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ABSTRACT

We present in this paper a Bayesian algorithm for op-
timal multiframe detection and tracking of small ex-
tended targets in two-dimensional (2D) finite resolution
images. The algorithm integrates detection and track-
ing into a single framework using as data a sequence
of cluttered sensor snapshots. Performance studies us-
ing Monte Carlo simulations show substantial improve-
ments when the proposed Bayes tracker is compared to
the association of a correlation filter and a linearized
Kalman-Bucy filter. Likewise, there are significant de-
tection performance gains of up to 6 dB in peak signal-
to-noise ratio (PSNR) when the multiframe Bayes de-
tector is compared to a single frame likelihood ratio
test (LRT) detector.

1. INTRODUCTION

We introduced in [3] a new Bayesian algorithm for inte-
grated multiframe detection and tracking of extended
targets in one-dimensional (1D) finite discrete grids.
In this paper, we extend the algorithm to two dimen-
stons (2D) and present comprehensive 2D detection and
. tracking performance studies based on Monte Carlo
simulations.

A sensor device (e.g., an imaging radar or an in-
frared camera) generates a sequence of finite resolution
images of a surveillance region. The goal is to decide
whether targets are present or not at any given frame
of the sequence, and, if targets are declared present, to
track them across the successive frames. Previous solu-
tions to this problem propose a suboptimal separation
of the detection and tracking stages [1]. A single frame
predetection stage generates a preliminary estimate of
the targets’ position. These preliminary estimates are
then statistically associated to a linear tracking filter,
typically a Kalman-Bucy filter (KBf). By contrast, we
use nonlinear stochastic filtering to design the optimal
multiframe detector/tracker that integrates detection
and tracking into a common framework.
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The optimal detector/tracker benchmarks the per-
formance that can be achieved by any alternative algo-
rithm. We quantify this benchmark using Monte Carlo
simulations that generate optimal detection and track-~
ing performance curves in the 2D case. These curves
provide a bound that indicates the performance gain
to be had over any other suboptimal scheme. We show
in the paper that there is a significant margin of im-
provement in tracking performance in comparison with
the common association [1] of a correlation filter and a
linearized KBf. We also show that there are detection
performance gains of up to 6 dB in PSNR to be had
over the usual single frame likelihood ratio test (LRT)
detector.

The paper is divided into 6 sections. Section 1 is
this introduction. Section 2 reviews briefly the target
signature, target motion, and clutter models that un-
derly our proposed algorithm. Section 3 presents the
detection and tracking algorithms. Further details are
found in [4]. Sections 4 and 5 present the performance
results, respectively for tracking and detection. Finally,
section 6 summarizes the main contributions of the pa-
per.

2. PROBLEM SETUP

We consider as targets of interest 2D rigid bodies with
translational motion. The target templates are bounded
by a 2D rectangular region of size (r; +r, + 1) x (I; +
s+ 1). For simplicity, we assume that there is at most
one target present at each sensor frame.

2.1. Sensor and Target Model

Due to sensor’s finite resolution, the surveillance space
is discretized by a uniform 2D finite lattice. To model
situations when targets move in and out of the sensor
grid, we define the centroid lattice L ={(i,7): —r,+1 <
1< L+r, —l,+1<j< M+ }, where L and M are
the number of resolution cells in each dimension. The
centroid lattice collects all possible values of the target
centroid position for which at least one target pixel lies
inside the sensor’s surveillance space.
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Let £ be an _equivalent 1D representation of the
centroid lattice £ obtained by row lexicographic or-
dering. To build an integrated framework for detection
and tracking, we augment £ with an additional dummy
state that represents the absence of the target. For
convenience, we assign to the absent state the index
(L+7ri4+7) (M +1; +1;) + 1. The final 1D extended
lattice is

C={L1<I<(L+r+r)(M+L+1)+1} . (1)

Extended Target Model We represent the noise-free im-
age of a target centered at z, € £ as a spatial distri-
bution of pixel intensities around the centroid position.
Formally, for z, = (ip +7s — DY(M + L+ 1) + (jn + 15),
(in,jn) € E, the target image is the L x M matrix
F(z,) such that

Z Z a1 Bitkgatr - (2)

k=—r; l=~1;

[zn (in 7.771)

In (2),for1 <i<L,1<j<M E;;isanLxM
matrix whose entries are all zero, except for the element
(i,7) which is one. For any (i,7) ¢ L3 x L2, where
£1—{ll<l<L}and£2—-{ll<l<M}, ,jiS
identically zero. The coeflicients ay  are referred to as
the target signature coeflicients. They specify both the
target shape and its pixel intensities. For simplicity,
we assume in this paper that the signature coefficients
are deterministic and known.
Finally, when no target is present, the target model
" returns a null image, i.e., if z, = (L+r; +r) (M +1; +
Is) +1, we make F(z,,) = Opxps-

2.2. Measurements and Clutter Model

The sensor images are corrupted by random clutter
originating from spurious reflectors. In a single tar-
get scenario, we model the nth sensor frame as the L
x M matrix

Y, = F(z) + V,, (3)

where z, is the position of the target centroid in the
equivalent 1D extended lattice (including the absent
state), F(.) is the 2D extended target model described
in the previous subsection and V, is the background
clutter matrix, also referred to as the background clut-
ter frame. We assume that the clutter frames V,,

= 0, 1,..., are independent, identically distributed
(i.i.d.).

In general, each clutter frame V, may exhibit a
spatial (or intraframe) correlation. We capture the
clutter’s spatial correlation using the spatially homo-
geneous Gauss-Markov random field (GMrf) model [6].
For each pixel (7,7), 1 <i < L,1<j < M, we define

its neighborhood system 7;;. Under the assumption
of spatial homogeneity, 7;; = 7, ¥(4,j). Since there is
no preferred direction in space, in contrast to previous
work [2], we allow the neighborhood region 7 to be non-
causal with respect to all possible recursive orderings
in the 2D plane.

The clutter field, V,,, is a finite order, noncausal,
spatially homogeneous GMrf if it is the output, for
1<i<L,1<j< M, of the two-dimensional finite
difference equation [6)

V(i)=Y

(i~k,j~1) €n

—b Vo (i—k,j—1)+Un(i, ) (4)

where U, (i, ) is a Gaussian input that is statistically
orthogonal to V,(r, 1), V(r, 1) # (4, j). For example, a
first order noncausal GMrf is described by the model

+ BulValis § = 1) + V(i j + D]+ Un(i, j) (5)

A set of boundary conditions is added to specify equa-
tions (4) and (5) near the boundaries of the lattice.

The 2D GMrf model is of particular interest due
to the highly structured parametrization of the field
inverse covariance matrix [5, 6]. This structure is ex-
plored to design fast algorithms, see [4].

2.3. Motion Model

With translational motion, the dynamics of the target
centroid is sufficient to describe the target motion. The
likelihood of a change between two consecutive frames
in the position of the centroid in the extended lattice £
is specified by a transition probability matriz, T, such
that, for (k,7) € L x L,

T(k,7) = Prob(zn = k| 2n—1 =71) . (6)

3. MULTIFRAME DETECTOR/TRACKER

Denote by y, the 1D long vector representation of the
2D sensor image Y,. Introduce also the vector Y§ =

[ydyT ... yZ]T. We develop next an algorithm for
the recursive computation of the posterior probabilities
Pz, =1|Y{), 1l € L. The algorithm is divided into
two steps.

Prediction Step From the Theorem of Total Probabil-
ity, we write

Pz, | Y§7') = ) P(an | 2n-1)P(2n1 | Y§71)

Zn-1
(M
Filtering Step Using Bayes’ Law, we get

P(zn | Yg) = Cap(yn | 22)P(2a | Y5 71)  (8)
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Figure 1: (a) Clutter-free target image, (b) Simulated
sensor image, PSNR = 0 dB.

where C,, is a normalization constant. We now consider
detection and tracking.

Detection Let Ly = (L+r;+7s) (M+1;+15). Denote by
H, the hypothesis that the target is absent and, by H;,
the hypothesis that the target is present. Assuming
equal cost for misses and false alarms and zero cost
for correct decisions, the minimum probability of error
detector is the test

P YR P =mir1 Yy D
P(Hy | Yg)§l 1-P(za =L +1],Y) Pi '
9
Tracking Introduce the conditional probability
Q{ [n] = P(z, =1] target is present, Y{) lel
— P(ZH = l I YO) (10)

1-Plzy =L +1] YY)

where £ is the 1D equivalent centroid lattice, see sec-
tion 2. The maximum a posteriori (MAP) estimate
of the the target’s centroid position assuming that the
target is present is

2map[n]=argr§?sz{[n] : (1)

4. TRACKING PERFORMANCE

We examine first the tracking-only performance of the
Bayes algorithm using synthetic data. The simulated
targets are 2D rectangular objects with constant pixel
intensity and size 9 x 9. The targets are cluttered by
a first order, heavily correlated GMrf background with
Br = By = 0.24. Figures 1 (a) and (b) show exam-
ples respectively of the clutter-free target image and
the target plus clutter (sensor) image when the target
is centered at pixel (100, 50) with PSNR= 0 dB. At
each sensor scan, there is only a single target present.
The target moves in a 200 x 200 discrete grid with con-
stant nominal velocities of 2 resolution cells/frame in

--- PSNR=-3dB
~— PSNR=+3dB '1

B

57
o
2
2
8

3 _R_®__3
=3

Localization error (¥ of pixels)
®
Localization Error (# of pixels)
o

o
>

-
a

ro
~

0 10 20 330 40 50 80 ™ 80 0 10 20 30 ﬁ:& 50 0 70 80
(a) (b)
Figure 2: (a) Performance of the nonlinear Bayes

tracker in correlated GMrf clutter; (b) Performance of
the nonlinear Bayes tracker vs the linearized KBf.

both the horizontal and vertical directions. The target
centroid position fluctuates around its nominal location
according to a first order 2D random walk model. If
the nominal centroid position is the pixel (i, j), there is
an equal probability p = 0.20 that the real centroid po-
sition be any of the pixels (i —1, j), (¢+1, 7), (¢, 7+ 1),
or (i, 7 ~1).

At instant zero, the simulated target departures
from an unknown random location in the 50 x 50 upper
left corner of the image. The target is subsequently
tracked over 70 consecutive sensor frames. For the
nonlinear Bayes tracker, figure 2(a) shows the evolu-
tion over time of the standard deviation of the error in
the centroid’s vertical position estimate. The standard
deviation is expressed in number of pixels and evalu-
ated by repeating the experiment 150 times with two
values of PSNR, respectively +3 and -3 dB. The corre-
sponding curves for the horizontal position estimate are
qualitatively similar and are omitted for lack of space.
Figure 2(a) shows that there is an initial localization
error which declines over time as new measurements
become available. The target acquisition time (i.e., the
number of sensor scans for the error to reach its steady
state) increases as the PSNR decreases. Likewise, the
initial and steady state localization errors also increase
with decreasing PSNR.

Next, we compare the nonlinear Bayes tracker with
the alternative suboptimal association, see [3, 4], of a
modified correlation filter (matched to the target tem-
plate) and a linearized KBf. Figure 2(b) plots the stan-
dard deviation over time of the error in the vertical po-
sition estimate for both trackers, with PSNR equal to
6 dB. We see from the plot that the KBf tracker has
higher initial and steady state position estimate errors
and a longer target acquisition time.
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5. DETECTION PERFORMANCE

We study in the sequel the detection performance of
the Bayes algorithm. As before, we simulate 9 x 9
constant signature targets buried in first order GMrf
clutter with 85 = §, = 0.24. Simulated targets move in
and out of a 100 x 100 grid so that, at any given sensor
frame, the target may be either present or absent. The
motion dynamics of a target that is actually present is
described by a first order noncausal 2D random walk
with constant mean velocity, like the model we used in
section 4. Once a target moves out of the sensor grid, a
new target can appear randomly with equal probability
in any position of the 100 x 100 grid. In addition to
tracking, the Bayes algorithm now also makes detection
decisions at each frame using the binary test (9).
We compare the optimal multiframe detector with
a single frame LRT detector that ignores the motion
model. The single frame LRT algorithm reduces to the
test
H, :
p(yn | Ho) Z Aplyn | Hy) (12)
H,

where X is a threshold that varies according to the de-
sired probability of false alarm. Using a fixed value of
PSNR, we vary the thresholds in tests (9) and (12) to
plot the receiver operating characteristic curves (ROCs)
for both detectors. The ROC curves, estimated from
3,000 Monte Carlo runs, are shown in figure 3(a) for
PSNR = 3 dB. The curves in figure 3(a) show that,
while the performance of the single frame detector de-
teriorates significantly in scenarios of low PSNR, the
multiframe detector still achieves probabilities of de-
tection around 95 % for false alarm rates of 10~2. Fig-
ure 3(b) repeats the ROC curves for both algorithms,
except that the PSNR for the multiframe algorithm is
lowered to —3 dB. We note from the plot that the —3
dB multiframe ROC curve is closer to the 3 dB single
frame ROC, but still lies slightly above the latter. That
indicates a substantial gain in PSNR of over 6 dB when
we use multiple frames in the detection process.

6. SUMMARY

We presented in this paper an optimal Bayesian al-
gorithm for multiframe detection and tracking of ex-
tended targets in a sequence of 2D digital images. Per-
formance studies using Monte Carlo simulations show
that there is a significant improvement over existing
trackers such as the usual association of a correlation
filter and a linearized Kalman-Bucy filter. We also
show that there is a substantial detection performance
improvement over the single frame LRT detector.
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Figure 3: Single frame vs multiframe ROCs in corre-
lated clutter: (a) PSNR= 3 dB (both detectors); (b)
PSNR= 3 dB (single frame), PSNR= - 3 dB (multi-
frame)
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