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Abstract

We derive expressions for the Cramér-Rao bound on the
location parameters of several stochastic sources. The
source signals are Gaussian, with unknown mean and
variance parameters. In this way, we are able to de-
rive expressions that encompass the commonly consid-
ered models of unknown deterministic and zero-mean
stochastic source signals. The inverse of the Cramér-
Rao bound for the location parameters is the sum of
two components, one representing the information in the
mean of the observations, and the other associated to its
stochastic nature. Both these components are equal to
the information for the corresponding known source sig-
nal case minus a loss term, due to lack of knowledge of
the source signal moments.

1 Introduction

The localization of sources in complex scenarios, such
as multiple sources and/or multipath propagation has
deserved the attention of several authors. Two alterna-
tive characterizations for the source have been used: (i)
deterministic unknown signal; (ii) stochastic zero-mean
Gaussian signal. Description (i) is used in [7] where the
Cramér-Rao Bound (CRB) for the direction of arrival
of multiple narrowband, unknown deterministic sources
1s derived. We have used description (ii) in [6] where
we presented the CRB for multiple narrow or wideband
zero mean Gaussian sources. Other examples of CRB
studies are [4,1,2].

The observation vector is Gaussian under both hy-
potheses. For the unknown deterministic model, it is
the mean value of the observations that contains the in-
formation regarding the location parameters, while for
the stochastic zero mean Gaussian case, it is the spec-
tral density matrix of the observations, or equivalently,
its correlation matrix, that depends on the parameters
to be estimated. This paper models the source signal as
a stochastic Gaussian signal with unknown mean. The
CRB that we obtain here generalize previously derived
expressions yielding as particular cases the CRB expres-
sions of [7] and [6).

We begin by presenting a general CRB expression for
complex Gaussian observations with information in the
mean and in the covariance matrix. This expression is
then applied to the source location problem, with source
signals that are stochastic, wideband, with unknown non-
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zero means and covariance functions. The inverse of the
CRB of the location parameters is shown to be the sum
of the Fisher Information Matrix (FIM) for the stochas-
tic case presented in [6], plus an additional term derived
from the mean value of the observations. Both terms are
interpreted as the sum of the FIM for the active (known
signal parameters) case minus a term that represents the
information loss due to the estimation of the signal pa-
rameters. In both cases, the loss term has the general
form of a Gram matrix, in a suitably defined metric.

2 CRB: Unknown Mean and Co-
variance

In this section, we consider the general case. We observe
a K-dimensional vector r which is (g, R), i.e., a com-
plex Gaussian vector with mean g and positive—definite
covariance matrix R. The probability density function
(pdf) is

p(r) = () ¥R exp {~(r =) ¥R Yr—p)}. (1)

The mean g and the covariance R depend on a real un-
known deterministic vector 4,

i = (o) R = R(9). (2)
It is well known that the CRB for § is given by the

inverse of the Fisher Information Matrix (FIM) for the
vector 6:

CRB(§) = F(8)~! (3)
where,
2 log p(r|d
(7ol = -5 [ @)

Denote the logp(r|6) by A(8). Then,
A(8) = =K logm —log|R| — (r— p)*R~Y(r — ). (5)

Following the derivation in [3], where the real case is
considered, we obtain the following expression for the
generic element of the FIM matrix,

_ out o oR _la_R}
[}'(9)],.]._2Re{a—9i R (T e e )

The FIM is the sum of two terms, the first derives from
the mean and the second from the covariance. In the
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general case, we have N independent observations which
are

T ~ N(tn(8), Ra(6)), n=1,...,N. (6)

The pdf of the N observations is the product of the in-
dividual pdf’s. Consequently,

N
A(B) =" Aa(8) (M

n=1

where A, (-) is the loglikelihood function for each indi-
vidual observation vector, r,. From this, it results im-
mediately that

N
FO) =3 Fa(6). (8)

n=1

Consider now the vector of unknown parameters parti-
tioned into three parts:

6T = [v7 oT nT] 9)
such that
B(6) = p(v,a) R(6) = R(a,n). (10)

The subcomponents v and 7 are signal parameters, while
a may collect propagation parameters, (delays), location
parameters (e.g., range and depth), and/or channel envi-
ronmental parameters. From the partitioning above, we
can show that the FIM has the following form:

fl/l/ fva 0
-7'-(1’,0!,7!)= Fav Faa }-0"1 (11)
0 Fpa Fm
where :
N
aﬂ al‘n
}.vv i1 = 2 R:!
[Fuu)i; = 2Re {Zl o ', } (12)
N
9 y’{ _1al‘n
[]'-va]ij = 2Re {'gl ay,- R" a_aJ (13)
— aun -1 al"l
[‘7:00]{]‘ - 2R’e{ aa‘ Rn aa }
n=1
N
ORn ,_1ORn )
t —n -_n
+ rz da; R da; R
= [ ML,+[ .m]‘, (14)
a
an],, = trz 1 Rn l (15)
[fnn]., = trz Rnl (16)

-1
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Of interest to us will be the central diagonal block of
the inverse of (v, a,n) that determines the CRB for
the parameters that influence both the mean and the
covariance of the observations. It can be shown [3], that

CRB(a)= Q7! amn

where
Q= }-aa }-aq}-— -7: av y_ylfva (18)

or

Q=0"+QF (19)

where
QF =FP  — Fo, FilFra (20)
QF = FE — FanFil Fra- (21)

In the two last equations, the second term in the right
hand side represents a loss term, due to the necessity of
estimating the signal parameters, the mean in the first
case, and the spectral parameters in the second.

3 Multisource Location Problem

3.1 General Model

Each vector of observations is a K-dimensional vector
with the following structure:

rn = Hpsp + wy, n=1,...,N (22)

where the complex K x S matrix H,, depends on the set
of parameters «, having the following particular form:

Hp = [hn(a1) . .. hn(as)] (23)

and h,(a,) €CK¥ n=1,...,N;s=1,...,8S.

In the observations equation, s, is a sample from an
S-dimensional complex Gaussian vector, with mean m,,
and covariance matrix Sy, i.e.,

sn ~ N(mn,S,). (24)

With the previous assumptions, the observed vector is
Gaussian with

Tn ~ N(Homn, HoSo HY 4 0,1) (25)

where we further assumed that the observation noise is
a complex, zero mean Gaussian process, with covariance
matrix proportional to the identity matrix.

3.2 Location Problem

In the multisource/multipath location problem, that we
consider in this paper, the observations at sensor k are
given by:

s P,

Tk (t) e Z Z QispSs (t - 7'ksp) + wk(t)‘ (26)

s=1p=1

In this model, S is the number of sources, P, the number
of paths for source s, ar,p and i, the attenuation and
delay parameters corresponding to source s along path p
to sensor k.



3.3 Narrowband Sources

In the Narrow Band (NB) formalism, the observations
rn are the complex envelopes of the observed vector at
a fixed frequency w. The index n denotes the several
snapshots. Using matrix notation,

r(tn) = Hs(t,) + w(ty) (27)

where the “resultant matrix” H groups the resultant vec-
tors [5] for each of the S sources, that have generic ele-
ment (at sensor k) given by

P,
h(ay) =Y agpeieer. (28)
p=1

The dependency on the source location vector @, of the
resultant vector h(a,) is done through the propagation
parameters axsp and Trsp. Note that in the NB case, the
matrix H does not depend on the snapshot index n.

3.4 Wideband Sources

For the wideband (WB) case, where the timexbandwidth
product is large, the observations are represented by their
DFT coefficients. Under the assumption that the propa-
gation times are small compared to the observation time,
the DFT components of the observed signal at frequency
wn are uncorrelated and given by

r(wn) = H(wn)s(wn) + w(wn). (29)

In this case, both the resultant matrix H and the source
signal DFT coefficients depend upon the index n.

4 The “Mean” Term Q*

We analyze in this section the first term Q¥ for the FIM
in equation (19). This is the only term present when
the source signal is deterministic. In fact, the expres-
sions for the deterministic case can be obtained from the
expressions in this section, by taking S,, = 0.

To proceed, we need to define clearly the meaning of
the vectors @ and v. We start with the vector v that
enters in the mean value of the source signal

v =0 - o) (30)

where, we recall, N is the number of observation vectors
(that represents the number of frequencies for the WB
case and the number of snapshots for the NB case). For
each frequency, v, defines the real and imaginary parts
of the complex mean m,,

va = [Re{m,}"Im{m,}7). (31)
Since m, has dimension S (the number of sources
present), each v, has dimension 2S, and v has dimen-

sion 2SN.
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With this partioning of v, the FIM matrix for the
mean value parameters is correspondingly partitioned:

Foe  Fowwa 0 Fuun
£ = fu.;v, Frava o Foawn (32)
Foun Foxva - Foron
Using the expression for the mean py,,, we obtain,
E-Rf%‘:—m = bmnHm (33)
Suin i6mn Hom, (34)

8lm{m,,} =J

from where we may conclude that the non-diagonal
blocks in F,, are zero, and the diagonal blocks are

_ | Re{Xs} -Im{X,}
A et i ) (35)
where we defined
X, =HIR'H,. (36)

Let Y, denote the inverse of X,,. Then, [7], the inverse of
F,v 1s also a block diagonal matrix, with diagonal block

1 Re{Y,} -Im{Y,}
v = [ Im%Yn% Re{Y,} ] ' (37)

The partioning of the mean value vector v induces also
an identical partioning in the cross term Fg,:

Fov = [Favy -+ Favnl- (38)

We may now write for the loss term in Q#:

N
FarFit Foa =Y FavaFoly Fona- (39)
n=1
It 1s easily verified that
%n _ p M, (40)
da

where we defined M, 2 diag{m,} and D, is the matrix
formed by the derivatives of each resultant vector k,, with
respect to its location parameter:

D - Ohn(a1)  Bha(as)
"l ey Ba, )

(41)

These expressions yield the following
Fav, = 2[Re{A,} Im{A,}] (42)
where
A, 2 M:DHRI'H,, (43)

and N
}':a:2ZRe{M,:D,{1R;1DnMn}- (44)

n=1



Finally, we obtain

N
FarFauFva =Y _ Re{A,YaAH} (45)
n=1
and
N
Q= 2 Y Re{M;DER;! (46)
n=1

[Rn — Ho(HE R Ho)"'HE) R;' DM, } .

The CRB expression in {7} is for unknown determin-
istic signals. Correspondingly, the results in [7] are ob-
tained from equation (46) when we make the source co-
variance matrix zero, i.e., S, = 0. Equivalently, eq. (46)
says that formally the results in [7] correspond to the
“mean” term Q* here studied as long as the inner prod-
ucts are taken not in the covariance matrix R, but in
the noise only covariance matrix R, = o,1. The loss
term in this expression, arising from the estimation of
the signal amplitudes, is the real part of a Gram matrix.
Consider the Hilbert space of complex K-dimensional se-
quences with the following defintion of inner-product:
(£, 9ur,) = FHR;'g where R, is a definite positive
K x K Hermitian matrix. In this Hilbert space R, is
the identity operator, and P = H,(H¥R;'H,)"'HF is
the orthogonal projection operator in the space spanned
by the columns of H,,. It is easily verified that P,[P,] =
PHR;'P, = P, and that the loss term (45) can be writ-
ten as

wofs(n 2] 2]), )

The inner expression is the Gram matrix of the projec-
tion of the derivative of the mean value with respect to
the location parameters in the space spanned by the re-
sultant vectors, taken in the Hilbert space H(Ry,).

The influence of the multipath structure and of the
array geometry could be analyzed here, considering a
decomposition of the resultant vectors for each source in
terms of the “steering vectors” for each multipath arrival
and the “multipath delays”, measured at a reference sen-
sor. Since the expression for the deterministic signal is
similar to the expression for the stochastic signal at high
signal-to-noise ratios, see [5], the conclusions presented
therein remain valid. We do not pursue this study here.

5 The “Covariance” Term QF

In this section we present the expressions for the covari-
ance based term QF, for the case of S propagating un-
correlated sources, i.e, when

Sp = diag{pn,s}- 47

For each source, the sequence p,,,n = 1,...,N is
parametrized by the L-dimensional vector ,:

Pns = Pns(ns). (48)
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The complete vector of unknown spectral parameters is
the SL-dimensional vector:

7 =[n - nZ]. (49)

The first term in (21), F&,, is the FIM for the case
of known source spetral parameters. The case of multi-
ple propagating sources with arbitrary known covariance
matrix has been treated in detail in [5], where the fol-
lowing expression was derived:

N

FR = 2 > Re{(SaHER;'H.S,)®© (DIR;'D,)
n=1

+ (D"R;Y) o (DPRID]. (50)

In this expression, ® denotes the Hadamard (element by
element) product of matrices.
To compute the other two terms in (21), we note that,

9R, Opn, H
A = o lnlas hn s 51
m. = B, hn(as)hn(as) (51)
and
H
OR, _ Ohy(ay) H B8hy(ay)
Ba, =/ | TBa, (@) Hhale) =5
Using these expressions, we obtain,
u 8o} H p-1 Hp-1 771 0Pn
Fan =Za_,'; [(Hn R;"H,)® (H, Ry Hn) ]8—77
n=1

where h,, denotes 8h,/da, and 8py,,/8n, is the L-
dimensional row vector of derivatives of the spectral level
of source s, pn,, with respect to the L spectral parame-
ters.

For the cross-term, we obtain the following expression

N
dpn
Fon = 2Re {Z S [(HER;'Ha) © (HE R;'D,)T] -é’n—} .
n=1

. These expressions can now be used in (21) to determine
QF. The resulting expression is difficult to analyze. To
obtain more insight into the problem, we consider the
simpler case of a single propagating source, S = 1. In
this case, the inverse of the covariance matrix R, is eas-
ily found using the matrix inversion lemma. Define the
scalar quantity E, = o, + pa||h||?, and let v; be the
N-dimensional vector of generic element

n o [ Oha ¥
[vi]n = Z—Re {3;_- h,,} . (52)
Define the N x L matrix
_ |lhnl* 85,
(@t = E. 6n’ (53)



It can be shown that F,,, is the (L x L) Gram matrix of

the columns of this matrix, {¢;}X,,
Fan = (¢T’4’>’ (54)
which we assume non-singular.
Define the the matrix P,
P=¢(sT,6)" 47 (55)

P is the orthogonal projection matrix into Sy, the space
spanned by the N-dimensional vectors {¢;}/.,. This
subspace has dimension L.

The loss term in QF is the Gram matrix of the projec-
tion of the vectors v; in Sy,

}-an}‘q—,;lfna = (P[U]Tl P[”]) (56)

With these expressions, it can be shown [5], that QF
can be written as

Q" = CRB(a);y; +6(a, ) (57)

where CRB(a),, is the FIM for completely unknown
spectrum, given by

CRB(e);}; = 3~ Ki(n)Re {h’,,f,’ Pi(m)hna}. (58)

where Pi(n) denotes the orthogonal projection matrix
in the orthogonal complement of the span of the vector
hn, Ki(n) = S2||k||?/SnE,, and G is a gain term that
represents the additional information due to the known
parametrization of the source spetrum,

Glaym) = (P&, (o] P4, [wa]").  (59)

where Pg; . is the projection operator in the orthogonal
complement of Sy, .

We analyze two extreme cases:
(i) No information gain: G = 0. to have G = 0, we must
require that all the vectors v; belong to 84, i.e., there
maust exist vectors t; such that

v; = ¢t,‘. (60)

Note that if for a given subset of the unknown parameters
this condition is satisfied, then it will be trivially satisfied
for the complete vector 7, showing that having additional
unknown parameters cannot remove ambiguities, as it
should be.

If N = L, as in the case of arbitrary source spectrum,
S has full dimension N, and its orthogonal complement
is trivially equal to the zero vector. In this case, (60) is
trivially satisfied, and G = 0 always.

(ii) No information loss. The condition for no informa-
tion loss is that all the vectors v; belong to Sj. Consider
a fixed spectral parameter vector 1y of dimension Lg. If
we add another unknown parameter to form nr, 41, the
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subspace Si‘h 1 18 @ proper subspace of S;:Lo, and con-
sequently Gz, > Gr,+1, as it should be expected.

We note that the expression of CRB(a)yni shows that
for K = 1, that is, when there is a single observation sen-
sor, Pt = 0 and no estimation is possible. This fact is
intuitively justified since in this case the estimation is
based on a “covariance fitting” mechanism, that deter-
mines the multipath delays that are more likely to have
transformed the source signal spectrum into the observed
spectrum. If no source spectral information is available,
this fitting operation is not possible.

6 Multipath Structure

The detailed analysis of the impact of the multipath
structure is difficult to carry out in the general multi-
ple source context. For a single source, we have shown
[5] that the contribution due to the multipath structure
is highly dependent on the resolving power of the array
for the several incoming paths. Namely, the multipath
contribution can be interpreted as the contribution of a
“virtual array”, whose “size” and “geometry” are depen-
dent on the beampattern of the physical array for the
several incoming wavefronts. In particular, the “size” of
this virtual array is equal to the number of “clusters” of
rays resolved by the array.
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