GENERATION AND MANIPULATION OF DSP TRANSFORM ALGORITHMS

Markus Plischel and José M. F. Moura

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, USA

ABSTRACT

SPIRAL generates automatically high quality implementa-
tions for a variety of DSP signal transforms. The generated
code is adapted to the machine configuration and architec-
ture. SPIRAL achieves this through an intelligent search
in the Cartesian product of the space of algorithms and the
space of coding variants. This paper describes the mathe-
matical framework that SPIRAL uses to represent, generate,
and manipulate transform algorithms.

1. INTRODUCTION

Many different linear discrete signal transforms are used in
digital signal processing. Important examples include the
discrete Fourier transform (DFT), the discrete cosine trans-
forms (DCTs), and the discrete wavelet transform (DWTs).
Fast algorithms for these transforms typically are highly
structured and recursive, i.e., break down a transform of
one size into, possibly different, transforms of smaller sizes.
Combining these recursions in all possible ways leads to a
very large (usually exponentially) number of different fast
algorithms for one given transform. These algorithms are
equivalent in arithmetic cost (number of additions and mul-
tiplications), but differ in data flow, which, on modern ar-
chitectures, leads to a large spread in runtime performance.
Since the runtime depends to a large extent on architec-
tural features {e.g., number of registers, size and structure
of caches), the best algorithm for a DSP transform depends
on the given computing platform (e.g., Pentium 1, Pentium
4, Athlon XP). Furthermore, given the complexity of DSP
algorithms and the complexity of modern architectures, it
is very hard find the fastest algorithm for a given platform.
The question is: How to provide portable high performance
Jor DSP algorithms across platforms?

One approach to this preblem is to provide a library that
has flexibility in how to compute a transform, like FFTW
[1] for the DFT, and to use search to find the best choice.

SPIRAL's [2, 3] approach addresses the entire domain
of (linear) signal transforms and provides a generator for
implementations that are adapted to the given target com-
puting platform, SPIRAL represents fast transform algo-

This work was supported by DARPA through research grant DABT63-
68-1-0004 administered by the Army Directorate of Contracting,.

0-7803-8116-5/02/$17.00 ©2002 IEEE.

Signal Transform
Algorithms in ‘U(
h , Formula
uniform algebraic
notation Genﬂator 2
, B0
Implementations =
by domain specific ’I{g:-lrs';::ﬂr L— ﬁ
compiler =
ll 3
%
Benchmarking Performance | |
tools Evaluation

)

Platform-Adapted Implementation
Fig. 1. The architecture of SPIRAL.

rithms as formulas in a mathematical language and trans-
lates the implementation problem into a search in the space
of these formulas and the possible implementation choices.
The architecture of SPIRAL is displayed in Fig. 1. The user
specifies a transform to implement, e.g., a DFT of size 1024,
The Formula Generator module recursively expands the
DFT into a formula representing a fast algorithm. The For-
mula Translator translates the formula a program (currently
C, Fortran, or C enhanced with vector instructions). The
runtime of this generated program is fed back through the
Search Engine, which controls the generation of the next
formula and possible implementation options {e.g., degree
of loop unrolling) using intelligent search techniques such
as dynamic programming or evolutionary algorithms. Iter-
ation of this loop yields an implementation of the DFT 1924
that is optimized to the given platform. SPIRAL’s approach
optimizes, akin to a human expert programmer, simultane-
ously in the mathematical domain of algorithm and the im-
plementation domain. The code generated by SPIRAL is
highly competitive with hand-written programs [4]. For the
DFT, SPIRAL generated code recently outperformed Intel’s
Math Kemel Library (5, 6].

In this paper we explain the mathematical framework
that SPTRAL uses to represent, generate, and manipulate
fast transform algorithms.

In Section 2, we introduce the notation we use to rep-
resent fast transform algorithms. Section 3 defines the key



concepts of SPIRAL’s framework; examples are given in
Section 4. The space of different algorithms is discussed in
Section 5. We conclude with a short overview on SPIRAL
in Section 6.

2. NOTATION

We use the following operators and primitives to represent
structured matrices. The direct sum @ and the tensor or
Kronecker product ® of matrices A, B are defined as
A _ _
48B=["5], AeB=|uBl A=la

Further we use - for the matrix product, and A” = P~1 AP
for matrix conjugation. We use the following symbols for
frequently occurring classes of matrices. The n X n identity
matrix is denoted by I,, 2 2 X 2 rotation with angle « and a
basic butterfly matrix by

cos(ex) sin(a)

Ro = [«- sin(e) cos(a)} » o= B »ﬂ ’

respectively. Further, for n = rs, we denote by

LY: ks k-rmod(n—1), for0<k<n-1
n—1=n-—1,

the stride permutation matrix, and by
s—1
Ty = @diag(wg, cLwl T, = e/
E=0

the twiddle diagonal matrix. We reserve the letter P for
permutation matrices, I) for diagenal matrices, and § for
generic sparse matrices, Specific permutation matrices are
written as o, n}, where o is a permutation, and 7 the matrix
size.

3. TRANSFORMS AND ALGORITHMS

Mathematically, a linear discrete signal transform is given
by a multiplication
z— Mz,

(B

where T is the sampled signal and M is the transform ma-
trix. Fast algorithms for the transform can be represented
as a factorization of M into a product of structured sparse
matrices,
M = MMy - My, M,;sparse.

Typically, these factorizations reduce the arithmetic cost of
computing the transform from O(n2), as required by direct
matrix-vector multiplication, to O(nlogn). It is a special
property of signal transforms that these factorizations exist

345

and that the matrices M; are highly structured. In SPIRAL,
we use this structure to efficiently represent and generate
these factorizations.

To illustrate SPIRAL’s framework we start with a very
simple example, the discrete Fourier transform (DFT) of
size four, indicated as DFT 4. The DFT4 can be factorized
into a product of four sparse matrices,

111 1
1 51—
DFTy= |y {777
1-j-~1 g
10 1 O0J[10007[1 10 07[1000
~lo1 o 1||otoo|{t=10 o||o010
=l10-1 o||oo1o||lo 01 1||o100
01 0-1 000 j 0 01 -1 0001

This factorization represents a fast algorithm for computing
the DFT of size four and is an instantiation of the Cooley-
Tukey algorithm [7], usually referred to as the fast Fourier
transform (FFT). Using the structure of the sparse factors,
the factorization is rewritten in the concise form

DFT; = (DFTy®L)-T5-(I,®DFT,) L (2)

using the notation introduced in Section 2.

We now extend this example to detail SPIRAL’s frame-
work, which, apart from transforms, includes three impor-
tant concepts:

s breakdown rules decompose transforms into other trans-
forms;

s ruletrees are very efficient representations of breakdown
strategies, or fast algorithms, and can be converted into

* formulas, which are symbolic representations of fast al-
gorithms and can be translated into code.

We define these concepts and illustrate them using the DFT.

Transforms. A rransform is a parameterized class of
matrices denoted by a mnemonic expression, e.g., DFT, with
one or several parameters in the subscript. For example,
DFT,, represents the matrix

DFTn = [wge]QSk’£<n, 2rrj/n_

Wn =€

€))

Fixing the parameter (here n) determines an instantiation
of the transform, e.g., DF Ty by fixing n = 8 By abuse
of notation, we will refer to an instantiation also as trans-
form. By computing a transform M, we mean evaluating
the matrix-vector product y = M -z in Equation (1).

Rules. A break-down rule, or simply rule, is an equa-
tion that structurally decomposes a transform. The applica-
bility of the rule may depend on the parameters, i.¢., the size
of the transform. An example for a rule is the Cooley-Tukey
FFT for a DFT,, given by (for n = rs)

DFT, = (DFT,®L) - T?-(I,  DFT,)-L*, (4)

where the twiddle matrix T and the stride permutation L}
are defined in Section 2. A rule like (4) is called parameter-
ized, since it depends on the factorization of the transform



DFTy

TN

DFT4 DFT,

N

DFT, DFT,

Fig. 2. A fully expanded ruletree for the DFTg; the rules at
the nodes are omitted.

size n. Different factorizations of n give different instan-
tiations of the rule. In the context of SPIRAL, a mle-de-
termines a sparse structured matrix factorization of a trans-
form, and breaks down the problem of computing the trans-
form into computing possibly different transforms of usu-
ally smaller size (here: DFT,. and DFT,}. We apply a rule
1o a transform of a given size n by replacing the transform
by the right hand-side of the rule (for this n). If the rule
is parameterized, then an instantiation of the rule is chosen.
As an example, applying (4) to DFTy, using the factoriza-
tion 8 = 4- 2, yields

(DFTy@Ly) - T5 - (I, @ DFTy) - LY. (5)

In SPIRAL’s framework, a rule does not yet determine an al-
gorithm. For example, applying the Cooley-Tukey rule (4)
once reduces the problem of computing a DFT,, to com-
puting the smaller transforms DFT, and DFT,. At this
stage it is undetermined how these are computed. By ap-
plying rules recursively, we eventually obtain base cases
like DFT,. These are fully expanded by trivial break-down
rules, the base case rules, that replace the transform by its
definition, e.g.,

DFTy; =F (6}

Note that F» is not a transform, but a symbol for the matrix.

Ruletrees. Recursive application of rules can naturally
be represented by a ruletree. Each node in the ruletree con-
tains a transform and the rule applied at this stage. We call a
ruletree fully expanded, if all leaves contain base case rules.
A fully expanded ruletree represents an algorithm for com-
puting the transform at the root of the tree. An example for
a fully expanded ruletree is given in Fig. 2. In the following,
we always assume that ruletrees are fully expanded.

Ruletrees are very efficient representations of fast algo-
rithms; and allow easy manipulation, e.g., by expanding a
subtree differently, to generate variations of a given algo-
rithm.

Formulas. Applying a rule to a transform of a given
size yields a formula. Examples of formulas are (5) and the
right-hand side of (2). A formula is a mathematical expres-
sion representing a structural decomposition of a matrix.
The expression is composed from (see Section 2) mathemat-
ical operators like the matrix product -, the tensor product

346

®, the direct sum &, and basic primitives such as arbitrary
matrices, diagonal matrices (e.g., diag(4, 1, 3)), permuta-
tion matrices (e.g., [(1, 2}, 3] for the permutation (1,2) on
3 points), symbolically represented matrices (e.g., I,, L%,
T7%, Fa, Rq for a 2 x 2 rotation matrix of angle o), and
transforms of fixed size (e.g., DF T, DCT(H)) An example
of a formula for a DCT of size 4 (introduced in Section 4) is

[(2,3),4] - (diag(1,/1/2) - F2 @ Ragnss)
(2,3),4] - (I ® F2) - {(2,4,3), 4]

The motivation for considering rules and formulas is to
provide a flexible and extensible framework that derives and
represents algorithms for transforms. Our notion of algo-
rithms is best explained by expanding the previous example
DFTg. Applying Rule (4) (with 8 = 4 - 2) once yields the
formula in (3). This formula does not determine an algo-
rithm for the DFTg, since it is not specified how to compute
DFT, and DFT5. Expanding D¥'T, using again Rule (4)
(with 4 = 2 - 2) yields

(((DFTy ® 1) - T - (I,  DFTy) - L) ® 1)
-T% (L @ DFTy) - L.

Finally, by applying the (base case) Rule (6) to expand all
occurring DFT5’s we obtain the fully expanded formuia

((Fa®L) - Th- (L®F;) - L) @)

20
-Tg-(I4®F2)'Lg. (20)

This formula represents a fast algorithm for computing the
DFTg. Thus, in our framework, a formula is called fully
expanded if it does not contain any transforms. A fully ex-
panded formula corresponds to a fully expanded ruletree
and uniquely determines an algorithm for the represented
matrix. In other words, the transforms in a formula serve
as place-holder that need to be expanded by a rule to fix
the way they are computed. As an example, the ruletree in
Fig. 2 corresponds to the formula in (20).

In the following section we demonstrate that the pre-
sented framework is not restricted to the DFT, but is appli-
cable to a large class of DSP transforms.

4. EXAMPLES OF TRANSFORMS AND RULES

We provide a few examples of transforms and rules that are
included in SPIRAL. The DFT,, is defined in (3). Further,
there are sixteen types of trigonometric transforms, namely
eight types of DCTs and eight types of DSTs. As examples,
we have

DCTE = [cos((€+1/2kx/n)],

DCTSY = [cos( (k+1/2)(£+1/2)7r/n)] 1)
DSTY = [sin{(k+1}(£+1/2)x/n)],

DSTI [sin ((k + 1/2)(¢+ 1/2)7/n)],



DFT,, = CosDFT,, +j - SinDFT, Q)
DFT, = (I ®(Iy /o1 ® F2 -D2))f - (DCTY), | @DSTY, )21} - (L @(lnje 1 @ F2)) ", 2[n (8
CosDFT,, = S, - (CosDFT,,;» @ DCTY),) - S,, - 15, 4|n ©
SinDFT,, = Sy, - (SinDF T, ®DCT,,),) - S, - Ly, 4|n (10)
DCTY = diag(1,1/v2) - F2 (11)
DCTY = P, - (DCTS), @(DCTI) ™) - (Lp ®F2)™, 2|n (12)
DCTEY =[(1,2),2) - Ragnys (13)
DCT™ = 5, - DCT™ . D, (14)
DCTSY = (I ©(Ioje-1 ®F;) @ L1) - P - (DCTY), @(DSTH)) ) - (Ri@ ... @ Rpp)™, 2 n (15)
1
DCTEY = P - (R1 8.0 Roen) - | [ (I ® (Fr0k) - (loRP 0.0 RS’-:))) Pp (16)
j=k—1
MDCT,, = DCTI .S, van (17)
WHTo = f[ (Igpssoin; o, @WHTk, @ Lk pbabe ), E=ki+- + ke (18)
i=1
RHT = (RHTgecr @ Lpses) - (Fa®Lpes) 12, k> 1 (19}

Table 1. A subset of the rules included in SPIRAL.

where the superscript indicates in romans the type of the
transform, and the index range is 0 < &, £ < n in all cases.
Some of the other DCTs and DSTs relate directly o the ones
above, for example,

DCTM = (DCTM)”,  and DSTE = (DSTIY)”

where (-}T denotes matrix transposition. The DCT" and
the DCTYY are used in the image and video compression
standards JPEG and MPEG, respectively. In MPEG audio
compression the MDCT,, (an n x 2n matrix) is used, de-
fined by

MDCT,, = [cos((2¢ + 1 + n)(2k + 1)/(4n)],

where 0 < k < n, 0 € ¢ < 2n. The Walsh-Hadamard
transformm WH'T . is defined as

WHT =F®...@Fs.
& fold

The (rationalized) Haar transform is recursively defined by

. _ (RHTz @[l 1]
RHT, = Fg, RHT2k+1 = [ ng ®[1 _’1] , kE>1.
‘We also consider the real and the imaginary part of the DFT,
CosDFT = Re(DFT,), and 22)
SinDFT = Im(DFTy). (

Finally, if M is an arbitrary transform, then its correspond-
ing k-dimensional version, k < 2, is given by a k-fold ten-
sor product M ® ... @ M. Thus, multi-dimensional trans-
forms are automatically included in our framework.

We list in Table 1 a subset of the rules considered by
SPIRAL for the transforms introduced above. Due to lack
of space, we do not give the exact form of every matrix ap-
pearing in the rules, but simply indicate their type using the
notation introduced in Section 2. The symbols P,D, R, &
refer to permutation, diagonal, rotation, and other sparse
matrices, respectively. The same symbols can have different
meanings in different rule The exact form of the occurring
matrices ¢an be found in [8, 9, 10],

We note the following important facts.

e Base case rules expand transforms of trivial size (e.g.,
Rules (11} and (13)).

» Recursive rules expand a transform in terms of sirnilar
(e.g., Rules (4) and (18)) or different (e.g., Rules (12)
and (8)) transforms of smaller size.

o Transformation rules expand a transform in terms of dif-
ferent transforms of the same size (e.g., Rules (7) and
(143).

o [terative rules completely expand a transform in one step
(e.g., Rule (16)).

e Parameterized rules have different instantiations (e.g.,
Rule (4) depends on the factorization n = r - 5, which in

347



k DFT, size 2% | DCTM), size 2%
i 1 1
2 7 8
3 48 86
4 434 15,778
5 171016 ~ 5.0 x 108
6 ~ 3.4 x 1012 ~ 5.3 % 107
7| ~37x%x10% ~ 5.6 x 10
8| ~2.1x108 ~ 6.2 x 107
9| ~ 6.8 x 10¥31 ~ 6.8 x 10143

Table 2. Number of formulas for DFT and DC'T Y of size
2 0< k<.

general is not unique).

5. ALGORITHM SPACE

For a given transform there is freedom in how to expand,
1.e., which rule to apply. This freedom may arise from the
applicability of different rules or from the applicability of
one rule that has different instantiations. Recursively ap-
plied, this degree of freedom leads to a combinatorial explo-
sion of the number of formulas, or algorithms, for a given
transform. As examples, Table 2 shows the surprisingly
large number of different algorithms arising from the rules
considered by SPIRAL, for the DFT and the DCTYY of
small 2-power sizes.

The set of all algorithms for a given transform consti-
tutes the algorithm space that SPIRAL scarches when gen-
erating an efficient implementation on a given platform. The
numbers in Table 2 show that, even for modest size, an ex-
haustive search in this space is not feasible.

It is important to note that the numerous fully expanded
formulas, i.e., algorithms, generated for a given transform
from a set of rules, have {almost) the same arithmetic cost
(i.e., the number of additions and multiplications required
by the algorithm). They differ in the computational data
flow, which leads to a large spread in the mntimes of cor-
responding implementations, even for very small transform
sizes. As an example, Fig. 3 shows a histogram of run-
times for all 15,778 algorithms for a DCT(II: ) implemented
by SPIRAL in straight-line code (i.e., without using loops).
The range of runtimes is more than a factor of 3, between
211 and 741 nanoseconds. Furthermore, the fastest algo-
rithms are rare.

6. SPIRAL

The mathematical framework presented in Section 3 pro-
vides a clear roadmap on how to implement SPIRAL, a
system that automatically searches the algorithm space of
a given transform for a fastest implementation on a given

348

bt

200 300 -00. 500 “ca Boa
runtime [ra]

Fig. 3. Runtime histogram (time in ns) of 15,778 algorithms
fora DCT%’ ? on a Pentium 4, 1.4 GHz, munning Linux.

platform: At the core of SPIRAL is the representation of
an algorithm as a (fully expanded) formuia. This represen-
tation connects the mathematical realm of DSP transform
algorithms with the realm of their actual C or Fortran imple-
mentations. Automation of the implementation process thus
requires 1) a computer representation of formulas, which in
SPIRAL is achieved by the language SPL [4]; 2) the au-
tomatic generation of formulas [11]; and 3) the automatic
translation of fully expanded formulas into programs [4, 5].
To generate, in addition, a very fast implementation requires
4) a search module that controls the formula generation and
possible implementation choices to find the best algorithm
for the given computing platform [12].

Taken together we obtain the architecture of SPIRAL
displayed in Fig. L. In the remainder of this section we very
briefly survey the three key modules of SPIRAL: the for-
mula generator, the formula translator, and the search mod-
ule. For more information we refer to the references given
above.

¥ormula Generator. The task of the formula genera-
tor module within SPIRAL (see Fig. 1) is to generate algo-
rithms, given as formulas, for a user specified transform.
The internal architecture of the formula generator js dis-
played in Fig. 4 including the search engine. The dashed
boxes indicate databases. A user specified instantiation of
a transform is expanded into one or several ruletrees using
known rules, The choice of rules is controlled by the search
engine. The ruletrees are translated into formulas and ex-
ported to the formula translator, which compiles them into
C or Fortran programs. The runtime of the generated pro-
gramns is returned to the search engine, which uses it to con-
trol the generation of the next set of ruletrees. The formula
generator, and hence SPIRAL, can easily be extended to in-
clude new transforms or rules.

Formula Translator. The task of the formula translator
is to translate a formula into an implementation (currently
C, Fortran, or short vector SIMD code). The translation uses
the fact that every formula construct has a natural interpre-
tation as a program. We give a few examples. Diagonals
are translated into multiplications that scale the input vec-
tor. Permutations are interpreted as readdressing. Products
A - B are a sequential execution of first B, then A. Con-
structs of the form I,, @ A or A ® I, naturally lead to loop
code. The construct A @ I, naturally leads to vector code.



i

=4 I I i

= controls runtime

£l rules L—e Search Engine |«

Q

gl ~-------- ' recursive Formula
w . .

pu application Translator
1 S ) ] i export

E ) transforms ! > ruletrees »| formulas >

=] | P !

=

Fig. 4. Internal architecture of the formula generator including the search module. The main components are data types for
representing ruletrees and formulas, and extensible databases (dashed boxes) for rules and transforms.

Search Engine. The task of the search engine is to con-
trol the formula generation and formula translation to intel-
ligently search the space of algorithmic degrees of freedom
(different formulas) and implementation options (e.g., dif-
ferent degrees of loop unrolling). Different search strategies
are included. We give two examples. A dynamic program-
nting search recursively generates a table of best ruletrees
for transforms. A given transform is expanded once using
all applicable rules; for the smaller transforms, the previ-
ously found ruletrees are used. An evolutionary algorithm
¢STEER) first generates a random initial population of rule-
trees. Then mutations (e.g., expanding a subtree differently)
and cross-breeding (e.g., swapping subtrees) are used to ex-
pand this population. The fittest (i.e., fastest) individuals
survive to create the next generation. This process is iter-
ated a chosen number of times.

Summary. The concepts of rules, ruletrees, and formu-
las have been developed to provide SPIRAL, with the fol-
lowing properties.

o Generality: The capability to combine rules in an arbi-
trary way allows SPIRAL to explore a very large class of
algorithms. ,

e Efficiency. Ruletrees and formuias are a very efficient
representation of algerithms: they require little storage,
can be generated fast, and can be easily manipulated by
the search engine.

s Extensibility: Since SPIRAL’s formula generation relies
only on rules, new transforms can be easily included.

7. REFERENCES

[1] Matteo Frigo and Steven G. Johnson, “FFTW:
An adaptive software architecture for the FFT)”
in Proe. ICASSP, 1998, vol. 3, pp. 1381-1384,
http://www.fftw.org.

(2] J. M. E Moura, I Johnson, R. W. Johnson, D. Padua,
V., Prasanna, M. Piischel, and M. M. Veloso, “SPI-
RAL http://www.ece.cmu.edu/~spiral.

[3] M. Piischel, B. Singer, J. Xiong, J. M. F Moura,

349

J. Johnson, D. Padua, M. M. Veloso, and R. W. John-
son, “SPIRAL.: A Generator for Platform-Adapted Li-
braries of Signal Processing Algorithms.” J. High Perf.
Computing and Appl., submitted.

[4] 1. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL:
A Language and Compiler for DSP Algorithms,” in

Proc. PLDI, 2001, pp. 298-308.

[51 F. Franchetti and M. Piischel, “A SIMD Vectorizing
Compiler for Digital Signal Processing Algorithms,”

in Proc. IPDPS, 2002.

[6] E Franchetti, M. Piischel, J. M. F. Moura, and
C. Uberhuber, “Short Vector SIMD Code Generation

for DSP Algorithms,” in Proc. HPEC, 2002, to appear.

{7} J. W. Cooley and J. W. Tukey, “An algorithm for the
machine calculation of complex Fourier series,” Math.

of Computation, vol. 19, pp. 297-301, 1965.

[8] Z. Wang, * Fast Algorithms for the Discrete W Trans-
form and for the Discrete Fourier Transform ,” IEEE
Trans. on Acoustics, Speech, and Signal Processing,
vol. ASSP-32, no. 4, pp. 803-816, 1984,

[9] M. Vetterli and H.J. Nussbaumer, “Simple FFT and
DCT Algorithms with reduced Number of Opera-

tions,” Signal Processing, vol. 6, pp. 267-278, 1984.

[10} D. F. Elliott and K. R. Rao, Fast Transforms: Al-
gorithms, Analyses, Applications, Academic Press,

1982.

[11] M. Piischel, B. Singer, M. Veloso, and J. M. F. Moura,
“Fast Automatic Generation of DSP Algorithms,” in

Proc. 1CCS 2001, 2001, pp. 97-106, Springer.

[12] B. Singer and M. Veloso, “Stochastic Search for Sig-
nal Processing Algorithm Optimization,” in Proc, Su-
percomputing, 2001,



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


