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ABSTRACT

The use of hyperspectral imagery for remote sensing de-
tection applications has received attention recently due to
the ability of the hyperspectral sensor to provide registered
information in both space and frequency. However, this
coupling of spatial and spectral information leads to an
immense amount of data for which it has proven difficult
to develop an efficient implementation of the Maximum-
Likelihood (ML) detector. In this paper we present the
Gauss-Markov random field (GMRF) detector which we
have developed for detecting man-made anomalies in hyper-
spectral imagery: The GMRF detector is the first compu-
tationally efficient ML-detector for hyperspectral imagery.
We compare the detection performance and the computa-
tional requirements of our detector implementation to the
benchmark RX detection algorithm for hyperspectral im-
agery.

1. INTRODUCTION

In this paper we address the issue of detection of man-made
objects using airborne hyperspectral imagery. Hyperspec-
tral sensors collect hundreds of narrow and contiguously
spaced spectral bands of data organized in the so called hy-
perspectral cube. The hyperspectral imagery provides fully
registered high resolution spatial and spectral information
that is invaluable in discriminating between man-made ob-
jects and natural clutter backgrounds. This comes at a
cost. The high volume of data in the hyperspectral cube
has precluded the development of computationally practical
Maximum-Likelihood (ML) detectors of man-made anoma-
lies in clutter. Our focus is on the “inflight” processing of
the data, so computational considerations are of extreme
importance.

In this paper, we present the Gauss-Markov random

field (GMRF) detector, a computationally efficient ML anomaly

detector that fully adapts to the unknown statistics of the
clutter, and fully exploits the spatial and spectral correla-
tion of the hyperspectral imagery. We show that the GMRF
detector is significantly simpler computationally than the
benchmark anomaly detection algorithm - the RX method [1].
The GMRF approach avoids the costly step of inverting
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the large sample covariance matrix of the clutter which
is the limiting factor in other ML-implementations. We
present new detection results using real hyperspectral im-
agery from the SEBASS and HYDICE hyperspectral sen-
sors which highlight the fully adaptive GMRF detector as
a promising alternative to the benchmark algorithm.

2. THE FULLY ADAPTIVE GMRF DETECTOR

2.1. The GMRF Clutter Model

The GMRF clutter model captures the spatially-spectrally
correlated nature of the background in hyperspectral sensor
data through two important properties: Markovianity and
noncausality. Considering the hyperspectral data cube as
a 3-D finite lattice, the intensity at each pixel location in
the lattice is referenced by the variable r and three sub-
indices 1,7, and k, which indicate the spatial location and the
particular spectral band in which the pixel lies. Processing
is done on small regions of the data set in which it is valid
to assume that the clutter is homogeneous. The processing
region is further divided into sub-lattices of size N; X IV; x IVy
where Ny is equal to the total number of available spectral
bands. We refer to these sub-lattices as Markov windows.
Each of the Markov windows is lexicographically ordered to
form a set of independent data vectors.

Within each Markov window, we let zijx, 1 < ¢ < NV;,
1 <j<N;, 1<k < N represent a 3-D finite lattice field.
The intensity, x;;x, of each clutter pixel is described by an
extension of the minimum mean square error (MMSE) rep-
resentation of Woods [2]. For simplicity of the presentation,
we adopt a first-order, homogeneous, noncausal GMRF de-
scribed by
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The parameters Bn, Bv, and (s are the MMSE predictor
coefficients for the spatial and spectral dimensions, respec-
tively, and €;; is the prediction error. At the edges of the
Markov window we assume zero Dirichlet boundary condi-
tions [3]. The noise field, €;;x, is correlated, with correlation
structure discussed below . Equation (1) corresponds to a
first order 3-D Markov model. It is assumed, without loss
of generality, that the clutter is zero mean. In practice, the
spatially varying mean is locally estimated and removed
from the data.



Using equation (1), the data within a Markov window
can be compactly represented by the matrix-vector equation
AX = ¢ where we use the Kronecker product [4] to represent
the matrix A in a concise manner,

A=1In,QIN,®B+In @HN, @C+ Hy, ®In, ®D (2)

The matrices B,C, and D are themselves structured and
defined as

B = -(nHy, + 1y, (3)
c = —IBIIINJ' (4)
D = -y, (5)

The symbols In,,In;, and Iy, are identity matrices, while
H Ile H ,lvj, and Hzlvf are Toeplitz matrices which have zeros
everywhere except for the first upper and first lower diago-
nals which are composed of all 1’s. The subscript denotes
the size of the matrices.

The matrix A, referred to as the potential matrix, is a
sparse block tridiagonal matrix and contains all the rele-
vant information regarding the GMRF structure {3]. The
error vector, € is a sample from a colored noise process with
covariance X, = o2A. This leads to the direct parameteri-
zation of the inverse of the clutter covariance matrix, £ ?,

o l= (6)
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Using equations (2)- (5) in equation (6),the inverse covari-
ance matrix of the field X is expressed in Kronecker nota-
tion as:
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This parameterization is a function of the four scalar pa-
rameters, o2, By, By, and B;. When using real hyperspec-
tral imagery, the clutter model must be adapted to the data
by estimating these four parameters.

2.2. Clutter Adaptation

In previous work, we have presented and analyzed three es-
timation approaches for clutter adaptation [5]. The three
methods we have considered are the optimal Maximum-
Likelihood (ML) approach, a classical Least Squares (LS)
approach, and an approximate-ML (AML) approach. In [5],
we show that both the AML and LS estimation methods
provide similar detection performance when incorporated
into our GMRF modeling framework, and represent desir-
able alternatives to the optimal ML-estimator since they
avoid a nonlinear optimization. Since we have also shown
in prior work [5] that the AML estimation algorithm is com-
putationally the best of the three procedures considered, it
is the estimator that we use for the work in this paper.
The AML estimation method uses a simple mathemat-

an in depth derivation of the AML estimates see [5]. The
resulting AML estimates are,
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included to ensure that the estimates are inside the param-
eter space. The quantities xx, xv, and, xs are defined by,
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where z77, represents the intensity of the pixel at spatial
location %, j, spectral band k, and within the mth Markov
window.

2.3. Single Hypothesis Detection

In an effort to use a 3-D GMRF model for the target, as well
as the clutter, we use a single hypothesis test rather than the
binary hypothesis test discussed in our previous work [6].
A single hypothesis test is useful for situations in which
one class is well-defined and the others are not. Although
various types of natural clutter are present in the imagery,
we work with the underlying assumption that within the
N; x Nj processing block, there is only one type of clutter
present, and, therefore, the clutter is well-defined by using
the AML method to estimate the parameters of the GMRF
model.

The processing window is separated into two regions: a
perimeter clutter region and an interior target region. Both
the clutter mean and Markov parameters, which completely
define the clutter statistics, are estimated from data in the
clutter region. From the data in the target region, a set of
observation vectors, {Y;};L,, is formed, and the statistical
distance between these vectors and the clutter vectors is
measured. Mathematically, the distance measure for the
set of m independent observation vectors is defined by:

1 — 1 < re L
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where m_ is the clutter mean.

ical approximation to the Log Likelihood function (LLF)
that is associated with the hyperspectral clutter data. For

Substituting the spatially-spectrally correlated Kronecker
parameterization from equation (7) for £7! into equation (11),

38



and simplifying, the distance between the observation vec-
tors from the target region and those of the clutter region
becomes,

15
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where ﬂh,@,, and ﬂAs are defined by the equations in sec-
tion 2.2 and o2 is a linear combination of 8,8y, and ;.

The quantities Y, Yy, and s ,are defined by equations (8),(9),

and (10), with the exception that only data in the central
target region of the processing window is used in their com-
putation. Sy is the autocorrelation of the observation data.

Since we simply compare the target vectors to the clut-
ter vectors, it is implied in the single hypothesis approach
that the target, in addition to the clutter, is modeled by a 3-
D noncausal GMRF. The underlying assumption is that the
target and clutter are correlated differently and that these

differences will be reflected in the estimates for 8y, 8, and Ss.

3. PERFORMANCE RESULTS

In this section, we compare the computational and detec-
tion performance of our fully adaptive GMRF anomaly de-
tector to the RX algorithm, which is the benchmark anomaly
detection algorithm for multispectral imagery. The RX al-
gorithm is also one of the most prevalent anomaly detec-
tion algorithms currently being used to analyze hyperspec-
tral imagery, even though to make the analysis feasible, the
number of bands from the hyperspectral data set must be
significantly reduced.

Since we are interested in the ability of the detector
to correctly tag man-made anomalous targets in real-time
situations, our first measure of comparison is the compu-
tational complexity of the algorithms measured in float-
ing point operations (FLOPs) per pixel. As the second
comparison measure, we use detection ROC curves which
plot the false alarm rate versus the probability of detection.
Throughout this section, we use the acronym SHYP-AML
to represent our GMRF detector which uses single hypoth-
esis detection in conjunction with AML estimation.

3.1. Computational Performance

To evaluate the computational effectiveness of the algo-
rithms, we derive from the C-code implementation of each
algorithm, an expression relating the number of FLOPS re-
quired to compute the detection statistic for one pixel in
the image set to the number of spectral bands used for pro-
cessing. The FLOPs for the GMRF and RX algorithms
are also dependent on the sizes of the processing, target,
and Markov windows. A plot of the number of FLOPS as a
function of the number of spectral bands used for processing
is shown in figure 1(a). The processing, target, and Markov
windows are fixed at appropriate sizes for lm GSD data.
Most noticeably, the SHYP-AML algorithm has the advan-
tage that the total number of FLOPs increases linearly with
the number of spectral bands N,. As shown in figure 1(a),
this is a significant improvement over other ML-detection
implementations, such as RX, in which the computational
complexity increases with NZ. This high order polynomial
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Figure 1: (a) Computational comparison: SHYP-AML vs
RX. The GMRF algorithm is linearly rather than exponen-
tially dependent on the number of spectral bands. (b) A
magnified view of the cross-over region in (a)

growth in FLOPS as the number of spectral bands grows
precludes the use of algorithms, such as RX, on true hyper-
spectral data. In practice, the application of RX is usually
preceded by binning the hyperspectral cubes, i.e., averaging
spectral bands. Also, RX decouples the spatial and spec-
tral correlation, and assumes the data is spatially white. In
contrast, the linearly increasing complexity of the GMRF
algorithm makes it viable and practical, from a computa-
tional point of view, even when using a large number of
spectral bands and fully exploiting the coupled spatial and
spectral correlation of the data.

Figure 1(b) is a zoomed in view of the region in fig-
ure 1(a) in which the curves of the SHYP-AML, and RX
algorithms cross one another. Due to the overhead involved
in estimating the GMRF parameters, the plots indicate that
the RX algorithm provides a slight computational advan-
tage when a small number of spectral bands is used for pro-
cessing, i.e., when using multispectral imagery. However,
when using more than approximately 15 spectral bands,
the SHYP-AML approach is computationally superior. The
GMRF algorithm can potentially perform even better, com-
putationally, than indicated by figure 1(b) because the C-
code implementation has not been fully optimized. The
code for the RX algorithm, on the other hand, is a mature
implementation that is distributed for use in industry.

3.2. Detection Performance

In the last section, we showed that our new fully-adaptive
GMRF anomaly detection algorithm provides a significant
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Figure 2: ROC performance of the GMRF and RX algo-
rithms on HYDICE sensor data

computational improvement over the benchmark anomaly
detection algorithm. In this section, we show that this sig-
nificant computational gain is coupled with an improvement
in performance, in comparison to the RX algorithm, for tar-
gets with significant spatial extent.

The first set of results are shown in figure 2, and are for
a HYDICE hyperspectral sensor image. The Hyperspectral
Digital Imagery Collection Experiment (HYDICE) sensor
collects 210 bands of data in the visible to short-wave in-
frared portion of the electromagnetic spectrum. The ROC
curves in figure 2 are a result of averaging the total 210
bands down to 41 bands. This is necessary in order to make
comparisons to the RX algorithm which is limited compu-
tationally in the number of spectral bands on which it can
reasonably operate. The scene, in this case, contains both
forest and open dirt field regions. There are a total of 20
targets that are located in the open.

In this example, figure 2 shows that the SHYP-AML
algorithm outperforms the RX algorithm. It is significant to
note that the GMRF algorithm displays better performance
while processing the data in a third of the time of the RX
algorithm.

Figure 3 shows the results of the GMRF and RX al-
gorithms on a SEBASS sensor hyperspectral image. The
Spatially Enhanced Broadband Array Spectrograph Sys-
tem (SEBASS) sensor collects 128 bands of data in the
long-wave region of the electromagnetic spectrum. For this
image, the scene is a mixture of forest, fields, and water,
but is an easier data set in the sense that there are only 5
targets in the scene, all of which are in the open and sur-
rounded by extremely homogeneous backgrounds. For this
example, the 128 bands have been binned into 31 bands.

The results show that the GMRF algorithm significantly
outperforms the benchmark RX method. Again, the GMRF
algorithm provides this increased performance in a third of
the time of the benchmark algorithm.

4. CONCLUSIONS

In this paper, we have presented an overview of the GMRF
ML-detector that we have developed for locating spatial-
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Figure 3: ROC performance of the GMRF and RX algo-
rithms on SEBASS sensor data

spectral anomalies in hyperspectral sensor imagery. We
have shown that our new detector provides a significant
computational advantage over the benchmark anomaly de-
tector, the RX algorithm. Specifically, the computational
complexity of the GMRF detector increases linearly with
the number of spectral bands in contrast to the exponen-
tial increase displayed by the RX method. In addition to
this computational improvement, we have shown, on both
HYDICE and SEBASS real hyperspectral imagery, that the
GMRF detector provides an improvement in detection per-
formance. The coupling of reduced processing time with
increased detection performance makes the GMRF detector
a promising alternative to the current benchmark anomaly
detection algorithm for hyperspectral imagery.
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