Thus, data fusion in sensor networks can be modeled as
probabilistic inference on factor graphs [3]. Furthermore,
finding the marginal densities of a factorable joint probabil-
ity density function amounts to applying belief propagation,
an instance of the sum-product algorithm, on a representa-
tive factor graph [1, 4, 5]. When the joint density assumes
a Gaussian distribution, the messages in belief propagation
simply consist of second-order Gaussian statistics [5]. In
addition, [6] and [1] have studied the convergence of be-
lief propagation on Gaussian graphs. We recap their results
below, and then, explain how our work differs from theirs.

In [6], the authors derive closed-form expressions for
the marginal statistics generated by belief propagation on
general cyclic graphs and provide a sufficient condition for
convergence. Furthermore, they show that when the mes-
sages in belief propagation converge to a fixed point, then
the marginal means based on these messages converge to
the true means. Unfortunately, the given sufficient condi-
tion does not easily extend to practice and does not give
insight into which Gaussian systems lead to convergence.

The authors in [1] confine their analysis to a factor graph
of two factor nodes fully connected to an arbitrary number
of variable nodes. Using a different approach than that in
[6], they also demonstrate that when belief propagation con-
verges, the estimated marginal means coincide with those
of the true marginal densities. Moreover, they state a suf-
ficient condition that can be verified in practice and iden-
tify certain structures in the covariance matrices of the soft-
decision densities that satisfy the sufficient condition.

However, the graph in [1] cannot model sensor networks
well because sensor networks generally involve many sen-
sors, each sensing a collection of targets that could differ
from those sensed by others. The resulting bipartite graphs
usually contain three or more factor nodes, which we call
sensor nodes, that do not fully connect to all variable nodes,
which we call target nodes. In this paper, we extend results
in [1] to Gaussian graphs of arbitrary topologies.

For notational simplification and due to lack of space,
we illustrate our approach with a specific graph. However,
we have shown that these results inductively apply to more
general factor graphs. In the first section, we present The-



orem 1, which demonstrates under reasonable assumptions
the convergence of the message variances sent from the sen-
sor nodes to the target nodes. These message variances take
the form of diagonal covariance matrices. In the second
section, we present Theorem 2, which provides a sufficient
condition under the same assumptions for the convergence
of the message means and states that the marginal means
calculated from the messages converge to the true means.
The message means take the form of mean vectors.

��������y1 ��������y2 ��������y3

f1

��
��

��
f2

��
��

��
��

��
��

f3

��
��

��

	
��
���x1 	
��
���x2 	
��
���x3

g1 g2 g3

Fig. 1. A Network of Three Sensors and Targets

2. CONVERGENCE OF MESSAGE VARIANCES

Consider three networked sensors where the first sensor y1

senses targets x1 and x2, the second sensor y2 senses tar-
gets x1, x2, and x3, and the third and last sensor y3 senses
targets x2 and x3. The graph in Figure 1 models the sensor
network. Associated with each sensor node fi is a soft deci-
sion p∗i such that p∗1 = p(x1, x2|y1), p∗2 = p(x1, x2, x3|y2),
and p∗3 = p(x2, x3|y3). Assume that the soft decisions are
Gaussian densities, p∗i = N (µi, Σi), with statistics whose
dimension corresponds to the number of edges incident on
the sensor node. Associated with each target node xi is a
univariate Gaussian density raised to a power equal to the
target node’s number of edges minus one. For example, if
p(x2) = N (m2, σ

2
2), then the density at target node x2 is

p(x2)2 = N (m2,
1
2σ2

2).
As stated earlier, fusing the soft decisions is equivalent

to finding the marginals p(xi|y1, y2, y3) for i = 1, 2, 3. Be-
lief propagation attempts to obtain the marginals without
calculating the joint density f = p(x1, x2, x3|y1, y2, y3).
We denote the joint prior density as p0 = p(x1, x2, x3).

To facilitate analysis, we generalize and extend the no-
tation and operators used in [1] to our sensor network. Let
q
(k)
i (xj) be the message sent from sensor node fi to target

node xj in the kth iteration. Also, let q
(k)
i denote the prod-

uct of messages sent in the kth iteration from sensor node
fi to its connected target nodes. For example, the collective
message sent from node f1 is q

(k)
1 = q

(k)
1 (x1)q

(k)
1 (x2).

From the dynamics of belief propagation, we can relate
individual messages in the next iteration to messages in the

current iteration. For example,

q
(k+1)
2 (x2) =

∫
p∗2

q
(k)
1 (x1)
p(x1)

q
(k)
3 (x3)
p(x3)

dx1dx3 (1)

We introduce the operators π and α in order to write ex-
pressions for the collective messages q

(k)
i concisely. Again,

we follow the notation used in [1] whenever possible. Let
π be an operator on a density h that factors a joint density
into the product of its marginals. When we apply the oper-
ator π on the joint density f = p(x1, x2, x3|y1, y2, y3), we
obtain the factored density π(f) =

∏3
i=1 p(xi|y1, y2, y3).

If the joint density f is Gaussian, and f = N (µ,Σ), then
π(f) = N (µ, δ(Σ)), where δ(Σ) denotes a diagonal matrix
with the diagonal elements of Σ. In addition, let α be a nor-
malization operator on a density h such that αh = h∫

h(x̄)dx̄
.

We proceed to define the new operator λij not found in
[1] in the following paragraph and explain why we need it
in the context of the network in Figure 1.

To begin with, from the network of Figure 1, messages
sent by sensor node f3 to its target nodes rely on the mes-
sages sent from other sensor nodes to targets x2 and x3.
We define an operator λij that restricts all messages sent
by a sensor node fj to only those messages sent to tar-
get nodes shared with another sensor node fi. For clarity,
we interpret the action of λ32 on collective message q

(k)
2

sent by sensor node f2 to all target nodes x1,x2, and x3.
The product of messages sent from sensor node f2 only to

target nodes shared with sensor node f3 is λ32

(
q
(k)
2

)
=

λ32

(
q
(k)
2 (x1)q

(k)
2 (x2)q

(k)
2 (x3)

)
= q

(k)
2 (x2)q

(k)
2 (x3). Gen-

erally, λij operates on a density h and keeps only the vari-
ables of h that belong to a set of variables shared between
densities p∗i and p∗j ; λij marginalizes out the other vari-
ables. As another example, if h = p0 = p(x1, x2, x3),
then λ12(h) = p(x1, x2). If h is Gaussian, the operator λij

reduces the dimensions of the statistics of h.
With the extended and new operators, we can generi-

cally express messages sent in the next iteration from any
sensor node fi to its connected target nodes xi in terms of
the current messages sent from other sensor nodes as

q
(k+1)
i = α

⎛
⎝π

⎛
⎝p∗i

∏
j �=i

λij

(
q
(k)
j

)
λij(p0)

⎞
⎠ ∏

j �=i

λij(p0)

λij

(
q
(k)
j

)
⎞
⎠
(2)

for all i = 1, 2, 3.
Ultimately, we want to show that the messages con-

verge to a set of fixed messages as the number of itera-
tions increases, that is, limk→∞ q

(k)
i = q∗i , under reason-

able assumptions. The symbol ∗ in this paper means a fixed
point. First, we assume that the joint prior density p0 =
p(x1, x2, x3) in our example is a multivariate standard nor-
mal density, that is p0 = p(x1)p(x2)p(x3) = N (0, I0),



where I0 is the identity matrix of dimension 3. Also, we as-
sume that the covariance matrices of the soft-decision den-
sities Σi for all i = 1, 2, 3 are positive definite and contain
enough information about the targets, that is, the matrices
Σ−1

i − ∑3
j=1,j �=i ξi(λij(I0)) are positive definite, too. No-

tation ξi preserves dimensionality and allows us to subtract
the matrices λij(I0) from Σ−1

i . Sensors’ local processors
can generate covariances that satisfy these assumptions.

With these assumptions, we can relate the statistics of
the messages sent from any sensor node in the kth iteration
to the statistics of messages sent from all other sensor nodes
through the expression given in (2). As stated earlier, we
can bundle together the messages sent from any sensor node
to its connected target nodes as q

(k)
i . For sensor node f1 in

Figure 1, the message bundle sent from f1 to x1 and x2 at

the kth iteration is q
(k)
1 ∼ N

(
M

(k)
1 , C

(k)
1

)
, where M

(k)
1

is a 2 × 1 mean vector containing the message means and
C

(k)
1 is a 2 × 2 diagonal covariance matrix containing the

message variances.
The covariance of q

(k)
1 in the next iteration, C

(k+1)
1 , is

a function of certain elements in the other two covariances
C

(k)
2 and C

(k)
3 , which are the current message variances sent

from sensor nodes f2 and f3 to their connected target nodes,
respectively. C

(k+1)
1 depends only on the messages of f2

and f3 sent to x1 and x2. We represent this mathematically
with the function Fi similar to the one used in [1]. Thus,

C
(k+1)
1 = F1

(
λ12

(
C

(k)
2

)
, λ13

(
C

(k)
3

))
.

More generally, function Fi with covariance matrices

λij

(
C

(k)
j

)
, j �= i as arguments returns a covariance matrix

C
(k)
i embodying the message variances sent by sensor node

fi to its connected target nodes. Using equation (2), we
can give a closed-form expression for this function in terms

of the covariance matrices λij

(
C

(k)
j

)
, and the covariance

matrices λij (I0)), where I0 is the covariance matrix of the
joint prior density p0 of variables x1, x2, and x3.

In like manner, we can relate all the message means of a
sensor node fi in the next iteration to the other sensor nodes’
message variances and message means in the current itera-
tion by relating M

(k+1)
i to all M (k)

j and C
(k)
j , j �= i. Again,

we represent this mathematically with a function Hi similar
to the one used in [1]. For example, the message means of
node f1 in Figure 1 would be expressed as M

(k+1)
1 =

H1

(
λ12

(
M

(k)
2

)
, λ12

(
C

(k)
2

)
, λ13

(
M

(k)
3

)
, λ13

(
C

(k)
3

))
,

which could be expanded out like the function F1. To pre-
serve clarity and conserve notation, we leave out the closed-
form expressions for Fi and Hi.

Although the message means depend on both the mes-
sage variances and means, the message variances do not
depend on the message means. In our example, we group
the covariance matrices containing the message variances

into a three-tuple
(
C

(k+1)
1 , C

(k+1)
2 , C

(k+1)
3

)
. This three-

tuple is a point in D3 = D × D × D, where D is the set
of positive-definite diagonal matrices. As each coordinate
of this point depends on the other coordinates in each it-
eration of belief propagation, we concisely express this as(
C

(k+1)
1 , C

(k+1)
2 , C

(k+1)
3

)

= (F1 (· · · ) ,F2 (· · · ) ,F3 (· · · )) = F
(
C

(k)
1 , C

(k)
2 , C

(k)
3

)
.

The operator F with superscript k denotes k applications of
corresponding equations in Fi for the covariance matrices
C

(k)
i given initial matrices C

(0)
i for all i = 1, 2, 3. Hence,

(
C

(k)
1 , C

(k)
2 , C

(k)
3

)
= Fk

(
C

(0)
1 , C

(0)
2 , C

(0)
3

)
. (3)

Fk behaves as an operator on D3 possessing certain
properties, such as continuity and monotonicity. We can
show from these properties that Fk has a unique fixed point.
Indeed, the message variances in belief propagation con-
verge uniquely, as summarized in Theorem 1.

Theorem 1 The operator F possesses a fixed point in D3.
Furthermore, denoting this fixed point by (C∗

1 , C∗
2 , C∗

3 )

lim
k→∞

Fk
(
C

(0)
1 , C

(0)
2 , C

(0)
3

)
= (C∗

1 , C∗
2 , C∗

3 )

for all C
(0)
1 , C

(0)
2 , C

(0)
3 ∈ D.

Given the assumptions stated earlier, Theorem 1 says that if
we initialize the message variances with positive numbers,
the message variances converge in belief propagation. The
proof of Theorem 1 is lengthy and follows from the above
definitions of operators and functions.

3. CONVERGENCE OF MESSAGE MEANS

Theorem 1 says that the message variances unconditionally
converge under reasonable assumptions. However, the mes-
sage means converge conditionally, and we must manipu-
late and use the closed-form expressions represented by the
functions Hi in order to find a sufficient condition.

Because we have limited space, we briefly describe our
procedure to find the sufficient condition. From linear sys-
tems theory, we know that given a sequence yk+1 = Tkyk +
bk, where Tk converges to T and {λi} are the eigenvalues
of T , if ρ(T ) = maxi |λi|, then yk+1 converges. ρ(T ) is the
spectral radius, or largest eigenvalue magnitude, of matrix
T . We collect the mean vectors M

(k)
i containing the mes-

sage means sent from sensor node fi to its target nodes xi

as one large vector yk to find an equivalent block matrix T
from the closed-form expressions of Hi.

As it turns out from the closed-form expressions of Hi,
the sufficient condition for the convergence of the mean vec-
tors M

(k)
i containing the message means depends on the



spectral radius of the block matrix TΣ1,Σ2,Σ3 , where

TΣ1,Σ2,Σ3 =

⎛
⎝ 0 Θ1∗ Θ1∗

Θ2∗ 0 Θ2∗
Θ3∗ Θ3∗ 0

⎞
⎠ . (4)

Each block Θi∗ of the partitioned matrix TΣ1,Σ2,Σ3 depends
on all the covariance matrices C∗

i of the fixed point and the
covariance matrix Σi of the soft-decision density p∗i . We
summarize the sufficient condition for the convergence of
the message means in the following theorem.

Theorem 2 If ρ(TΣ1,Σ2,Σ3) < 1, then ∃ vectors M∗
1 ,M∗

2 ,

M∗
3 such that for any vectors M

(0)
1 , M

(0)
2 , M

(0)
3 and any

matrices C
(0)
1 ,C(0)

2 ,C(0)
3 ∈ D,

i. the sequence (M (k)
1 ,M

(k)
2 ,M

(k)
3 ) converges to

(M∗
1 ,M∗

2 ,M∗
3 ).

ii. the marginal means estimated from the message
statistics are the true marginal means.

This sufficient condition ρ(TΣ1,Σ2,Σ3) < 1 can be ver-
fied in practice because Theorem 1 guarantees that the fixed
point of the function F exists. To verify it, we iterate on
F , obtain the fixed point covariance matrices C∗

i , and then,
compute the Θ∗

i , which lead to matrix TΣ1,Σ2,Σ3 . If the
spectral radius of TΣ1,Σ2,Σ3 is less than one, then the mes-
sage means converge, from which we conclude that the es-
timated means for the marginal densities converge to the
exact means, applying a result in [6].
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Fig. 2. Sensor Network of General Topology

Arbitrary Topology The degree of a node is the num-
ber of edges shared by that node. For example, in Figure 2,
the degree of node f1 is 3 and the degree of node f2 is 2. We
have presented up to now two theorems describing the con-
vergence of the message variances and the message means
of the sensor network in Figure 1 for pedagogical reasons.
We can in fact show that these results are general and extend
to a generic sensor network of arbitrary topology. Contrast-
ing Figure 2 with Figure 1, we see that in the generic topol-
ogy, we can have n arbitrary sensors monitoring m arbitrary
targets. The degree of the sensor nodes and of the target

nodes is also arbitrary, that is, the topology is not regular.
We note that in this topology, a target can be sensed by sev-
eral or just a single sensor, as exemplified by target node
x1. The proof for the generic topology entails introducing
a few additional operators. Lack of space prevents us from
presenting them here.

4. CONCLUSION

We have analyzed data fusion for a partially connected sen-
sor network of three sensor nodes and three target nodes.
Specifically, we have shown that we can model the data fu-
sion of the local processors’ soft decisions as belief propa-
gation on a factor graph with sensor nodes and target nodes.
Furthermore, we have shown that the variances of the mes-
sages passed during belief propagation converge uncondi-
tionally under reasonable assumptions and that the means
of the messages converge to the true means when the spec-
tral radius of a certain block matrix is less than one.

Although we present our convergence results with spe-
cific sensor-target interdependencies, our results hold for
Gaussian graphs of arbitrary topology. We plan to extend
these convergence results even further to Gaussian mixture
models and more general probability distributions.
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