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1 INTRODUCTION

In this chapter we address the problem of discriminating radio sources in the context of cellular mobile

wireless digital communications systems. The main purpose of solving this problem is to increase the

overall capacity of these systems. Usually, the sources are discriminated in frequency, time, or code.

In the case of frequency division multiple access (FDMA) systems, each user has assigned a di�erent

frequency band, while in time division multiple access (TDMA) systems the users can share the same

frequency band, but transmit during disjoint time slots. Finally, code division multiple access (CDMA)

systems are based in spread spectrum techniques, where a di�erent spreading code is assigned to each

user. The spreading codes are chosen to be approximately orthogonal so that the sources present share

simultaneously the same frequency bandwidth.

Here, we will consider space division multiple access (SDMA) systems. These systems utilize the

geographic diversity of the users location in a given cell at a given time interval. Suppose that the

antenna of the cell base station has a �xed multi{beam beampattern. Then, for practical purposes, users

illuminated by beam i will not interfere with those illuminated by beam j, even if the users in both

beams transmit at the same time, and share simultaneously the same frequency band and/or the same

set of orthogonal codes. In this case, a cell with a four beam antenna will have its capacity increased by

a factor that is ideally four. This basic idea of sectoring a cell in several spatially disjoint smaller cells

based on a single �xed multi{beam base station antenna can be translated with considerable gains into a

more evolved and exible system architecture. This relies on the concept of smart antennas and gives rise

to what can be denoted smart SDMA systems, see the pictorial illustration in �gure 1. A smart antenna

Figure 1: The concept of smart SDMA systems

is an antenna array whose beampattern is controled electronically and/or numerically so as to illuminate

the desired sources and cancel out the interferences. Usually, this is done by pointing the beam into the

direction of arrival (DOA) of the desired wavefront(s), while forcing deep nulls of the beampattern at
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the interferences' DOAs. Classically, this concept of smart antenna involves well known DOA estimation

and adaptive/blind beamforming algorithms, see [43, 31, 20] and [11, 12, 27, 21]. Here, we consider a

di�erent approach, which will be clari�ed in subsection 1.1, where we set-up the model of the antenna

array observations data. Before doing that, we introduce notation adopted in the chapter.

NOTATION

N, Z, R, and C denote the set of natural, integer, real, and complex numbers, respectively. Matrices

(uppercase) and (column/row) vectors are in boldface type. C n�m and C n denote the set of n � m

matrices and the set of n-dimensional column vectors with complex entries, respectively. The notations

(�)� ; (�)T , (�)H , (�)y, and tr (�) stand for the conjugate, transpose, the Hermitean, the Moore-Penrose

pseudo-inverse, and the trace operator, respectively; jjAjj =
r
tr
�
AHA

�
denotes the Frobenius norm.

The symbols In, 0n�m, and Jn stand for the n� n identity, the n�m all-zero, and the n� n forward-

shift (ones in the �rst lower diagonal) matrices, respectively. When the dimensions are clear from the

context, the subscripts are dropped. The direct sum or diagonal concatenation of matrices is represented

by diag (A1;A2; � � � ;Am); for A 2 C n�m , vec (A) 2 C nm consists of the columns of A stacked from left

to right; and 
 represents the Kronecker product. For A 2 C n�n , � (A) = f�1; �2; � � � ; �n g denotes its
spectrum, i.e., the set of its eigenvalues (including multiplicities). For A 2 C n�m , we let row(A) (col(A))

denote the subspace of Cm (C n ) spanned by the rows (columns) of A.

1.1 ARRAY DATA MODEL

Consider P independent digital sources, where each one generates the base band signal

rp(t) =

+1X
k=�1

sp(k)up(t� kT ); (1)

where up(t) is a unit energy shaping pulse, T is the baud period and fsp(k)g+1k=�1 is the information

sequence of independent and equally like symbols generated by the source p. These symbols are taken

from a generic digital source alphabet A. We assume that the information bearing signal rp(t) modulates

a radio carrier frequency !c. The resulting digital modulated signal is received by an antenna array of Na

omnidirectional sensors (antenna elements). At the array sensor n, the received signal has the complex

envelope

ypn(t) =

MpX
m=1

�mpe
�j!c�mprp(t� �mp ��(n)

mp)e
�j!c�

(n)
mp ; (2)

where Mp is the number of propagation paths, �mp and �mp are the corresponding attenuations and

travel time path delay, respectively, and �
(n)
mp measures the inter{sensor propagation delay with respect

to a given reference sensor. For each speci�c array and array/source geometry, the inter{sensor delays

can be parameterized in terms of the DOAs.
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Equation (2) is now rewritten into a more compact framework. We �rst de�ne the overall channel

impulse response between source p and sensor n, including the shaping pulse, as the time convolution

hpn(t) = up(t) ? hchapn(t);

where the sensor/channel impulse responses are

hchapn(t) =

MpX
m=1

�mpe
�j!c(�mp+�

(n)
mp)Æ(t� �mp ��(n)

mp):

Then equation (2) is rewritten as

ypn(t) =
+1X

k=�1

hpn(t� kT )sp(k): (3)

This signal is time sampled with a sampling period Ts such that T=Ts = J � 1 is an integer. Then,

assuming that the overall channel impulse response spans Lp baud periods, we write

ypn(kT + jTs) =

Lp�1X
l=0

hpn(lT + jTs)sp(k � l); j = 0; 1; : : : ; J � 1: (4)

Here Lp determines the temporal extension of the inter-symbol interference (ISI) induced by the physical

channel used by source p. The jth-sample of the received signal for the kth-baud period is given by

equation (4) as a convolution over the variable l, i.e., over the multipath structure for that sample.

To obtain a compact expression for the received signal for an array of Na sensors, P sources, and

J samples per baud period we stack succesively the samples in equation (4). We �rst consider a single

source p. Start by stacking the received samples in equation (4) over the variable j to form the J-

dimensional vector

ypn(k) = [ypn(kT ) � � � ypn(kT + (J � 1)Ts)]
T
; n = 1; � � � ; Na:

Then stack these Na vectors of dimension J into the N -dimensional vector, where N = J �Na,

yp(k) =
h
yp1(k)

T ; � � � ;ypNa (k)T
iT

; p = 1; � � � ; P: (5)

Likewise, we stack the delayed replicas of the information bearing signal for baud period k into the

Lp-dimensional vector

sp(k) = [sp(k) sp(k � 1) � � � sp(k � Lp + 1)]
T
;

and the channel impulse response for sample j from source p to sensor n into the row Lp-dimensional

vector

hpn(j) = [hpn(jTs) hpn(T + jTs) � � �hpn((Lp � 1)T + jTs)] :
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De�ne the J � Lp-block matrices that collect for the J-samples these channel impulse responses from

source p to sensor n

Hpn =
h
hTpn(0) h

T
pn(1) � � �hTpn(J � 1)

iT
;

and put together these block matrices for all Na-sensors of the array to de�ne the N �Lp channel matrix
for source p as

Hp =
h
HT

p1 H
T
p2 � � �HT

pN

iT
:

We can now �nd a concise expression for the N = JNa-dimensional vector yp(k). Using the notation

just introduced, the convolution in equation (4) becomes

ypn(kT + jTs) = hpn(j) � sp(k):

The received signal yp(k) for source p at all the array sensors in equation (5) is given by

yp(k) =Hpsp(k): (6)

Notice that each block matrix Hp determines the multipath propagation channel, including the array

response, used by source p. Therefore all the e�ects, such as the ISI, induced by that channel are

embedded in Hp. Naturally, sources with distinct cell locations will use distinct physical channels. This

means that each Hp acts like a source signature.

It is now easy to generalize the single user model in equation (6) to the case of multiple users. Letting

H = [H1 H2 � � �HP ] 2 CN�M ;

with M =
PP

p=1 Lp, and the M{dimensional information signal vector

s(k) =
�
sT1 (k) s

T
2 (k) � � � sTP (k)

�T
;

we can de�ne the N{dimensional vector of array observations as

x(k) =Hs(k) + n(k); k = 1; 2; : : : (7)

where the N{dimensional complex vector n(k) represents the array observations noise at time instant

(baud period) k. This will be assumed to be a zero mean stationary white Gaussian vector process with

covariance matrix �2IN .

Eq. (7) represents the array snapshot at the kth-symbol period. If we work with K symbols, and

assume that the channel matrix H is constant during the observation time interval of length K symbol

periods, we can collect the K array snapshots in the (N �K) matrix

X =
h
x(1) x(2) � � � x(K)

i
:
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Then eq. (10) is compactly written as

X =HS +N ; (8)

where S and N are, respectively, the (P � K) matrix of the binary sequences of the sources and the

(N �K) noise matrix,

S =
h
s(1) s(2) � � � s(K)

i
and N =

h
n(1) n(2) � � � n(K)

i
: (9)

This is the data model that we will use.

Convolutive mixture model Formally, the �rst term on the right{hand side of eq. (7) or eq. (8)

represents a �nite mixture of P time convolutions. This model is usually denoted as a multiple input{

multiple output (MIMO) convolutive mixture model.

Instantaneous mixture model In several real scenarios, such as in pico{cells, the propagation

delays in (2) are much smaller than the baud period T . This means that the e�ect of ISI can be ignored.

In these situations, Lp = 1; p = 1; : : : ; P , and the generic convolutive mixture model in (7) or eq. (8)

degenerates into an instantaneous mixture model. It is clear, in any case, that we can still formally use

the same representation as in (8).

1.2 BLIND SOURCE SEPARATION

We use the same formulation for the source separation problem for the two models described in the last

subsection:

Given the array data set X, as de�ned in eq. (9), where the channel mixture matrix H is unknown, �nd

the P source information sequences sp(k), k = 1; : : : ;K, i.e., �nd S.

The approach that we take to address this problem is blind, since we will not rely on any apriori

knowledge about the channel. The solutions presented in this chapter only use the information in one or

several of the following: (i) the array data model; and/or (ii) the noise statistics; and/or (iii) features

of the source data sequences, such as, their statistics and properties of the alphabet of symbols they use.

With respect to the two mixture models considered in the last sub-section { instantaneous and convo-

lutive mixture { we can identify two distinct sub{problems: blind source separation and blind equalization

(ISI cancellation). With convolutive mixtures, these two sub{problems need to be solved. In the simpler

context of instantaneous mixtures, the ISI e�ect is absent and only the source separation sub{problem is

involved.

We present below several methods to solve these problems. In all the approaches considered, we

assume that the channel matrix H is time invariant along the duration Tobs = KT of K baud periods in

the observation interval. For actual wireless channels, we can say that this approximation holds when Tobs

is not very large when compared with the baud period T . This constrains the number of time samples

that can be used to solve any of the sub{problems referred to above and, as a consequence, the type
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of method that will be used for each channel. In general, statistical methods are used to identify slow

to moderately fast time varying channels, while faster channels are usually identi�ed with deterministic

techniques.

1.3 CHAPTER SUMMARY

This chapter describes several methods that can be applied to solve the blind source separation and ISI

cancellation problems that we are considering. The presentation includes, by this order, deterministic

or zero{order statistics (ZOS), second{order statistics (SOS), and stochastic maximum{likelihood (SML)

or in�nite{order statistics (IOS) methods. Higher{order statistics (HOS) methods are not considered

because of three main reasons: (i) the large amount of data necessary to obtain eÆcient estimates of

the HOS is compatible only with very slow varying channels, (ii) the computational complexity of the

resulting identi�cation algorithms can be very high, and (iii) they are very sensitive to the SNR (signal

to noise ratio). Except for the stochastic maximum{likelihood (SML) method where we consider only the

instantaneous mixture problem, we study both the instantaneous and convolutive mixtures. We present

algorithms that have been found highly relevant contributions within each class of methodologies. We

include several of our own contributions.

Section 2 is mainly concerned with ZOS methods. We introduce several algorithms that result from a

deterministic (ZOS) approach and that are suited when the channels are moderately varying. We describe

the Iterative Least{Squares with Projection (ILSP) and the Iterative Least{Squares with Enumeration

(ILSE) algorithms. These algorithms exploit the �nite alphabet property of digital sources. We also

present the Analytical Constant Modulus Algorithm (ACMA). This algorithm exploits a di�erent feature

of several digital modulation formats, namely, the equal energy (or constant modulus) of many signaling

schemes. Like ILSP and ILSA, the ACMA requires an iterative procedure for which global convergence

is not guaranteed, except when the observations are noiseless. In alternative to iterative algorithms and

to avoid their convergence problems, it is most important to have available closed{form solutions. We

describe a solution that has low computational complexity. This closed{form method is based on a linear

coding approach involving the sources data. We �nalize the section by introducing the subspace method

that solves the ISI cancellation sub{problem.

Section 3 addresses SOS based approaches. Essentially, the SOS are used to derive algorithms based

on data prewhitening. This enables techniques that provide analytical closed{form solutions for the two

sub{problems that we consider, i.e., for the blind ISI cancellation and source separation problems. Notice

that, in general, for white source sequences, the SOS based source separation problem is ill{de�ned, and

HOS techniques are required. The correlative coding approach, introduced in this section, establishes

a framework within which it is possible to guarantee a unique solution for the SOS based blind source

separation problem.

Section 4 is devoted to SML methods. The algorithms described in section 2 can actually also be
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viewed as solutions to a maximum{likelihood (ML) problem where the source signals are deterministic

and the noise is white Gaussian. In section 4, we solve the blind source separation problem for stochastic

source signals. We restrict attention to instantaneous mixture channels. The solution that we present

relies on the Expectation{Maximization (EM) algorithm, where the ML estimation of the channel mixing

matrix is used to detect the source symbols based on the maximum a posteriori (MAP) criterion.

The �nal section of the chapter discusses new solutions to the general source separation problem, based

on convex and di�erential geometry driven optimization techniques. These approaches exploit directly

speci�c geometric features of the data model. The �rst technique falls in the class of deterministic

approaches, and is restricted to high signal-to-noise ratio (SNR) scenarios and binary sources. It requires

a small amount of data samples, being especially suited for fast time varying channels. A geometrical

convex re-formulation of the blind source separation problem is exploited to resolve the linear mixture of

binary users. We also discuss a SOS based semi-blind SML technique for channel identi�cation with white

(up to 2nd order) stationary inputs. The likelihood function for the residual unitary matrix is optimized

directly over the manifold of orthogonal matrices, by a geodesic descent algorithm. This method can be

applied in the cases of analog or digital sources, providing semi{blind and blind solutions, respectively.

2 DETERMINISTIC METHODS

This section discusses deterministic or zero order statistics (ZOS) methods that resolve linear mixtures of

binary sources. This class of methods does not make use of the statistics or of the probability structure

of the data. However, they take advantage of properties of the digital sources, for example, their �nite

alphabet property, or they exploit speci�c characteristics of the signaling/modulation used like the equal

energy in signaling schemes. Although the methods described in this section can be extended to more

general source alphabets, we will restrict the discussion to antipodal binary alphabets A = f�1;+1g.
The section addresses both cases of instantaneous and convolutive mixtures.

In subsection 2.1, we present �rst an identi�ability result and then tackle instantaneous mixtures,

describing four algorithms: the Iterative Least-Squares with Projection (ILSP) algorithm; the Least-

Squares with Enumeration (ILSE) algorithm; the Analytical Constant Modulus Algorithm (ACMA) ;

and a closed form solution based on pre-coding. In sub-section 2.2, we study convolutive mixtures and

consider a subspace method for ISI cancellation.

2.1 INSTANTANEOUS MIXTURES

In the case of instantaneous mixtures, the transmission is ISI free, and so we take Lp = 1, p = 1; � � � ; P .
The data model is

x(k) =Hs(k) + n(k); k = 1; 2; : : : (10)
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As described in section 1, x(k) and n(k) are N{ dimensional vectors denoting, respectively, the array

snapshot and the observation noise at time instant k; s(k) is the P -vector of the binary symbols generated

by the P sources at time instant k, and H is the (N � P ) channel matrix, i.e., the mixture matrix. The
number P of sources is assumed known, or some estimate of it is available. Working with K symbols and

grouping the K array snapshots into a single matrix, the data model is as in eq. (8) herein repeated

X =HS +N : (11)

The matrices in eq. (11) have the following dimensions: X is N �K; H is N � P ; S is P �K; and N

is N �K. The noise N is zero mean, stationary, white Gaussian.

Problem Formulation. The problem we address is the following: given the noisy data matrix X in

(11), �nd both H and S.

Solving this problem needs solving jointly an estimation problem on the continuous \variable" H and

a detection problem on the discrete \variable" S. Before addressing these problems, we consider the

identi�ability or the uniqueness of the solution in the absence of noise.

Identi�ability. Consider the noiseless, N = 0, version of (11)

X =HS; (12)

and assume that H is an arbitrary full column rank matrix. The elements of S belong to the alphabet

A = f�1; 1g. Under these conditions, any factorization

X = cH bS;
where

cH =HT and bS = T�1S;

veri�es (12), provided that T is one of the following (P �P ) matrices: non-singular diagonal matrix with
�1 entries; a permutation matrix; or a product of the two. The matrix T causes two types of ambiguity:

(i) ordering ambiguity; and (ii) sign ambiguity in estimates of the signals. In any case, these ambiguities

are easily removed if appropriate coding schemes are used.

In [34], Talwar et al. prove an identi�ability theorem that provides a suÆcient condition for the

existence of an admissible transform matrix (ATM) such as T above. Here, we present their theorem

without proof.

Theorem 2.1[Identi�ability] Let X = HS where H is an arbitrary (N � P ) full-rank matrix with

P � N , and S is a (P �K) full-rank matrix with �1 elements. If the columns of S include all the 2P�1
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possible distinct (up to a sign) P -vectors with �1 elements, then H and S can be uniquely identi�ed up

to a (P � P ) matrix T with exactly one non-zero element f+1;�1g in each row and column. 2

The probability p that, in K independent array snapshots, the columns of S include all the 2P�1 distinct

(up to a sign) P -vectors with �1 elements is also studied in [34]. This probability p is bounded below

1� 2P�1
�
2P�1 � 1

2P�1

�K
� p � 1:

Notice that p converges to 1 when K increases inde�nitely. It is also clear that, for large values of P ,

a quite large value of K can be required to guarantee identi�ability. This is only apparent. In fact, the

Identi�ability Theorem 2.1 establishes a suÆcient condition only. Most likely, smaller values of K will

suÆce in practical situations.

At this point, we know what is the suÆcient condition under which the noiseless factorization problem

in eq. (12) can be solved uniquely, up to an admissible transform matrix. In the following paragraphs,

we will discuss relevant algorithms that provide that solution.

2.1.1 ILSP and ILSE algorithms

Here, we return to the model described by eq. (11), and assume that the noise is white in both the time

and space dimensions, Gaussian, zero mean, and with correlation matrix Efn(k)nH(l)g = �2INÆkl.

Under these conditions, the Maximum Likelihood (ML) approach is equivalent to the following sepa-

rable least-squares problem: �cH; bS� = argmin
H;S
kX �HSk2F ; (13)

where the elements of S are assumed deterministic and constrained to take values in A. Recall that k�kF
is the Frobenius norm.

This minimization can be done in two steps. Noticing thatH is an arbitrary matrix, the minimization

in (13) with respect to H is unconstrained, and therefore

cH =XSy: (14)

De�ning the orthogonal projection matrix

P?S = IK � SyS; (15)

the substitution of (14) in (13) yields the constrained minimization problem:

bS = arg min
S2AP�K

XP?S2
F
; (16)

where AP�K denotes the set of all the (P �K) matrices with entries de�ned in A. The solution to this

minimization problem is achieved by enumerating over all possible choices of the binary matrix S. It is
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clear that the numerical complexity of this enumeration procedure, being exponential with K and P , is

prohibitive even for modest values ofK and P . In the following paragraphs, we present two iterative block

algorithms with lower computational complexity, the Iterative Least-Squares with Projection (ILSP) and

the Iterative Least-Squares with Enumeration (ILSE) algorithms, [33, 34].

ILSP Algorithm. For simplicity purposes, assume that the minimization problem in eq. (13) is un-

constrained with respect to both matrices H and S. Then, starting with an initial estimate cH0 of H,

the minimization of
X �cH0S

2
F
with respect to a continuous S is a simple least-squares problem.

Each element of the solution S1 is then projected back to the closest discrete value in A, producing the

estimate bS1. The iterative algorithm runs as follows.

ILSP Algorithm

1. Given cH0 for k = 0

2. k  k + 1

(a) Sk = cHy

k�1X

(b) bSk = proj
�
Sk

� bSk is the matrix in AP�K closest to Sk

(c) cHk =X bSyk
3. Repeat step 2. until

�cHk; bSk

�
=
�cHk�1; bSk�1

�
In contrast with the optimal solution, which has exponential complexity in both K and P , the ILSP

algorithm has polynomial complexity, more speci�cally, KNP+2P 2(K� P
3 )+NP 2 andKNP+2P 2(N�

P
3 ) + KP 2 ops per iteration to compute cH and bS, respectively. Clearly, the overall complexity of

the algorithms depends on its convergence rate. This complexity can be controled if the algorithm is

appropriately initialized, i.e., started withcH0 close to the actualH. In the case of low noise observations,

this will likely provide local convergence of ILSP to the optimal constrained solution in a reasonable

number of iterations. However, if the mixing matrix H is ill conditioned, the ILSP algorithm can

diverge, essentially due to the noise enhancement produced by the least squares step to compute S. This

important drawback of ILSP is circumvented by the ILSE algorithm.

ILSE Algorithm. The ILSE algorithm uses one property of the Frobenius norm to reduce the complexity

of the enumeration procedure necessary to compute the optimal bS. According to this property,
min

S2AP�K
kX �HSk2F= min

s(1)2AP
kx(1)�Hs(1)k2F + � � �+ min

s(K)2AP
kx(K)�Hs(K)k2F : (17)

This means that, instead of searching among all the 2KP binary matrices S, we can simply perform K

independent enumerations, each one involving 2P possible binary vectors s(�):

8 k = 1; : : : ;K : bs(k) = arg min
s2AP

kx(k)�Hsk2F : (18)
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Except for the minimization with respect to S, the ILSE algorithm is very similar to ILSP, each iteration

being based on an alternating minimization technique as follows.

ILSE Algorithm

1. Given cH0 for k = 0

2. k  k + 1

(a) With H  cHk�1 in (17), minimize for bSk using (18)

(b) cHk =X bSyk
3. Repeat step 2. until

�cHk; bSk

�
=
�cHk�1; bSk�1

�
The ILSE algorithm has complexityKNP+2P 2(K� P

3 )+NP 2 plusKN �2P (P+1) ops per iteration

to solve for cH and bS, respectively. Comparing this with the complexity of ILSP, we conclude that ILSE

generally requires considerably more ops per iteration to solve for bS. Contrarily to what happens with

the ILSP algorithm, the ILSE algorithm has local uniform convergence and exhibits greater robustness

against the observation noise, especially when H is ill conditioned. These are the main advantages of

ILSE over ILSP.

A detailed performance analysis of the ILSP and the ILSE algorithms is out of the scope of this chapter.

The interested reader may found it in [35]. Here we notice that two alternative algorithms based on suc-

cessive interference cancellation concepts are introduced in [22]. Like ILSE, the interference cancellation

algorithms are at least monotonically convergent to a local minimum, and attain a performance similar

to that of ILSE at the complexity cost of ILSP.

2.1.2 Analytical constant modulus algorithm

While ILSP and ILSE take advantage of the �nite alphabet property of digital signals, the constant

modulus (CM) approach exploits the time invariance of the envelope of many communications signals

such as FM and PM in the analog domain, and FSK, PSK, and 4-QAM for digital signals. The concept

of modulus restoration was �rst introduced in the context of blind equalization problems, see [28, 10].

It has also been applied to solve the problem of resolving instantaneous linear mixtures of independent

signals [38, 14, 32, 19, 1, 2]. Although exhibiting low computational costs, those algorithms, being based

on gradient descent techniques, have similar drawbacks. The most relevant is that there is no guarantee

of convergence towards each minima of the CM cost function, especially if the number P of sources

is not known a priori. These very important problems are solved by the analytical constant modulus

algorithm (ACMA) [45]. In fact, ACMA has the following properties. In the noiseless case: (i) for a

number of sources P � N , K > P 2 array snapshots are suÆcient to compute H and S exactly via an

eigenvalue problem; (ii) for K > P 2, it is possible to detect the number of CM signals present in the K
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array snapshots X. In the noisy observations case: (iii) robustness in �nding S can be achieved. We

introduce ACMA in this subsection. We focus on the most relevant issues that support the derivation of

the algorithm.

The CM factorization problem. We start from the data model in eq. (12), where H and S are

assumed full rank, and model the constant modulus signal property as

X =HS; jSij j = 1: (19)

With generality, it is assumed that only Æ � P are CM signals. If the factorization in (19) is unique1,

then the CM factorization problem can be formulated in an equivalent way: given the (N � K) data

matrix X of rank P , �nd Æ and the (Æ �N) matrix W , such that

WX = SÆ; j(SÆ)ij j = 1; (20)

where the Æ�K matrix SÆ is full rank, and Æ � P is as large as possible. Let row(X) denote the subspace

spanned by the rows of X, and de�ne the set of CM signals

CM = fS j jSij j = 1 ;8 i; jg : (21)

To solve the CM factorization problem, we have therefore to �nd the rows w of W such that wX = s,

s 2 row(X) being one of the linearly independent signals in CM. This is equivalent to �nding all linearly

independent signals s that satisfy

(A) s 2 row(X)

(B) s 2 CM:

The Gerchberg{Saxton Algorithm (GSA). The signals s, satisfying (A) and (B), can be found iteratively

using an adequate alternating projections based algorithm. Suppose that y = w(i)X is a signal in the

row span of X at iteration i. To guarantee that y belongs to CM, consider the non-linear projector onto

CM

P CM(y) =

�
(y)1
j(y)1j ; : : : ;

(y)K
j(y)K j

�
:

The iteration is then

w(i+1) =
h
P CM(w(i)X)

i
Xy: (22)

For each signal of interest, GSA is initialized with a di�erent random choice of s.

The problem with this type of solution is that the �niteness of the data sets can preclude global

convergence and may introduce spurious local minima. Reference [45] reformulates the problem in such

a way that an analytical solution is provided.

1As in the last subsection, uniqueness is assumed up to an admissible transformation matrix.
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Equivalent formulation. Consider the singular value decomposition of X

X = U�V : U 2 CN�N ; � 2 RN�K ; V 2 CK�K ; (23)

where U and V are unitary matrices containing the singular vectors of X, and � is a real diagonal

matrix with non-negative entries (in descending order), the singular values of X. If P is the number of

signals, then rank(X) = P is the number of non-zero singular values of X. Thus, the �rst P rows of V

form an orthonormal basis of the space row(X), which we collect in bV 2 C P�K . Condition (A) can then

be rewritten as

(A0) : s 2 row(X) , s = w bV ; bV 2 C P�K : (24)

Notice that in this equivalent condition (A0), the row vector w has only P elements as a result of using

the orthonormal basis in bV instead of the data matrix X.

We write the P �K matrix bV as

bV = [v1 � � �vk � � �vK ]

where vk 2 C P is the kth-column of bV . De�ne

P k = vkv
H
k 2 C P�P ; k = 1; : : : ;K:

Condition (B) becomes

(B) : s = [ (s)1 � � � (s)K ] 2 CM ,
h
j(s)1j2 � � � j(s)K j2

i
= [1 � � � 1],

8>>><>>>:
wv1v

H
1 w

H = 1

...

wvKv
H
Kw

H = 1;

which is also equivalent to

(B0) : s 2 CM , wP kw
H = 1; k = 1; : : : ;K: (25)

From condition (B0) it follows that to solve the CM factorization problem, we must �nd the solutions w

to the K quadratic eqs. (25). We rewrite these conditions using the Kronecker product2 
 and the

following property of 
, [16]. For A1, A2, B1, and B2 matrices with appropriate dimensions

(A1 �A2)
 (B1 �B2) = (A1 
B1) � (A2 
B2) (26)

Then,

wP kw
H = wvkv

H
k w

H = vHk w
Hwvk = vHk w

HvTkw
T :

These equalities follow because w is a (1� P ) row vector, vk is a (P � 1) column vector, and wvk is a

scalar. Since the product of two scalars commutes and equals its Kronecker product, we obtain further

wP kw
H =

�
vHk w

H
�
 �vTkwT

�
=
�
vHk 
 vTk

� � �wH 
wT
�
; k = 1; � � � ;K:

2The Kronecker product of two matrices A = [aij ] and B is A
B = [aijB].
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The last equality follows from the property (26). Recall that AT 
BT = (A
B)T and de�ne

y = wH 
wT 2 C P 2�1 and P =

26664
p1
...

pK

37775 =

26664
[v�1 
 v1]T

...

[v�K 
 vK ]T

37775 2 CK�P 2

: (27)

Using these, the K equations in condition (B0) in eq. (25) are organized in matrix form

Py =

26664
1

...

1

37775 : (28)

This is shown in [45]. The CM factorization problem translates now into �nding all linearly independent

vector solutions to eq. (28). Clearly, for each solution w of eq. (28), s = w bV is the corresponding CM

signal.

The solution space of (28) can be generally written as an aÆne space y = y0 + �1y1 + � � � + �`y`,

where y0 is a particular solution of (28), and fy1; � � � ;y`g is a basis of the kernel of P . To work with a

fully linear solution space, a linear transformation can be used. Consider a (K �K) unitary matrix Q

such that

Q

26664
1

...

1

37775 =

26666664
K1=2

0

...

0

37777775 : (29)

For instance, Q can be chosen as the Discrete Fourier Transform (DFT) or a Householder transformation,

Q = IK � 2
qqH

qHq
; q =

26666664
1

1
...

1

37777775�
26666664
K1=2

0
...

0

37777775 ; (30)

which applies to P as follows:

QP
:
=

24 bp1bP
35 ;

8<: bp1 2 C 1�P 2

bP 2 C (K�1)�P 2
: (31)

Then

Py =

26664
1

...

1

37775 ()
8<: (i) bp1y = K1=2

(ii) bPy = 0;
(32)



, ,

and all the linear independent nonzero solutions y of (28) also satisfy

bPy = 0

y = wH 
wT :
(33)

Now, let
�
y1; : : : ;ybÆ

	
be a basis of the kernel of bP , where bÆ is its respective dimension. Therefore,

any solution y of bPy = 0 can be written as y = �1y1 + : : : + �
bÆybÆ. Using another property of the

Kronecker product, [16], namely that for a column vector a and a row vector b, both of the same

dimension, vec (a � b) = bT 
 a, the condition y = wH 
wT can also be written as Y = wTw�, where

Y = vec�1(y). Then,

�1y1 + � � �+ �
bÆybÆ = wH 
wT , �1Y 1 + � � �+ �

bÆY bÆ = wTw�;

i.e., the conditions (33) are rewritten as a linear combination of the matrices fY igbÆi=1, Y i = vec�1(yi),

such that this linear combination is a rank one Hermitian matrix, hence factorizable as wTw�. Linear

independent solutions w lead to linear independent solutions y that in turn lead to linear independent

parameter vectors
�
�1 � � ��bÆ

�
.

The CM problem is reformulated then as follows.

Let X be the data matrix from which the set of (P �P ) matrices
�
Y 1; : : : ;Y bÆ

	
are derived as described

before. The CM problem is then equivalent to the determination of all independent nonzero parameter

vectors
�
�1 � � ��bÆ

�
such that

�1Y 1 + � � �+ �
bÆY bÆ = wTw�: (34)

For each solution w; kwk = K1=2; the vector s = w bV is a CM signal in X.

Solution of the noiseless CM problem. The exact solution of the noiseless CM factorization problem

is obtained in two steps: (step 1) computation of the number Æ of CM signals; and (step 2) computation

of the Æ row vectors w in (33).

Step1. Reference [45] shows that, for K > P 2, the dimension bÆ of the kernel of bP equals, in general,

the number Æ of CM signals present in X. The only situations where bÆ > Æ occurs is when speci�c phase

relations exist between the signals that are present. This can be the case with BPSK and MSK signals

sampled at the signal rate. These degeneracies disappear when these signals are fractionally sampled.

Therefore, for almost all the cases of interest, the number of CM signals present in X is obtained by

computing the dimension of the kernel of bP .

Step 2. Assume K > P 2 and that bÆ = Æ, bÆ being the dimension of the kernel of bP . Let the Æ linear

independent solutions to the CM problem be wH
1 
wT

1 ; � � � ;wH
Æ 
wT

Æ . They are a basis for the kernel

space of bP . It can be shown, [45], that each of the matrices Y i can be expressed as a linear combination
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of these basis vectors wT
j w

�
j . Writing these Æ independent linear combinations for the Æ matrices Y i

leads to the following.

Collect the wi in the matrix

W =
�
wT

1 � � �wT
Æ

�T
: (35)

Then, the simultaneous independent linear combinations of the Y i shows that the CM factorization

problem is equivalent to �nding the (Æ � P ) matrix W with full rank{Æ such that

Y 1 = W T�1W
�

Y 2 = W T�2W
�

� � �
Y Æ = W T�ÆW

�

�1; : : :�Æ 2 C P�P ; diagonal matrices:

(36)

This is a simultaneous diagonalization problem that can be solved using the Super{Generalized Schur

Decomposition, see [45] for the details.

The CM factorization problem with noisy observations. Here we consider the noisy observations

model (11),

X =HS +N :

In this case, it is not possible to obtain an exact CM factorization. However, the CM factorization

problem of noisy data X can be formulated as an optimization problem in the context of an appropriate

CM metric, such as

dist(s; CM) =

KX
k=1

�
j(s)kj2 � 1

�2
: (37)

Therefore, we must �nd Æ signals s that are minimizers of

min
n
dist(s; CM)js 2 \row(X)

o
; (38)

\row(X) being the estimated row span of S, i.e., the principal row span of X determined by an SVD, see

eq. (23). Letting P be the number of signals, then the principal row span of X is as before determined

by the matrix bV , which collects the P orthonormal P rows of V corresponding to the P largest singular

values of X. Like in the noiseless situation, the matrices P and bP can be constructed from bV .

It can be shown, [45], that the CM problem with noise is solved by �nding all linearly independent

minimizers y of
bPy2, subject to

y = wH 
wT ; kwk = K1=2:
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As in the noiseless case, the solution to this optimization problem is based on the set of Æ matrices

Y = vec�1(y). Linear combinations of these matrices should result in matrices close to rank{1 matrices

of the form

�1Y 1 + � � �+ �ÆY Æ = Y ' wTw�: (39)

Again, the problem of �nding all the Æ independent parameter vectors [�1 � � ��Æ ] can be solved based on

a super{generalized Schur decomposition. The procedure departs again from eqs. (36) and starts with a

QR and RQ factorizations of WH and W , respectively. Let W T = QHR0 and W � = R00ZH where Q

and Z are unitary and R0 and R00 are upper triangular. Then pre-multiplying the ith-equation in (36)

on the left by the (P � P ) matrix Q and on the right by the (P � P ) matrix Z

QY iZ = Ri; i = 1; : : : ; Æ; (40)

where
�
Ri 2 C P�P

	Æ
i=1

, Ri = R0�iR
00, are upper triangular matrices. It is possible to show that a

parameter vector [�1 � � ��Æ ] satis�es condition (39) only if

�1R1 + � � �+ �ÆRÆ is rank 1:

Given the decomposition of the Ri, we get the equivalent condition

�1�1 + � � �+ �Æ�Æ is rank 1:

Because the �i are diagonal, this linear combination is diagonal. In other words, only one entry of this

diagonal matrix, say entry i, is nonzero. Set this entry to one,

�i1 (�1)ii + � � �+ �iÆ (�Æ)ii = 1 i = 1; � � � ; Æ:

Collecting these Æ equations in matrix format, let A be a Æ� Æ matrix whose ith row is
�
�i1; � � � ; �iÆ

�
and

let � the matrix whose ith row is the diagonal of �i. Then

A� = I

and the rows of ��1 are the desired independent vectors [�1 � � ��Æ].
In [45], it is shown that in fact one does not need to perform the factorization of the Ri, since an

equivalent result is obtained from the rows of A:

A = R�1; R =

26664
(R1)11 � � � (R1)ÆÆ

...
...

...

(RÆ)11 � � � (RÆ)ÆÆ

37775 : (41)

Once these Æ independent parameter vectors [�1 � � ��Æ] that verify (39) are found, each row vector w can

then be estimated as the singular vector corresponding to the largest singular value of each Y .
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The simultaneous upper triangularization problem speci�ed in (40) is solved using an extended QZ

iteration described in [45]. The problem with this iteration is that there is no proof of convergence,

although in practice this can be achieved in a few number of iterations. We summarize the algorithm

next.

Analytical Constant Modulus Algorithm

1. Estimation of row(X):

(a) Compute an SVD of X, eq.(23);

(b) Estimate the number P = rank(X) of signals from � in eq.(23);

(c) De�ne bV (�rst P rows of V in eq.(23)).

2. Estimation of Æ = dimension of the kernel of bP :

(a) Construct the ((K � 1)� P 2) matrix bP from bV = [v1 � � �vK ], using eqs.(27-31);

(b) Compute an SVD of bP : bP = UP�PV P ;

(c) Estimate Æ from �P ;

(d) De�ne [y1 � � �yÆ ], the last Æ columns of V P .

3. Solve the simultaneous upper triangularization problem in eq.(40):

(a) De�ne Y i = vec�1(yi); i = 1; : : : ; Æ;

(b) Find Ri; i = 1; : : : ; Æ, in eq.(40);

(c) Find all vectors [�i1 � � ��iÆ ] ; i = 1; : : : ; Æ, from the rows of A in eq.(41);

(d) Compute bY i = �i1Y 1 + � � �+ �iÆY Æ; i = 1; : : : ; Æ.

4. Recover the CM signals. For each bY i:

(a) Compute wi such that bY i ' wT
i w

�
i ;

(b) Scale: make kwik = K1=2;

(c) si = wi
bV ; i = 1; : : : ; Æ, are the rows of S that are CM signals.

The ACM algorithm presents several interesting properties: (i) it is deterministic, which means that

the minima of the cost function are obtained analytically; and (ii) it is robust with respect to both the

length of the data sequences, and to the presence of weak noise. However, due to the SVDs involved in

the algorithm, it presents a high computational complexity when compared with other CM algorithms,

e.g., the GSA in eq. (22). Even if the SVDs are computed using eÆcient algorithms, the complexity of the

ACMA is approximately 9P 4K + 36N2K ops, while the GSA takes 80PNK + 8N2K ops. Although

ACMA is an elegant analytic solution to the approximate factorization problem of the noisy observation
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data, the ACMA relies on an iterative procedure, the extended QZ iteration, which is not guaranteed to

converge to the desired solution.

2.1.3 Closed form solution based on linear coding

Here, we describe a closed{form solution to the factorization problem that we have been addressing. In

contradistinction with ACMA, this solution does not rely on an iterative procedure and has a much lower

computational complexity. The main idea is to encode the source data using a simple linear coding scheme,

which maintains the data rate and does not increase the necessary transmission bandwidth. Moreover,

the resulting closed{form solution enables reconstructing the information data without requiring �rst the

identi�cation of the channel mixing matrix.

Consider the noiseless observations model

X =HZ; (42)

where each row of Z, (z)p, p = 1; : : : ; P , represents the encoded data transmitted by user p,

(z)p  linear encoding ((s)p) ; p = 1; : : : ; P; (43)

and (s)p, p = 1; : : : ; P , is the binary information data generated by user p. In [42], the encoding scheme

is determined by complex diagonal matrices Dp, p = 1; : : : ; P , with symbol entries in some complex

alphabet E � C , so that

(z)p = (s)pDp 2 C (1�K) ; p = 1; : : : ; P: (44)

Source separation. GivenX in (42), and assuming (44), the objective is to obtain all the binary signals

(s)p, p = 1; : : : ; P , transmitted by the sources. The algorithm starts with the SVD of the data matrix

X = U�V H

= [U s Un]

24 �s 0

0 0

3524 V H
s

V H
n

35 : (45)

Assuming that H and Z are, respectively, full column and full row rank{P matrices, then Z spans the

same row space as V H
s . Since V s ? V n, i.e., V

H
s V n = 0, then ZV n = 0. De�ning

V np =DpV n; p = 1; : : : ; P; (46)

then

(s)pV np = 0; p = 1; : : : ; P: (47)

This constrains the encoding matrix Dp. Taking into account that the information data is real,

(s)p

h
R(V np) I(V np)

i
= 0; p = 1; : : : ; P (48)
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which doubles the constraints.

Selection of the coding matrices. Given the de�nition (46) and eq.(48), we conclude that each

coding matrix Dp, p = 1; : : : ; P , must be selected so as to guarantee that the left null space ofh
R(V np) I(V np)

i
is 1{dimensional. As shown in [42], this is achievable if and only if the mild

condition K � 2P � 1 is veri�ed.

When noise is present, X = HZ +N , the matrix V n and all the V np 's (see eq. (46)) are noise

dependent, and eq. (47) is not veri�ed exactly. This means that the selection of each coding matrix Dp,

p = 1; : : : ; P , must follow some statistical criterion that approximates the 1{dimensional condition on

the left kernel of
h
R(V np) I(V np)

i
, p = 1; : : : ; P .

The linear coding based closed{form solution performs worst than both the ACMA and the ILSP

algorithm. This results from its relative simplicity, since it avoids the identi�cation of the channel mixing

matrix. The payo� is that it being a closed{form algorithm, the linear coding based solution results in

low computational complexity when compared with other alternatives.

2.2 SUBSPACE METHOD FOR ISI CANCELLATION

Consider the linear convolutive mixture model developed in section 1 for the case of P independent

sources, which are transmitted through di�erent multipath channels, all of them having the same time

length L. Thus

x(k) =Hs(k) + n(k); k = 1; : : : ;K; (49)

where, as before, x(k) and n(k) are the N{dimensional vectors of array data and noise, respectively.

Here,

s(k) =
�
sT1 (k) � � � sTP (k)

�T
;

with

sp(k) = [sp(k) sp(k � 1) � � � sp(k � L+ 1)]
T
;

and H is the (N �M), M = PL, channel mixture matrix. For reasons that will become clearer shortly,

we rearrange the �rst term on the right{hand side of (49) through a permutation. Let

LPL
L (50)

be the permutation matrix of dimension M = PL and stride L. We will refer to LPL
L as the multipath

permutation. The multipath permutation applied on the left to the vector s(k) reshues its components

by reading in the �rst component, then the component L+1, then 2L+1, and so on, i.e., the vector s(k)

is rearranged into a new vector

es(k) = hesT0 (k) esT1 (k) � � �esTL�1(k)iT ; (51)
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where

esl(k) = [s1(k � l) s2(k � l) � � � sP (k � l)]
T
; l = 0; 1; : : : ; L� 1: (52)

It is easy to show that the inverse of the multipath permutation LPL
L is the permutation LPL

P , referred

to as the channel multipath permutation. Then, inserting LPL
P LPL

L in between Hs(k) in the �rst term

of the data model (49), we can write it as

x(k) = fHes(k) + n(k); k = 1; : : : ;K; (53)

the matrix fH = HLPL
P , i.e., it is H up to a column permutation. Collecting as in section 1 all the K

array snapshots in an (N �K) matrix,

X = fH eS +N ; (54)

where eS is a block Toeplitz matrix as can be veri�ed by direct substitution. In fact,

eS =

266666664

es0(1) . . . es0(K � 1) es0(K)

. . .
. . .

. . . es1(K)

esL�2(1) esL�2(2) . . .
. . .

esL�1(1) esL�1(2) . . . esL�1(K)

377777775
=

266666664

s1
. . . sK�1 sK

. . .
. . .

. . . sK�1

s�L+3 s�L+4
. . .

. . .

s�L+2 s�L+3
. . . sK�L+1

377777775
(55)

where, for l = 0; � � � ; L�1 and k = 1; � � � ;K, the (l; k)-block entries of the matrix on the right of eq. (55)

are esl(k) = sk�l, as can be veri�ed. By the Toeplitz condition, sk�l = esl(k) = esl+n(k+n) for any integer

n.

It is the block Toeplitz structure of the signal matrix eS that is exploited by the signal subspace

method. The signal subspace method essentially contributes to canceling the ISI e�ect for each source.

Basicaly, the channel convolutive mixture matrix is translated into an equivalent instantaneous mixture

of P independent sources. These are then separated using one of the available algorithms, such as ILSP,

ILSE, or ACMA.

In the following, we assume that fH and eS are matrices with full column and full row rank{M ,

respectively. These conditions imply that the row and column spans of X equal the row span of eS and

the column span of fH , respectively. Formally,

fH full column rank =) row(X) = row(eS)eS full row rank =) col (X) = col (fH):
(56)

The factorization X = fH eS can be achieved by �nding either eS or fH with a speci�ed row or column

span, respectively; in fact, those row or column spans ofX, as expressed in the necessary conditions (56).

Here, we will follow the �rst strategy, where the block Toeplitz structure of eS is exploited.

Estimation of the row span of eS. As discussed before, our assumptions guarantee that row(eS) can
be estimated from row(X). The SVD of X produces the factorization X = U�V H , where U and V
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are unitary matrices, and � is a diagonal matrix whose entries are the singular values (in descending

order) of X . In the absence of noise, X is rank{M , and � has exactly M non{zero diagonal entries.

In this case, we can write X = bU b� bV H
, where the entries of the (M �M) diagonal matrix b� are the

non{zero entries of �, bU consists of the �rst M columns of U , and bV H
consists of the �rst M rows of

V H . Therefore

row( bV H
) = row(eS)

col ( bU ) = col (fH):
(57)

When noise is present, the rank of X is estimated as the number of singular values that are above

the noise level. To increase the robustness against noise, this detection problem is solved based on the

eigenvalues of XXH = U�UH . For white noise with covariance matrix �2IN , and for large enough K,

the diagonal matrix � will have N �M smallest eigenvalues �noise ' K�2 and M largest eigenvalues

�m ' (b�)2mm +K�2, m = 1; : : : ;M .

Forcing the Toeplitz structure of eS. Now that we have a basis bV H
to span the row space of eS, we

�nd a description of eS that has a block Toeplitz structure with L block rows, as in (55). Following [44],

this is done using a technique denoted row span intersections.

The equivalence of the row spaces in (57) means that each row of eS 2 row
�
V H

�
. We work from this

condition and reexpress it in an alternative way.

Collect the distinct block entries of eS into the block row matrix

S =

264s�L+2 s�L+3 � � � s1 � � � sK�L+1| {z }
last row block of eS

sK�L+2 � � �sK

375 ; (58)

in other words, S is the generator of the block Toeplitz matrix eS. For example, the last row block of eS
is explicitly shown in eq. (58). By sliding one entry to the right the under brace we get the second to last

row block of eS. Finally, the last K block entries of S are the �rst row of S. De�ne the following shifts

of the row space of X, rowX, suitably embedded with zeros

bV (l)H :
=

26664
0 bV H

0

I l�1 0 0

0 0 IL�l

37775 ; l = 1; : : : ; L: (59)

For example,

bV (1)H

=

24 bV H
0

0 IL�1

35 ; bV (2)H

=

26664
0 bV H

0

1 0 0

0 0 IL�2

37775 ; and bV (L)H

=

24 0 bV H

IL�1 0

35 :
Then, it can be shown that each block row of eS is in rowX if the following L conditions are satis�ed

S 2 row( bV (l)H

); l = 1; � � � ; L: (60)
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In words, S is in the subspace intersection of the row spaces row( bV (1)H

); � � � ; row( bV (L)H

). We interpret

this condition. Consider l = 1.

S = [s�L+2 s�L+3 � � �s1 � � �sK�L+1 sK�L+2 � � � sK ] 2 row( bV (1)H

):

This condition places no restriction on the last (L� 1) block entries of S and states that the (block) row

of its �rst K block entries

[s�L+2 s�L+3 � � � s1 � � � sK�L+1] 2 row( bV (1)H

);

which states exactly that the last row of eS is in row( bV (1)H

). The remaining (L�1) conditions in eq. (60)

are similarly interpreted.

We now consider the problem of determining the intersection subspace of the L subspaces row( bV (l)H

).

This intersection subspace can be computed using De Morgan's Laws through the complement of the

direct sum of the complements of each subspace. This direct computation of the intersection subspace

turns out to be inneÆcient for this problem of source separation (see the discussion in the Appendix of

[44]). An alternative is to form the matrix that stacks the orthogonal generators of each of the subspaces

row( bV (l)H

). One way of doing this is to compute the singular value decomposition (SVD) of the matrix

that stacks the matrices bV (l)H

26664
bV (1)H

...bV (L)H

37775 : (61)

Since we are not interested on the left singular vectors of (61), it can be shown that it is equivalent to

compute instead the singular values and the right singular vectors of

V (L) =

2666666666666664

bV H
0bV H

. . .
. . .

0 bV H

J1 0

0 J2

3777777777777775
; (62)

which includes L one entry{shifted consecutive copies of bV H
, and the matrices

J1 =

26666664

p
L� 1 0

. . .
p
2

0 1

37777775 and J2 =

26666664
1 0
p
2

. . .

0
p
L� 1

37777775 : (63)
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These matrices account for the linear independent rows of the identity matrices stacked in (61).

The intersection of the row spans of bV (1)H

; : : : ; bV (L)H

, which determines the ISI free P information

data signals, has a basis Y given by the right singular vectors corresponding to the largest singular values

of V (L). When there is no noise, it is shown in [44] that V (L) has precisely P largest singular values equal

to
p
L, while the smallest are approximately equal to

p
L� 1. So, we determine the interception subspace

by computing the L right singular vectors of V (L) corresponding to the largest singular value
p
L. Notice

that, for large L, this ISI �ltering may be a very delicate issue.

At this point, we have a basis Y of the signal space where the users information data signals lie. Let

SP be the matrix whose P rows are these data signals. Then, we can write

Y = ASP ; (64)

where A is some arbitrary matrix. Naturally, the ILSP or the ILSE algorithms can now be used to �nd

the factorization (64), subject to the elements in SP being in a �nite alphabet.

In this paragraph, we have introduced the main ideas involved in the subspace method for blind ISI

cancellation and source separation. For more details on the algorithm see [44].

3 SECOND-ORDER STATISTICS METHODS

We study blind multi-user signal processing techniques that exploit the information conveyed by the

second order statistics (SOS) of the received data.

In subsection 3.1, the SOS are used to prewhiten the observed data set. Roughly, the observed data

vectors are projected on a dimension-reduced space, where the channel matrix, although still unknown, is

unitary, i.e., a rotation matrix. From this algebraic property, together with other source characteristics, we

derive computationally attractive source separation algorithms and/or intersymbol interference rejection

techniques.

In subsection 3.2, the SOS are used to obtain analytical solutions for the blind channel identi�ability

problem. The approaches to be discussed rely on some level of pre-processing at the transmitter to attain

these closed-form solutions. Basically, pre-�lters located at the transmitters insert a suÆciently rich

structure into the correlation matrices, in order to assist the receiver in its blind source decoupling task.

3.1 ITERATIVE METHODS: DATA PREWHITENING

Consider the noisy linear convolutive mixture of P sources developed in section 1

x(k) =
PX
p=1

Hpsp(k) + n(k): (65)

Hereafter, for the sake of clarity, we assume that the P channels have equal time lengths, L1 = L2 =

� � � = LP = L, i.e., the sources are exposed to the same degree of intersymbol interference (ISI). We
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rewrite as previously done eq. (65) as

x(k) =Hs(k) + n(k); (66)

where the channel matrix and the sources signal are

H = [H1H2 � � � HP ] ;

s(k) =
�
s1(k)

T s2(k)
T � � � sP (k)T

�T
:

The assumptions on the data model in eq. (66) are:

(A1) The N �M channel matrix H is full column rank. The dimensions are M = PL and N �M ;

(A2) The sources sp(k) denote zero-mean, uncorrelated wide-sense stationary processes. Moreover, the

sources emit uncorrelated data samples with unit power. This entails no loss of generality, as

multiplicative constants are absorbed in H. Thus,

rp;q(k; l) = E fsp(k)sq(l)�g = Æ(p� q; k � l);

where Æ(n;m) denotes the Kronecker delta: Æ(n;m) = 1 if (n;m) = (0; 0), Æ(n;m) = 0 if (n;m) 6=
(0; 0). In matrix notation, the autocorrelation of s(k), is

Rs(k) = E
�
s(l)s(l � k)H

	
= IMÆ(k);

(A3) For simplicity, the noise n(k) is a zero-mean spatio-temporal white Gaussian process with known

variance �2, i.e.,

Rn(k) = E
�
n(l)n(l � k)H

	
= �2INÆ(k):

The noise n(k) is independent of the source signals sp(k).

Data prewhitening converts the unknown channel matrixH in (66) into a (still unknown) unitary matrix.

The unitary structure simpli�es signal processing problems such as co-channel source resolution, see

paragraph 3.1.1, and multi-user echo suppression, see paragraph 3.1.2. Also, a geometric interpretation

of the operation of the algorithms becomes readily available.

Let Rx(k) be the correlation matrix of the observations x(k) at lag k 2 Z, de�ned as Rs(k) and

Rw(k),

Rx(k) = E
�
x(l)x(l � k)H

	
:

Data prewhitening may be accomplished as follows. Given assumptions (A2) and (A3),

Rx(0) = HRs(0)H
H +Rw(0)

= HHH + �2IN : (67)
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Denote the eigenvalue decomposition (EVD) of Rx(0) by

Rx(0) = U�2UH

where the N �N unitary matrix U and the N �N diagonal matrix �2 are

U = [U 1U 2 ]

�2 = diag
�
�2

1 + �2IM ; �2IN�M
�
:

The block U 1 is N �M , and �1 is M �M , diagonal, with positive diagonal entries in descending order.

As seen, �1 is available from the EVD of Rx(0) by subtracting �2 from every diagonal entry in the

upper-left M �M block of �2 and taking square roots to the resulting entries. From

Rx(0) = U 1�
2
1U

H
1 + �2IN

= cHcHH
; (68)

where we de�ned cH � U 1�1: From eq. (68) and eq. (67), it follows

cHcHH
=HHH :

This, given assumption (A1) and standard algebra, implies in turn that

cH =HQH

for some (unknown) unitary M �M matrix Q. Thus,

cHy
= QHy

and whitened data samples are obtained as

y(k) � cHy
x(k) = Qs(k) +w(k); (69)

where w(k) � cHy
n(k). Notice that y(k) 2 CM , whereas x(k) 2 CN . Thus, recalling assumption (A1),

since M � N , the equivalent projected data samples y(k) live in a dimension-reduced data space. This

implies that the computational complexity of the algorithms in the remaining processing pipeline is

reduced, as they tipically depend on the dimensionality of the data samples.

3.1.1 Instantaneous mixtures

In this paragraph, we outline two iterative source separation algorithms that exploit the unitary structure

of the channel matrix Q in the prewhiten data samples y(k) in (69): (i) the hypercube algorithm [17, 18];

and (ii) the least-square (LS) constellation derotator [46]. Here, we restrict ourselves to instantaneous

mixtures, i.e., Lp = 1 in eq. (65), or, equivalently, Q is a P � P matrix in eq. (69). An SOS-based

technique that converts convolutive mixtures into instantaneous ones is discussed in paragraph 3.1.2.
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Also, for clarity, we examine only the case of binary sources, i.e., the information signal sp(k) consists of

independent identically distributed (i.i.d.) data bits taken from the binary alphabet A = f�1g. Moreover,

without loss of generality, all data are assumed to be real, i.e., x(k) 2 RN , y(k) 2 RP , Q 2 RP�P , and
so on.

Hypercube algorithm. The hypercube algorithm is a sequential source separation technique that

recursively extracts all the P transmitted data streams, one at a time. Once a user's signal is estimated,

its contribution is removed from the observed mixture { the dimension of the problem is deated by one

{ and the algorithm re-starts searching for another signal. Suppose K is the available number of data

vectors y(k). Then, collecting the data vectors in a P �K data matrix Y , we get

Y =
h
y(1) y(2) � � � y(K)

i
(70)

Y = QS +W ;

where the P �K signal and noise matrices S andW follow similar de�nitions as in eq. (70). For noiseless

samples, W = 0, and, for a certain condition on S, it turns out that the columns of Q are the unique

maximizers, up to a � sign, of a certain function formulated over the observed data matrix.

Recall that for a generic vector x = [x1 x2 � � � xn ]T 2 Rn its lp norm is given by

lp(x) =

 
nX
i=1

jxijp
!1=p

:

Theorem 3.1 Let Y = QS. Suppose that S : P � 2P contains all 2P combinations of �1's among its

columns, and let Q be unitary. If � 2 RP is a global maximizer of f(�) = l1(Y
T�), subject to l2(�) = 1,

then � = �qp, where qp denotes some column of Q2.

The objective function in Theorem 3.1 is given by

f(�) =

KX
k=1

��y(k)T��� :
Given a global maximizer of f , say b�, and since Q is unitary, then

bsT = sign(b�T
Y )

denotes a row of S, i.e., some transmitted binary stream.

Maximization of the objective function f(�), subject to the constraint k�k = 1, is achieved through

a standard gradient search tecnhique, as follows. Since for arbitrary x 2 R, jxj = sign(x)x, then

f(�) = �T�; where � =

KX
k=1

sign(�Ty(k))y(k):

Thus, assuming that �Ty(k) 6= 0, for all k = 1; : : : ;K,

rf(�) = �:
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The locally convergent gradient search subroutine is given below.

1. Set i = 0 and choose �0

a) i = i+ 1

b) bsTi = sign(�T
i�1Y )

c) � = Y bsi= kY bsik
d) �i = �i�1 +

�
I ��i�1�

T
i�1

�
�

e) �i = �i= k�ik

2. until �i ��i�1 = 0

3. bsT = sign(�TY ).

Step 1.d) projects the gradient � onto the tangent space of the constraint set k�i�1k = 1, and then moves

in the direction of this projected gradient (in order to maximize f). Step 1.e) returns to the feasible set.

In practice, there are departures from the ideal conditions assumed so far: the whitened data samples

Y = QS+W are corrupted by additive colored noiseW ; the signal matrix S possesses some correlation

among its rows, i.e., the rows of S are not necessarily orthogonal. The hypercube algorithm takes into

account these non-ideal conditions: after the kth step, all the prior information is exploited to correct

the estimates produced: �k; bsTk ; and bqk = Y bsTk = kbskk2, an estimate of the kth column of Q. The �rst k

columns of Q, i.e., bQk = [ bq1 � � � bqk ] are re-estimated as bQk = Y bSyk, where
bSk =

26664
bsT1
...bsTk

37775
contains the currently extracted k user binary signals; the pseudo-inverse handles the correlation among

the rows of S.

The estimate of �k is improved as follows. Ideally, �k denotes the kth column of Q, and, being

orthogonal to the other columns of the unitary Q, it spans the null space of

eQT

k =
�
q1 � � � qk�1 qk+1 � � � qP

�T
;

or, equivalently, the null space of

eRk = eQk
eQT

k :

On the other hand, eRk is the denoised correlation matrix

eRk = E
�ey(k)ey(k)T	�Rw; with ey(k) = y(k)� qks(k);

where the noise correlation matrix Rw is assumed known. Thus, �k is re-estimated as the eigenvector

associated with the smallest eigenvalue of

1

K
eY eY T �Rw; where eY = Y � eqkbsTk :
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Reference [17] o�ers an alternative geometric interpretation of the re-estimation of �k.

The next step deates the dimension of the problem by one. This is achieved by applying an oblique

projector to the observed data Y . The range of the oblique projector is set to the null space of

bQ�1k �
26664
b�T
1

...b�T
k

37775 ;
and its null space to the range of bQk, in order to reject the extracted signals and keep the unextracted

ones untouched. The �nal step consists in reducing the dimensionality of the oblique projector. Details

to implement this overall projector, say �, can be found in [5]. The complete hypercube algorithm is

listed below.

1. Initialization: set Y 1 = Y , bQ�10 = ;, bS0 = ;

2. for k = 1 to P � 1

a) call gradient search subroutine with input Y k, return bsTk
b) bSk =

24 bSk�1bsTk
35

c) bQk = Y bSyk
d) Re-estimate �k as the eigenvector associated with the smallest eigenvalue of eY eY T

=K �Rw

e) bQ�1k =

24 bQ�1k�1
�T
k

35
f) Project the observed data Y (P �K): Y k+1 = �Y ((P � k)�K)

3. bsTP = sign(Y P )

4. bSP =

24 bSP�1bsTP
35, bQP = Y bSyP .

Least-squares constellation derotator. The whitened data samples obey the model

y(k) = Qs(k) +w(k);

where the P � P matrix Q is orthogonal and s(k) belongs to the P -dimensional binary constellation

BP = B � � � � � B; where B = f�1g :

The cardinality of BP is 2P . Thus, geometrically, the samples y(k) are obtained by applying the rotation

Q to the hypercube whose vertices are given by

H = BP =
n
(�1; : : : ;�1)T

o
;
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and adding noise w(k). In other words, the observations y(k), see Figure 2, form clusters around the

vertices of the rotated hypercube

HQ = QH:
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Figure 2: Geometric interpretation of y(k): clusters centered about the vertices of HQ

This geometrical interpretation motivates the following approach for identifying the unknown rotation

Q: �nd the orthogonal matrix bQ that \best" derotates the observed samples y(k), more speci�cally, that

minimizes the least-squares distance of the derotated samples to the reference constellation hypercube

H. Thus, if dist(x;H) = minb2H kx� bk and U = fP � P orthogonal matricesg, we have

bQ = argmin

U 2 U

KX
k=1

dist2
�
UTy(k);H

�
: (71)

The function dist(x;H) denotes the distance from the point x 2 RP to the hypercube H. Letting the

vertex of H closest to x be

b(x) = argmin

b 2 H

kx� bk ;

and using the fact that U is orthogonal, eq. (71) can be rewritten as

bQ = argmin

U 2 U

KX
k=1

y(k)�Ub�UTy(k)
�2 : (72)
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The formulation in eq. (72) does not admit a closed-form solution, but the alternative minimization

�bQ; bS� = argmin

(U ;B) 2 U � B

KX
k=1

ky(k)�Ub(k)k2 ; (73)

where B = [ b(1) � � � b(K) ] and B = fP �K binary matricesg, yields, in the �rst component of the

ordered pair, a solution to eq. (72). The minimization in eq. (73) can be handled iteratively by separating

the variables U and B. Namely, given the nth iteration (Un;Bn), we let

Un+1 = argmin

U 2 U

kY �UBnk2 (74)

Bn+1 = argmin

B 2 B

kY �Un+1Bk2 : (75)

After algebraic manipulations, the subproblem in (74) is equivalent to

Un+1 = argmax

U 2 U

tr
�
BnY

TU
�
;

whose solution is given by the transpose of the polar factor of the P � P matrix BnY
T , see [13]; more

speci�cally, if

BnY
T = V 1�V

T
2

denotes a singular value decomposition of BnY
T , then

Un+1 = V 2V
T
1 :

With respect to the optimization problem expressed in eq. (75), we notice that the minimization can be

carried out column-by-column of B, each column being found by exhaustive search in the constellation

BP , i.e., the kth column of Bn+1 is given by

bn+1(k) = argmin

b 2 BP

ky(k)�Unbk2 :

3.1.2 ISI cancellation methods

We rework the data model of eq. (69), by regrouping terms with the same delay in the multipath replicas.

This is similar to what was done with eq. (51) and eq. (52). Recall the multipath permutation matrix LM
L ,

M = PL, with stride L introduced in eq. (50) and its inverse the channel multipath permutation LM
P .

De�ne the permuted vector esl(k) and the matrix U obtained by a column permutation of the unitary
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matrix Q, by applying the channel multipath permutation LM
P on the right. Then eq. (69) is rewritten

y(k) =

L�1X
l=0

U lesl(k) +w(k) (76)

= Ues(k) +w(k); (77)

esl(k) = [ es1(k � l) es2(k � l) � � � esP (k � l) ]
T 2 C P ;

U = [U0U1 � � � UL�1 ]

es(k) =
�es0(k)T es1(k)T � � � esL�1(k)T �T ;

where we also de�ned the vector es(k) that collects all source delayed replicas for symbol k. Notice that

U l is an M � P for l = 0; 1; : : : ; L� 1.

The data model in eq. (76) describes the whitened samples y(k) as a linear superposition of L echos of

the transmitted symbols fs1(k); s2(k); : : : ; sP (k)g, i.e., the replicas esl(k) with delays l = 0; 1; : : : ; L� 1.

The data y(k) is contaminated by intersymbol interference (ISI) as soon as L > 1 (convolutive

mixtures). The presence of ISI increases the computational burden of the blind source separation (BSS)

algorithms: the echos act as additional virtual sources.

We discuss now in this paragraph a technique that rejects the ISI in the observed samples, i.e., removes

the contribution of the echos. More speci�cally, we outline a procedure that extracts from y(k), L ISI-free

signals

yl(k) =
eU lesl(k) +wl(k); l = 0; 1; : : : ; L� 1;

by exploiting statistical and algebraic properties of the data model, namely that esp(k) is white and U is

unitary.

Let

J =

266666666664

0 0 0 � � � 0

1 0
. . .

. . . 0

0 1
. . .

. . . 0
...

. . .
. . .

. . .
...

0 � � � 0 1 0

377777777775
denote the Jordan nilpotent matrix of size L� L. Then, given assumption (A2), we have

R
es(l) = E

�es(k)es(k � l)H
	
= J l 
 IP ;

for l > 0; here, 
 denotes the Kronecker product. Using this expression in eq. (77), and by assump-

tion (A3),

Ry(l) = UR
es(l)U

H = U lU
H
0 +U l+1U

H
1 + � � �+UL�1U

H
L�1�l; (78)
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for 0 < l � L� 1. Thus, from (78),

span fRy(l)g = span
nh

U l U l+1 � � � UL�1

io
:

This means that, through the correlation matrices Ry(1); : : : ;Ry(L� 1), the receiver has access to the

orthogonal projectors P l onto span f[U l � � � UL�1 ]g, for l = 1; : : : ; L�1; the lth projector P l is obtained

from the EVD of Ry(l). We can write

P l =

L�1X
i=l

�i;

where �i = U iU
H
i is the orthogonal projector onto span fU ig. In fact, the projectors �i are the most

interesting ones since, due to the orthogonality of U ,

�lUm = UmÆ(l �m):

This isolates each replica esl(k) from the observations y(k) in eq. (76) as follows:

yl(k) � �ly(k) =

L�1X
m=0

(�lUmesm(k)) +�lw(k) = U lesl(k) +wl(k);

where wl(k) = �lw(k) denotes the component of w(k) in the subspace span fU lg. The projectors

f�1; : : : ;�L�1g can be obtained from fP 1; : : : ;PL�1g through the identity

�l = P l (IM � P l+1) :

Also,

�0 = IM � P 1:

3.2 CLOSED FORM SOLUTIONS

We discuss second-order statistics techniques that identify the unknownMultiple-Input Multiple-Output (MIMO)

channel analytically, i.e., non-iteratively. These closed-form solutions rely on preprocessing at the trans-

mitter, which judiciously shapes the statistics of the emitted signals.

Here, although we restrict ourselves to multiuser SOS techniques, we should notice that there are

available other classes of analytical solutions for the blind channel estimation problem. For single-user

scenarios, the work by Tong et al. [37] was the �rst to accomplish closed-form blind identi�cation of

the communication channels based only on SOS. Another SOS based technique is the so-called subspace

method introduced byMoulines et al. [26]. Non-SOS technniques relying on redundant precoders, but with

the very important property of being robust with respect to the channel spectral nulls, were developed in

[9, 29, 30]. See also [24], for precoding techniques in the context of undersampled multiuser communication

systems.
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3.2.1 Outer-product method

The outer-product decomposition algorithm (OPDA) was introduced in [7]. It identi�es the unknown

coeÆcients of the channel matrix up to a residual unitary P � P ambiguity matrix. This residual

instantaneous mixing matrix is solved in closed-form by assuming prior knowledge of certain parts of

the composite signal channel, e.g., the pulse shaping �lters of the users [8]. Consider the signal model

in eq. (65), and let, for the sake of clarity, L1 = � � � = LP = L, i.e., all users' channels have the same

memory. We start once again with the model in eq. (65) herein repeated for the sake of completeness

x(k) =
PX
p=1

Hpsp(k) + n(k); (79)

and written in block notation the N -dimensional vector x(k)

x(k) =Hs(k) + n(k); (80)

with the N �M , M = PL, channel matrix and the PL-dimensional sources signal vector

H = [H1H2 � � � HP ] ;

s(k) =
�
s1(k)

T s2(k)
T � � � sP (k)T

�T
:

The vectors sp(k) are L-dimensional. We rearrange the data with the multipath permutation LPL
L

introduced in eq. (50) to get

x(k) =

L�1X
l=0

fH lesl(k) + n(k); (81)

= fHes(k) + n(k) (82)

where

fH =
hfH0

fH1 � � � fHL�1

i
=HLPL

P (83)

fHl =
heh1(l) eh2(l) � � � ehP (l)i (84)

es(k) = LPL
L s(k) =

�es0(k)T � � �esL�1(k)T �T (85)

esl(k) = [s1(k � l) s2(k � l) � � � sP (k � l) ]
T

(86)

The dimensions of these objects are: fH : N � PL; fHl : N � P ; es(k) : PL � 1; and esl(k) : P � 1. We

now stack J successive observations in the NJ-dimensional vector xJ(k)

xJ(k) =
h
x(k)T x(k � 1)T � � � x(k � J + 1)T

iT
; (87)
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Likewise, we consider the P (L+ J � 1)-dimensional signal vector esL+J�1(k), the NJ-dimensional noise

vector nJ (k), and the NJ � P (L+ J � 1) block Toeplitz channel matrix fH
esL+J�1(k) =

h es(k)T es(k � 1)T � � � es(k � (L+ J � 2))T
iT

nJ (k) =
h
n(k)T n(k � 1)T � � � n(k � J + 1)T

iT

fH =

26666664

fH0
fH1 � � � fHL�1 0 � � � 0

0 fH0
fH1 � � � fHL�1

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 � � � 0 fH0
fH1 � � � fHL�1

37777775 (88)

We have

xJ (k) =
fHesL+J�1(k) + nJ(k): (89)

The block Toeplitz matrix fH is parameterized by the NL� P block generator matrix

H =

26666664
fH0fH1

...fHL�1

37777775 ; (90)

which collects all the unknown channel blocks.

The OPDA estimates H based on the following observation. Let the NL� (L+ J � 1)P dimensional

matrix fH0 be block Hankel given by

fH0 =

26666666664

fH0
fH1

fH2 � � � fHL�1 0 � � � 0fH1
fH2 � � � fHL�1 0 � � � � � � 0fH2 � � � fHL�1 0 � � � � � � 0

...
...fHL�1 0 � � � � � � � � � � � � � � � 0

37777777775
: (91)

If follows that the Hermitian matrix

D1 =
fH0
fHH

0 (92)

can be written as

D1 =

26666664
D11 D12 � � � D1L

D21 D22 � � � D2L

...
...

. . .
...

DL1 DL2 � � � DLL

37777775 with Dij =

L�1X
k=i�1

fHk
fHH

k+j�1;
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with fHk = 0, for k > L� 1. De�ning from the lower right block of D1

D2 =

26666666664

D22 � � � D1L 0

D32 � � � D2L 0

...
...

...
...

DL1 � � � DLL 0

0 � � � 0 0

37777777775
;

we have the important result:

�D =D1 �D2 =HH
H :

Thus, an SVD of the outer-product matrix �D yields H up to a unitary matrix, i.e.,

bH =HQH ;

where the P � P matrix Q is unitary.

To implement this approach we need to estimate only the Hermitian matrix D1. We show next that

this matrix is obtained directly from the correlation matrices of the system outputs, i.e., from�
Rx(l) = E

�
x(k)x(k � l)H

	
; l = 0; 1; � � � ; L� 1

	
:

These correlations can be computed to be

Rx(l) =
L�1X
i=0

fH i+l
fHH

i : (93)

Notice also that

RxJ = E
�
xJ(k)xJ (k)

H
	

=

26666664
Rx(0) Rx(1) � � � Rx(J � 1)

Rx(1)
H Rx(0) � � � Rx(J � 2)

...
...

. . .
...

Rx(J � 1)H Rx(J � 2)H � � � Rx(0)

37777775 (94)

= fHfHH

+ �2INJ : (95)

The last equation follows by direct computation from eq. (87).Further, de�ne the following block Hankel

matrix

R0 =

26666664
Rx(0)� �2IN Rx(1) � � � Rx(L� 1)

Rx(1) Rx(2) � � � 0
...

...
. . .

...

Rx(L� 1) 0 � � � 0

37777775 :

Replacing the entries of matrix R0 by their de�nition from eq. (93) for l = 0; � � � ; L� 1, and, after some

algebra, we can see that

R0 =
fH0
fHH

; (96)



, ,

where fH and fH0 are de�ned in eq. (88) and eq. (91), respectively.

Since from the assumptions on the channel we can assume thatfH is full column rank, its pseudoinversefHy

= fHH
�fHfHH

�y
is well de�ned and fHyfH = I. We can then go back to the de�nition of D1 from

eq.(92), and obtain successively

D1 = H0
fHH

0 (97)

= fH0

�fHyfH�fHH

0 (98)

= fH0
fHH

�fHfHH
�yfHfHH

0 (99)

= R0

�
RxJ � �2INJ

�y
R

H
0 : (100)

Eq.(98) follows by inserting the identity matrix in between the two factors of eq.(97) and replacing it by

the product fHyfH; eq.(99) follows by replacing the pseudoinverse by its de�nition; eq.(100) recognizes

from eq.(96) the �rst two factors and the last two factors as R0 and its Hermitian, and recognizes from

eq.(95) the middle factor as
�
RxJ � �2INJ

�y
.

Thus, in practice, D1 is estimated via (100), with the correlation matrices Rx(l) needed in RxJ and

R0, replaced by their consistent estimators

bRx(l) = 1

K � l

KX
k=l+1

x(k)x(k � l)H ;

where K denotes the number of samples x(k) available.

We note that other blind SOS-techniques can also convert a convolutive mixture of P users into an

instantaneous one, i.e., the matrix H is solved up to a P � P unknown mixing matrix. We refer the

interested reader to the methods in [39, 40, 41] that achieve this goal even for in�nite-impulse response

(IIR) channels with minimum-phase common zeros among the subchannels. See also [15, 25] where the

MIMO channel can be recovered up to a block diagonal constant matrix; in the special case where the

users are exposed to distinct channel degrees, then the convolutive mixture is completely resolved.

It remains solving for the residual instantaneous mixture matrix Q. As described in [8], this can

be accomplished analytically if part of the continuous-time composite channel hp(t) for the pth user is

known a priori by the receiver.

Recall the derivation of the data model in section 1.1, and assume, for simplicity, Na = 1) N = J .

The composite channel hp(t) is given by the convolution of a pulse-shaping �lter up(t) with a propagation

channel cp(t):

hp(t) = up ? cp(t); (101)

where ? denotes convolution and cp(t) � hchapn ? hrec(t) (for n = 1), hrec(t) being the receiver �lter

impulse response. In many communication systems, knowledge of up(t) is available at the receiver; in

this case, only the unknown part cp(t) needs to be estimated.
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Assume the data is acquired with an oversampling factor of J , i.e., the sampling period is Ts = T=J ,

where T is the symbol baud period. The J � 1 vectors ehp(l) in (84) are given by

ehp(l) = [hp ((l � 1)T ) hp ((l � 1)T + Ts) � � � hp ((l � 1)T + (J � 1)Ts)]
T
;

i.e., ehp(l) takes J equi-spaced samples of the continuous time channel hp(t) from the slot [(l � 1)T ; lT ).

We now relate ehp(l) with the JL � P block matrix H given in eq. (90) that collects all the channel

unknowns. Reexpressing H in terms of its columns

H =
�
h1 � � � hp � � � hP

�
:

The pth-column hp of H is the NL-dimensional multichannel vector for the pth user

hp =
h ehp(0)T ehp(1)T � � � ehp(L� 1)T

iT
:

In other words, the pth column of H contains the Ts-sampled response hp(t) for source p. The discrete

counterpart of eq. (101) is the discrete convolution given in matrix format by

hp = Upcp; (102)

where

Up =

2666666666666666664

up(0) 0 � � � 0

up(1) up(0)
. . .

...

...
. . .

. . . 0

up(Lf )
. . .

. . . up(0)

0 up(Lf )
. . .

...
...

. . .
. . .

...

0 : : : 0 up(Lf )

3777777777777777775

;

up(i) � up(iTs), and

cp =
h
cp(0) cp(1) cp(2) � � � cp(Lc)

iT
;

cp(i) � cp(iTs), for appropriate integers Lf ; Lc. Thus, H can be written as

H =
h
U1c1 U2c2 � � � UP cP

i
:

Denote the OPDA's estimate of H by

bH =HQH

with the P � P matrix Q =
�
q1 � � � qp

�
unitary. It follows that

bHqp = Upcp;
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or, equivalently,

h
Up � bHi| {z }

Sp

24 cp

qp

35 = 0; (103)

i.e., the unknowns
�
cp; qp

�
belong to the kernel of the matrix Sp, which is available at the receiver. If

the homogeneous system in (103) has a unique solution, then this yields a simple method for �nding

the unknowns. As shown in [8], uniqueness of solutions is guaranteed provided that the z�1-polynomials

Hi(z) (i 6= p) are linearly independent of Up(z)L(z) for all L(z), where Hi(z) and Up(z) denote the

z-transforms of the discrete-time signals hi(�) and up(�), respectively.

3.2.2 Transmitter induced conjugate cyclostationarity

The transmitter induced conjugate cyclostationarity (TICC) technique for blind identi�cation of MIMO

systems was introduced in [6]. It consists in inducing a cyclic frequency in each user's information

sequence prior to transmission. This diversity in the cyclospectra of the emitted signals is then exploited

at the receiver, to reduce the original problem of blind MIMO identi�cation to P simpler blind Single-

Input Multiple-Output (SIMO) identi�cation ones. To solve the latter problem, standard algorithms,

e.g., the subspace method [26], can be employed. Before giving an outline of this technique, we need

some de�nitions.

For an N �M matrix A = [a1 � � � aM ] and an integer J , we let the N(J +1)� (M + J +1) matrix

TJ (A) denote the block-Sylvester matrix

TJ(A) =

26666664
a1 � � � aM 0 � � � 0

0 a1 � � � aM
. . .

...

...
. . .

. . .
. . .

. . . 0

0 � � � 0 a1 � � � aM

37777775 : (104)

The conjugate cyclocorrelation sequence of a signal z(k) at the frequency �, written R(�)
z (�), � 2 Z, is

given by

R(�)
z (�) = lim

K!1

1

K

KX
k=1

E
�
z(k + �)z(k)T

	
e�i2��k: (105)

Consider the signal model in (65) and assume, without loss of generality, that sp(k) denote real i.i.d.

symbol sequences with unit power. Cyclic frequencies are induced at the emitter by modulating each

information sequence sp(k) by a complex exponential:

�sp(k) = sp(k)e
i��pk;

with �p 6= �q for p 6= q, p; q 2 f1; 2; : : : ; Pg. Thus, we have

x(k) =

PX
p=1

Hp�sp(k) + n(k);
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as in (65). Applying de�nition (105) to the observations x(k) at the cyclic frequency �:

R(�)
x (�) =

PX
p=1

HpRsp(�)
�H
T

p Æ(�p � �); (106)

where �Hp =
h
�hp(0) �hp(1) � � � �hp(Lp � 1)

i
, �hp(l) = hp(l)e

�j2��pl; here, Æ(�) = 1 if � = 0 and Æ(�) = 0

if � 6= 0. Equation (106) discloses the important fact that, at the frequency � = �p, only the pth user

contributes to R(�p)
x (�),

R(�p)
x (�) =HpRsp(�)

�H
T

p : (107)

Let R
(�)
J denote the N(J + 1)�N(J + 1) block Toeplitz matrix

R
(�)
J =

26666664
R(�)
x (0) R(�)

x (1) � � � R(�)
x (J)

R(�)
x (�1) R(�)

x (0)
. . .

...

...
. . .

. . . R(�)
x (1)

R(�)
x (�J) � � � R(�)

x (�1) R(�)
x (0)

37777775 : (108)

From (107), we have the equality

R
(�p)
J = T J (Hp)T J

�
�Hp

�T
:

If J > Lp and hp(z) =
PLp�1

l=0 hp(l)z
�l 6= 0 for all z, then it can been proved that both T J(Hp) and

T J( �Hp) are full column rank. This implies that the left kernel of R
(�p)
J , i.e.,

Nl

�
R

(�p)
J

�
=
n
x : xHR

(�p)
J = 0

o
;

coincides with the left kernel of T J(Hp). Let � denote the orthogonal projector onto Nl

�
R

(�p)
J

�
; this

can be obtained from its SVD. It follows that the linear homogeneous system

�T J (X) = 0 (109)

in the unknown X =
�
x0 x1 � � � xLp�1

�
yields the solution

X = �Hp;

for some scalar � [26]. The scalar � can also be resolved, see [6] for details. Thus, in practice, given a

�nite set of K data samples, the TICC technique solves P linear systems (109) for p = 1; : : : ; P ; the

matrix R
(�)
J in (108) is estimated by replacing R(�)

x (�) with the consistent estimate

bR(�)

x (�) =
1

K

K��X
k=1

x(k + �)x(k)T e�j2��k:
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3.2.3 CFC2: Closed-form correlative coding

The closed-form correlative coding (CFC2) method for MIMO blind channel identi�cation was formulated

in [47]. The main idea consists in pre-�ltering the data symbols before transmission, in order to induce a

certain diversity in their SOS. This inserted structure enables the receiver to recover the MIMO channel

by a closed form solution. The need for coloring the emitted information sequences is a consequence of

a well-known fact: in general, the MIMO channel matrix H (recall the data model in (65)) cannot be

unambiguously determined from the SOS of the MIMO output, i.e., from the set of correlation matrices

Rx = fRx(�) : � 2 Zg :

To make explicit the channel matrix H, we will also refer to this set as Rx(H).

For an illustrative example, consider the 4� (2 + 2) case H = [H1H2 ]. Then, it is easily seen that,

under Assumption (A2) that the sp(k) are mutually independent uncorrelated symbols, the following

holds:

Rx(H) = Rx(HQ); (110)

where the 4� 4 matrix Q is a unitary mixing matrix given by

Q =
1p
2

24 1 �1
1 1

35
 I2:
Equation (110) says that the mapping

H 7! Rx(H)

is not one-to-one in a non-trivial way: both the \true" MIMO channel matrix H and a mixed version of

it

fH �HQ
induce the same SOS at the MIMO output.

We show that fH is useless for source separation as the two users are still mixed. To see this, and

discarding the noise, we have working with H

bs(k) =Hyx(k) = s(k) =

26666664
s1(k)

s1(k � 1)

s2(k)

s2(k � 1)

37777775 ;

i.e., the sources symbols are separated, whereas, working with fH

bs(k) = fHy
x(k) =

1p
2

26666664
s1(k) + s2(k)

s1(k � 1) + s2(k � 1)

�s1(k) + s2(k)

�s1(k � 1) + s2(k � 1)

37777775 ;
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and the data symbols are still mixed.

In summary, the problem of identi�cation of H from Rx is not a well-posed problem, under the

standard assumptions (A1)-(A3). Based on this observation, the CFC2 technique replaces the original

(white) symbol sequences, renamed now to ap(k), by a �ltered (colored) version sp(k) of it:

sp(k) =

Mp�1X
m=0

cp(m)ap(k �m);

where fcp(m) : m = 0; 1; : : : ;Mp � 1g is the �nite-impulsive response (FIR) of the pth correlative �lter.

In order to maintain the transmitted power, we restrict ourselves to unit-power correlative �lters, i.e.,

8p = 1; 2; : : : ; P :

Mp�1X
m=0

jcp(m)j2 = 1:

The pre-�lters cp(�) change the SOS of sp(k), and, as a consequence, of the vector process

sp(k) = [ sp(k) sp(k � 1) � � � sp(k � Lp + 1) ]T :

Denote by

�p(�) = Rsp(0)
�1=2Rsp(�)Rsp(0)

�1=2; (111)

the (normalized) correlation matrix of sp(k) at lag � ; this generalizes the correlation coeÆcient of a scalar

wide-sense stationary (WSS) random process x(k):

x(�) =
E fx(k)x(k � �)�gp

varfx(k)gpvarfx(k � �)g = rx(0)
�1=2rx(�)rx(0)

�1=2:

Suppose that the �lters cp(�) are designed such that the following condition holds:

(A4) for all p 6= q, there is a correlation lag � = �(p; q) such that

� f�p(�)g \ � f�q(�)g = ;; (112)

where � fAg � C denotes the set of eigenvalues of A (the spectrum of A).

Assumption (A4) requires that, for two distinct sources p and q, condition (112) must hold for some

�(p; q); it is not necessary, that it holds for all � 2 Z. Moreover, if (p; q) changes, �(p; q) is allowed

to change. This makes the set of correlative �lters that satisfy (A4) very generic, irrespective of the

length Mp > 1, even if we further restrict ourselves to minimum-phase �lters, we refer the interested

reader to [50]; the minimum-phase property is attractive for sub-optimal direct inversion of cp(�) when
recovering the input information sequence ap(k), after H has been identi�ed. The CFC2 method relies

on the following identi�ability result.

Theorem 3.2 [Identi�ability] Consider that the signal model in eq. (65) and assumptions (A1)-(A4)

hold. Then, the mapping H 7! Rx(H) is one-to-one up to a phase o�set per user; i.e., if Rx(H) =

Rx(fH), then fHp =Hpe
j�p , for some �p 2 R, p = 1; 2; : : : ; P . 2

The proof is found in [50].
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Notice that the phase ambiguity per user cannot be avoided as only SOS are considered.

In the following, we focus on the closed-form algorithm that identi�es H from the set of correlation

matrices Rx. The goal is to exploit the Identi�ability Theorem 2.2 and �nd a matrix fH such that

Rx = Rx(fH), i.e.,

Rx(�) = fHRs(�)fHH
+Rn(�); (113)

for all � 2 Z. If this is achieved, then the Identi�ability Theorem 3.2 guarantees that fH = H up to a

phase o�set per user. Let

R(�) = Rx(�) �Rn(�)

denote the denoised correlation matrices of the MIMO channel output. Since all �lters have �nite memory,

it suÆces that (113) holds for a �nite set of � 's, say T = f�1; �2; : : : ; �Ig. Thus, the problem is reduced

to �nding fH such that the factorization

8� 2 T : R(�) = fHRs(�)fHH
;

holds. The algorithm solves for fH in three steps.

Step 1. Let R(0) = V �V H be an EVD of R(0) where the N �N matrix V is unitary and

� =

24 �1 0

0 0

35 ;
where �1 = diag (�1; : : : ; �M ), �1 � � � � � �M > 0. De�ne the N �M matrix G0 by G0 = V 1�

1=2
1 ,

where the N �M matrix V 1 consists of the �rst M columns of V . We remark that G0, thus de�ned,

satis�es the identity

G0 =HRs(0)
1=2| {z }

H0

QH ;

where the M �M unitary matrix Q is unknown. This results from the fact that both G0 and H0 are

full column-rank matrices verifying

R(0) = G0G
H
0 =H0H

H
0 :

Step 2. From this observation, it follows that

B(�) � Gy
0R(�)GyH

0

satis�es

B(�) =
h
QRs(0)

�1=2Hy
i h
HRs(�)H

H
i h
HyHRs(0)

�1=2QH
i
= Q�(�)QH ; (114)
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where

�(�) � Rs(0)
�1=2Rs(0)Rs(0)

�1=2:

Since all the Rs(�) are block diagonal,

Rs(�) = diag (Rs1(�); : : : ;RsP (�)) ;

then �(�) is also block diagonal

�(�) = diag (�1(�); : : : ;�P (�)) ;

where �p(�) was de�ned in (111). Thus, letting Q = [Q1 � � � QP ], equation (114) reads as

B(�) =

PX
p=1

Qp�p(�)Q
H
p :

Due to the orthogonality of Q,

QH
p Qq = ILÆ(p� q);

and X = Qp is a solution of the pth linear system:8>>><>>>:
B(�1)X �X�p(�1) = 0

...

B(�I)X �X�p(�I ) = 0

, B(�)X �X�p(�) = 0; � 2 T : (115)

It turns out that Qp is the unique solution (up to a scalar factor) of eq. (109), see [50].

Since B(�) and �p(�) are available to the receiver, this provides a way to identify Qp. Thus, let X

be a non-zero solution of eq. (115) and re-scale as

Up =X=(kXk
p
L):

It follows that

Up = Qpe
j�p ; for some �p 2 R:

It is straightforward to solve the homogeneous system (115) in a least-squares sense. Let

f (X) =
X
�2T

kB (�)X �X�p (�)k2 (116)

=

IX
i=1

�IL 
B (�i)� �p (�i)T 
 IM
�
x

2
= kTxk2

= xHTHTx;
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where x = vec (X) and

T =
h
T T
1 T

T
2 � � � T T

k

iT
T i = IL 
B (�i)� �p (�i)T 
 IM :

A global minimizer of f (X), subject to kXk = 1, can be obtained by reshaping into matrix format the

eigenvector associated with the minimum eigenvalue of the semide�nite positive Hermitian matrix T �T ,

say u, i.e., X = vec�1 (u).

Let U = [U 1 � � � UP ]. Then, U = Q, up to a phase o�set per user.

Step 3. De�ning

fH = G0URs(0)
�1=2;

and, by what has been proved so far, we have

8� 2 T : R(�) = fHRs(�)fHH
;

or, equivalently,

fH =H;

up to a phase o�set per user.

4 STOCHASTIC ML METHODS

Most of the maximum{likelihood (ML) approaches to the source separation problem assume deterministic

source signals in white Gaussian noise. In this case, the problem is reduced to a least squares optimization�cH; bS� = argmin
H;S

kX �HSk2F ;

whose solution can be found iteratively using some alternating minimization procedure, such as, e.g., the

ILSP and the ILSE algorithms. Here, we use a stochastic maximum{likelihood (SML) approach, in the

sense that we consider a random model for the source data sequences. We discuss the approach only in

the context of instantaneous mixtures. The case of convolutive mixtures is more complex and, up to our

knowledge, remains unstudied.

4.1 INSTANTANEOUS MIXTURES

We consider the same vector data model

x(k) =Hs(k) + n(k); k = 1; : : : ;K; (117)
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under the usual assumptions: the channel matrix H is assumed time invariant along the K snapshots;

the noise vector n(k) is stationary and white in the time domain, having probability density function

pn(n); the noise and signal vectors are statistically independent; in eq. (117), each element sp(k) is a

sample of a binary random variable that takes values in A = f�1g with equal probability; the P binary

data sequences generated by the P users are assumed white and statistically independent. Therefore, the

signal vector takes values in the alphabet AP which has cardinality CA = 2P .

To reconstruct the vector sequence fs(k)gKk=1, we solve the multiple (CA�ary) hypothesis test problem

Hi : x(k) =Hsi + n(k); si 2 AP ; k = 1; : : : ;K: (118)

Clearly, the vector x(k) represents the array data at snapshot k given that si 2 AP was transmitted. In

eq. (118), the channel matrix H is unknown. To solve this hypothesis detection problem with unknown

parameters, we follow a generalized maximum{likelihood (GML) approach: we �rst determine the Max-

imum Likelihood (ML) estimate of H using the K array data snapshots, and then solve the multiple

hypothesis test problem at each snapshot by replacing the unknown H by its ML estimate cH .

The conditional array data probability density function at time instant k given H and given that

s(k) = si 2 AP was transmitted is

pxjH;si(x(k)) = pn(x(k)�Hsi); (119)

therefore the conditional probability density function of the array data at time k given H is

pxjH(x(k)) =
PCA

i=1 pxjH;si(x(k))Pr fs(k) = sig
= 2�P

PCA
i=1 pn(x(k)�Hsi):

(120)

This is a �nite linear mixture model. Given the K array snapshots, we write the generalized array data

likelihood function

� ([x(1) � � �x(K)] jH) = 2�PK
KY
k=1

CAX
i=1

pn(x(k)�Hsi); (121)

or the equivalent log{likelihood function

ln� ([x(1) � � �x(K)] jH) = �PK ln 2 +

KX
k=1

ln

 
CAX
i=1

pn(x(k)�Hsi)
!
: (122)

The ML estimate cH of the channel mixing matrix H is

cH = argmax
H

KX
k=1

ln

 
CAX
i=1

pn(x(k)�Hsi)
!
: (123)

Once the estimatecH is obtained, we decide on the signal vector s(k) 2 AP at each snapshot k = 1; � � � ;K,

based on the maximum a posteriori (MAP) criterion:

bs(k) = arg max
si2AP

Pr
n
s(k) = sijx(k);cHo ; k = 1; : : : ;K; (124)
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where the a posteriori conditional probabilities

Pr
n
s(k) = sijx(k);cHo =

p
xjcH;si

(x(k))2�PPCA
i=1 p

xjcH;si
(x(k))2�P

; si 2 AP ; (125)

or, tacking into account eq.(119),

bpi(x(k);cH)
:
= Pr

n
s(k) = sijx(k);cHo =

pn(x(k)�cHsi)PCA
i=1 pn(x(k)�cHsi) ; si 2 AP : (126)

Estimation of cH. The strong non{linearity of the log{likelihood function precludes the closed-form solu-

tion to the optimization in eq. (123). In [3, 4], this optimization problem is solved using the Expectation{

Maximization (EM) algorithm [36]. When properly initialized, the EM algorithm converges in a few

number of iterations to the actual solution. For the case under discussion here, and under the Gaussian

noise assumption, the solution is obtained through the iteration

cHl+1 =

 
KX
k=1

x(k)

PCA
i=1 pn(x(k)�cHlsi)s

H
iPCA

i=1 pn(x(k)�cH lsi)

! 
KX
k=1

PCA
i=1 pn(x(k)�cHlsi)sis

H
iPCA

i=1 pn(x(k)�cH lsi)

!�1
; (127)

or, using a more compact notation,

cHl+1 =

 
KX
k=1

x(k)

CAX
i=1

bpi(x(k);cH l)s
H
i

!  
KX
k=1

CAX
i=1

bpi(x(k);cH l)sis
H
i

!�1
: (128)

It is interesting to notice that (128) is an iterative \right inversion" of

x(k) =Hs(k); k = 1; : : : ;K:

If all the s(k); k = 1; : : : ;K were known, then the inversion would be of the form 
KX
k=1

x(k)sH(k)

! 
KX
k=1

s(k)sH(k)

!�1
=

H

 
KX
k=1

s(k)sH(k)

! 
KX
k=1

s(k)sH(k)

!�1
=H; (129)

assuming that the inverse exists. Looking at eq.(128), we see that it can be written in a similar way as

in (129). In fact, de�ning the a posteriori conditional expected value

E
x;cHl

fs(k)g =
CAX
i=1

bpi(x(k);cH l)si

and covariance

E
x;cHl

�
s(k)sH(k)

	
=

CAX
i=1

bpi(x(k);cH l)sis
H
i ;

at iteration l, we have from eq. (128),

cHl+1 =

 
KX
k=1

x(k)E
x;cHl

fs(k)g
!  

KX
k=1

E
x;cHl

�
s(k)sH(k)

	!�1
: (130)
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This clari�es the operation of the EM algorithm. The right inversion in the left hand side of (129)

performs the maximization of the log{likelihood function and corresponds to the maximization step of

EM. Since the two factors involved depend on the unknown s(k); k = 1; : : : ;K, the corresponding a

posteriori conditional expected value and covariance estimates are used in (130). This corresponds to the

E step of EM. The iteration proceeds until some stopping condition is satis�ed.

Reconstruction of the sources' signals. When convergence of the EM algorithm is achieved, thencH ' cHl+1 ' cHl. This means that the a posteriori conditional probabilities are immediately available

bpi(x(k);cH) ' bpi(x(k);cH l);

and the reconstruction of the data transmitted by the sources can be done using the MAP solution given

in eq. (124).

In [4] it is shown through extensive computer simulations that, even at moderate signal to noise

ratios, the EM algorithm converges to the optimal ML solution in a few number of iterations and tracks

satisfactorily the channel changes. Due to its highly parallelizable capability EM can be implemented

with computational costs that compare favorably with other algorithms.

5 SOURCE SEPARATION BYMODEL GEOMETRIC PROP-

ERTIES

In this section, we describe new techniques to achieve source separation that exploit speci�c geometric

features of the data model. The �rst technique, introduced in subsection 5.1, is restricted to high SNR

scenarios and binary sources, with few data samples available. The small number of observations precludes

the use of SOS. A geometrical convex re-formulation of the blind source separation problem is exploited

to resolve the linear mixture of binary users. In subsection 5.2, we discuss a SOS-based semi-blind

ML technique for channel identi�cation with white (up to 2nd order) stationary inputs. The likelihood

function for the residual unitary matrix is optimized directly over the manifold of orthogonal matrices,

by a geodesic descent algorithm.

5.1 DETERMINISTIC SEPARATION: POLYHEDRAL SETS

Recall the data model in eq. (65), and let sp(k) denote binary signals, i.e., sp(k) = �1, for p = 1; : : : ; P

and k = 1; : : : ;K. For clarity, consider noiseless samples, i.e., n(k) = 0, and let all parameters in the

data model be real (no complex data). Moreover, assume H is a P � P non-singular matrix; this entails

no loss of generality { recall the subspace method in subsection 2.2, and eq. (64). Our goal is to �nd

equalizers � 2 RP that, when applied to the observed data x(k), extract a binary user from the linear
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mixture, i.e., we seek vectors in

E =
n
� 2 RP : �Tx(k) = �sp(k); for some p = 1; : : : ; P and all k = 1; : : : ;K

o
: (131)

In the sequel, we refer to E as the set of linear equalizers. Remark that � 2 E veri�es the strict constant
modulus equality

for k = 1; : : : ;K : j�Tx(k)j = 1; (132)

Thus, � 2 E belongs to the data-dependent polyhedron

P =
n
� 2 RP : j�Tx(k)j � 1; for all k = 1; : : : ;K

o
; (133)

obtained by relaxing the equality in (132) to an inequality. In fact, the set E plays a special role within

P : it is exactly the set of its vertices (extreme points), under a certain condition stated in the theorem

below.

Theorem 5.1 Consider the signal model x(k) = Hs(k), k = 1; : : : ;K, where the P � P channel

matrix H is non-singular and suppose all distinct 2P binary vectors of length P are represented in

fs(k) : k = 1; : : : ;Kg. Then, the set of extreme points of the polyhedron P in (133) is given by E
in (131). 2

The proof can be found in [48]. Thus, �nding an equalizer in E is equivalent to �nding a vertex of P .
To achieve this goal, we may exploit the fact that extreme points of a compact polyhedral set S are

global minima of any linear function over S. As a consequence, a � 2 E may be found by solving a linear

programming (LP) problem

� = arg min
!2P

cT!;

where c denotes a non-zero vector. To extract the remaining P � 1 equalizers, the following recursive

approach may be pursued.

Suppose 1 � p < P equalizers,
�
�1; : : : ; �p

	
have been retrieved. We seek a new vertex �p+1 of P ,

i.e.,

�p+1 62 Lp = span
�
�1; : : : ; �p

	
:

Recalling that the maximum of any convex function f(!) over a compact polyhedral set S is attained at

one of its extreme points, we can �nd �p+1 by solving a quadratic programming (QP) problem:

�p+1 = arg min
!2P

!TUp�U
T
p !;

where the P � (P � p) matrix Up spans the orthogonal complement of Lp and the (P � p) � (P � p)

matrix � denotes a positive de�nite diagonal matrix. The role of the convex function

f(!) = !TUp�U
T
p !
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is to prevent convergence to the already retrieved equalizers �i, i = 1; : : : ; p. Notice that f(!) � 0 with

equality if and only if ! 2 Lp. Thus f(�p+1) > 0 implies that �p+1 is non-redundant, i.e., �p+1 62 Lp.
In the presence of noise, the conditions of the Theorem 5.1 are not met, and not all extreme points

in P are necessarily close to equalizers in E . This implies that convergence of the above optimization

algorithms to spurious minima (or maxima) has to be checked, in order to re-initialize them with a

distinct starting point. Because of this, this simple geometrically-based methodology for blind separation

of binary sources is only restricted to high SNR scenarios.

5.2 SEMI-BLIND ML SEPARATION OF WHITE SOURCES

We delineate a semi-blind technique [49] to identify the MIMO channel matrix H : recall the data model

in eq. (65) and assumptions (A1)-(A3). For simplicity, we also assume all data to be real. The technique

is termed semi-blind because we assume that, for each source p = 1; : : : ; P , a certain fragment

Fp(ip; jp) = fsp(ip); sp(ip + 1); : : : ; sp(jp)g

of the emitted message is known by the receiver, e.g., a portion of the frames' header. Notice that it is

not required that ip = iq (nor, jp = jq) for two distinct sources p 6= q, i.e., no synchronization among the

sources is assumed, which would be diÆcult to satisfy in practice, but only between each source and the

base station receiver.

The assumption of certain symbols being known is needed because as seen before and as it is well

known, even in the noiseless case, the factorization Hs(k) is not unique: H can only be solved up to

a residual P � P instantaneous mixing matrix [44, 15]. Notice further that, here, no �nite-alphabet

assumption is made on the sources, which is also a possible way to resolve the mixing ambiguity as seen

in the above sections.

The technique works as follows. We assume that the data samples have been pre-whitened as explained

in section 3.1. Thus, we �nd ourselves in the data model of (69), reproduced here for the convenience of

the reader:

y(k) = Qs(k) +w(k); k = 1; 2; : : : ;K; (134)

where the corresponding (unknown) PL � PL channel matrix Q is unitary and has less parameters to

estimate than the associated N � PL matrix H. For the pth source, collect all the data samples that

play a role in (134) in the vector sp, i.e.,

sp = (sp(2� L); sp(3� L); : : : ; sp(K � 1); sp(K))T ;

and stack these in the overall data vector

s =
�
sT1 s

T
2 � � � sTP

�T
;
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For further reference, we express in matrix terms the knowledge of the data fragments as

ET
p sp = �p;

where the (K�L+1)� (jp� ip+1) matrix Ep has a single 1 in each of its columns, will all the remaining

entries being 0, that selects the a priori known entries in sp, and

�p = (sp(ip); sp(ip + 1); : : : ; sp(jp))
T

contains the known data fragment. Thus, the overall knowledge for all the sources is expressed as

ETs = �

E = diag (E1; : : : ;EP )

� =
�
�T1 � � � �TP

�T
:

Since the statistical description of the sources is not known beyond the second order, we can say loosely

that the pre-whitening step has exhausted all the stochastic information about them. Thus, in the sequel,

s is treated as a deterministic vector of parameters; the entries of Q are also deterministic. The joint

maximum-likelihood estimates of (Q; s), subject to the known constraints, is given by

\(Q; s) = arg max
Q2O;ET s=�

�(y(1); : : : ;y(K) jQ; s); (135)

where

O =
n
U 2 RPL�PL : UTU = IPL

o
denotes the set of PL�PL orthogonal matrices, and �(�jQ; s) is the likelihood of the pre-whitened data

samples y(k) conditioned on the pair (Q; s). Equation (135) is equivalent to

\(Q; s) = arg min
Q2O;ET s=�

�(Q; s); (136)

where

�(Q; s) =
1

K
kY �QT (s)k2C�1 : (137)

Here, Y = [y(1)y(2) � � � y(K) ] contains the whitened data and

T (s) =

26666664
T (s1)

T (s2)

...

T (sP )

37777775
is a stack of P Toeplitz matrices, each given by

T (sp) =

26666664
sp(1) sp(2) sp(3) � � � sp(K)

sp(0) sp(1)
. . .

. . . sp(K � 1)
...

. . .
. . .

. . .
...

sp(2� L) sp(3� L) � � � � � � sp(K � L+ 1)

37777775 :
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Moreover, in eq. (137), C denotes the covariance matrix of the noise w(k), and, as usual,

kZk2C�1 = tr
n
ZTC�1Z

o
:

The optimization problem expressed in eq. (137) has no apparent closed-form solution. However, an

iterative cyclic coordinate descent approach may be employed. This is only locally convergent. The

resulting algorithm, termed here as iterative maximum likelihood (IML), is given in table 1.

Let Q(0) 2 O
for n = 1; 2; : : :

i) s(n) = argminET s=� �
�
Q(n�1); s

�
ii) Q(n) = argminQ2O �

�
Q; s(n)

�
until Q(n) �Q(n�1) = 0

Table 1: IML Algorithm

Solving for s(n) in substep (i) of the IML algorithm can be formulated as a standard Least Squares (LS)

minimization problem with linear constraints, whose solution is well-known, see [49] for details. Substep

(ii) is more involved and requires more attention. After some algebra, it can be seen that substep (ii)

boils down to the minimization of

' (Q) = tr
n
QTC�1Q bRs

o
� 2 tr

n
QTC�1 bRys

o
; (138)

where

bRs =
1

K
T (s)T (s)

T
and bRys = 1

K
Y T (s)

T
;

subject to Q 2 O, the group of PL � PL orthogonal matrices. In order to exploit the curvature of

this surface constraint a geodesic descent algorithm, which is a generalization of the traditional steepest

gradient method in at spaces [23] to curved manifolds, may be employed. This technique is described

in table 2. Thus, the geodesic descent algorithm acts as classical line search methods, except for the fact

that the lines are replaced by their counterparts in the constraint surfaces: the geodesics. Derivation

of all the details of the geodesic descent algorithm (GDA) is out of our scope here, see [49]. A possible

initialization for the GDA is given by

Q(0) = �O

n
C�1 bRy�

o
; (139)

where �O (Z) is the (nonlinear) projection of the matrix Z 2 RLP�LP onto the orthogonal group O. It
may be obtained as follows: let

Z = U�V T
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1. Choose Q(0) 2 O(LP )

2. for m = 1; 2; : : :

a) Let D denote the projection of �r'
�
Q(m�1)

�
onto the tangent space of O at Q(m�1)

b) Let Q(t) 2 O, t � 0, denote the geodesic emanating from Q(0) = Q(m�1) in the direction

_Q(0) =D

c) Minimize ' (Q(t)) with respect to t � 0, to obtain tmin (a global minimizer); set Q(m) =

Q (tmin)

3. repeat 2. until Q(m) �Q(m�1) = 0

Table 2: Geodesic descent algorithm

denote a SVD of Z; then,

�O (Z) = UV T :

The idea behind this initialization is that, near the global minimum,

bRs =
1

K

KX
k=1

s (k) s (k)T ' Rs = E
n
s (k) s (k)T

o
= ILP :

Thus, the �rst term in eq. (138) reduces to a constant, and

' (Q) ' �2 tr
n
QTC�1 bRyso ;

which is precisely minimized by eq. (139) [13].

Future research directions. The two geometrically inspired techniques for source separation presented

in this section may be further developed. Future work on the polyhedral characterization of equalizers

may include the extension of the proposed technique to higher cardinality digital modulation alphabets

such as PAM, QAM, etc. Also, robustness to noise and a re-formulation of the concepts that we presented

in order to avoid a priori channel length estimation are important topics for further study. With respect

to the semi-blind ML approach, more eÆcient optimization techniques like Newton, or conjugate gradient,

matched to the speci�c structure of the constraint manifolds at hand are to be investigated, in order to

speed up the convergence of the proposed methods.

6 CONCLUSIONS

This chapter considers the blind channel identi�cation and source separation problems in the context of

SDMA wireless communication systems. We exploit array processing techniques for smart antennas tech-

nology. The approaches described did not rely on any type of spatial structure modeling, such as, array
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and wavefront geometries. These features are assumed unknown and embedded in the Multiple-Input

Multiple Output (MIMO) channel model. For both memoryless and ISI channels, the channel model is

represented by an unknown channel matrix, referred to as instantaneous and convolutive mixing matrix,

respectively. For memoryless channels, we provide solutions to the blind source separation problem. For

MIMO{ISI channels, we study also the blind ISI cancellation (equalization) sub{problem. We organize

the chapter according to the di�erent approaches that we consider: deterministic methods, second order

statistics (SOS) based techniques, and stochastic maximum likelihood (SML). Many of the known so-

lutions to blind channel identi�cation and source separation are implemented with iterative algorithms.

This is the case with the ILSP and ILSE algorithms in section 2, the hypercube and the LS constellation

derotator methods based on SOS described in section 3, and the SML{EM algorithm of section 4.We

have also focused our attention on analytical and/or closed form solutions. This is a very important

topic, since it avoids eÆciently the global convergence problems of the iterative solutions. The ACMA

and the linear coding methods for blind source separation, and the subspace method for ISI cancellation

presented in section 2 are in the class of analytical or closed form deterministic solutions. Similarly, the

OPDA, the TICC, and the CFC2 approaches in section 3 provide closed form SOS solutions. With all

these closed form solution algorithms, global convergence to the optimal solution comes with a price,

namely, some increase in algorithmic computational complexity. We revisit this tradeo� between in-

creased computational complexity for closed form solutions and global convergence of iterative methods

in section 5 where we develop source separation algorithms that exploit distinct and speci�c geometric

features of the data model. We present a deterministic algorithm in subsection 5.1 that is based on a

geometrical convex formulation of the blind source separation problem. In subsection 5.2, we describe a

SML approach to solve the semi{blind separation of white sources based on geodesic descent algorithms

in speci�c manifolds related to the geometry of the data model. In both cases, global convergence is

guaranteed. These two algorithms are the result of preliminary research on the application of convex and

di�erential geometry driven optimization techniques to the blind source separation problem. We believe

that this opens promising guidelines for future research.
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