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Abstract

The use of wavelet packet bases to represent determinis-
tic signals has led to optimal representations that minimize
a desired cost function. In this paper, we present an algo-
rithm that uses wavelet packet bases to construct a random
process that is matched to an arbitrary correlation matrix.
An analytical expression for the Bhattacharyya coefficient
gauges the similarity between the two processes and leads
to two iterative algorithms that are used jointly to find the
desired quantities. Eigendecompositions for the two pro-
cesses reduce the problem to finding the best wavelet-based
unitary matrix and a set of eigenvalues. Examples illus-
trates the technique.

1. Introduction

In target detection and classification, wavelet theory has
proven to be a capable tool for capturing localized activity
in time/space and frequency. As an alternative to the Fourier
Transform for deterministic signals, it provides a muitireso-
lution decomposition that can methodically reveal multiple
levels of detail in a signal.

The idea of matching wavelet-based, multiresolution
representations to deterministic signals is extended in [2, 7]
to wavelet packet bases. This generalization of the tradi-
tional wavelet filter bank structure permits the representa-
tion of a signal by one of many possible bases, each of
which is constructed by a unique ensemble of scalings and
translations of a wavelet/scaling filter pair. By employing a
suitable cost criteria, the best basis from the entire family of
bases is chosen to represent a single deterministic signal.

For the analysis of stochastic processes, however, no
comprehensive framework exists for optimally representing
random signals using wavelets. Several efforts [8, 1, 3, 9]
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have been made to incorporate the statistics of stochastic
processes into the mathematical framework of wavelets.

In this paper, an algorithm is presented which constructs
a wavelet-based correlation matrix that approximates an ar-
bitrary correlation matrix by using the Bhattacharyya coef-
ficient as a cost criteria. Because the Bhattacharyya coef-
ficient is actually a bound on the probability of error when
detecting the presence of either of the two processes, it is
a useful metric for measuring the similarity of the wavelet-
based process and the original process.

The wavelet-based process is constructed by inserting
the eigendecomposition of its correlation matrix, as well as
that of the original process, into the analytic expression for
the Bhattacharyya coefficient. As a result, the optimization
reduces to the selection of the two defining quantities of the
wavelet-based process: its unitary matrix of eigenvectors
and the associated eigenvalues. The unitary matrix may be
any of the possible wavelet packet bases in the tree spawned
by the wavelet/scaling filter pair. Each basis in the tree has
an optimal set of eigenvalues that maximizes the similarity
between the original process and the wavelet-based process.

2. Preliminaries

Let X be the N x N correlation matrix for a real-valued,
zero-mean, Gaussian stochastic process. The power of the
process, or the trace of %, is P. Let $ be the correlation
matrix for the wavelet-based process whose entries are to
be determined. Let ¥ and 3 have the following eigende-
compositions:

T=U.S-U¥ (1)

£=0.8.04. )
U is a unitary matrix containing the eigenvectors of . S is
a diagonal matrix containing the corresponding eigenvalues
of . U and § are defined similarly.

The Bhattacharyya coefficient, p, for £ and ) when both
processes are real, Gaussian, and equally likely, is [4]:

p(Z, f]) =e 3



where
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From (3) and (4) it follows that: 0 < p < 1. The larger the
value of p, the greater the similarity between X and 3.

Substituting the eigendecompositions in (1) and (2), p
can be shown to become:

]
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p(5,8) =27N2 | 5 |} 51518+ 070 2. (5)

Since the first two terms in (5) contain neither U nor S,
maximizing p is equivalent to maximizing the product of
the last two determinants:
W(,E) =8 |3| S+ UHST | "% . (6)
Let {ck,dr} be any orthonormal, compactly supported,
dyadic, scaling/wavelet filter pair that spawns a wavelet
packet tree structure. Any wavelet packet basis that arises
from {cg, dx } may be expressed as an orthonormal basis for
RN where N is constrained to be a power of 2. Let U con-
tain the N basis vectors, where each vector in U resides on
a node in the wavelet packet tree.

3. Approach

The full algorithm for matching a wavelet-based corre-
lation matrix to an arbitrary correlation matrix starts with
a scaling/wavelet filter pair, {c,dx}, for any orthonormal,
compactly supported, dyadic, wavelet. Successive upsam-
pling and filtering of the filter coefficients leads to vector se-
quences that are orthonormal on the same scale. Vector se-
quences that exceed IV, the matrix dimension, are wrapped
circularly. In [5] the theory is presented for adapting the dis-
crete wavelet transform (DWT) from the filtering domain
to the matrix domain. These results have been extended
here to unitary matrices and unitary wavelet packet bases
and supply an alternative perspective to traditional forms of
wavelet-based analysis.

The maximization of p(E,3.) is facilitated by consider-
ing the squared reciprocal of the expression in (6):

1y
W(Z,%)
|32 8+ 0T |,

Qx:,d) = |

= ™
The maximization of W (Z, ) is now rephrased as the
equivalent task of minimizing Q(X, ) with respect to the
same quantities as before, U and S. The following sub-
sections separately address the minimization with respect
to these two entities before the concepts are combined into
one complete algorithm.
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3.1. Optimal Eigenvalues: Fixed-Point Algorithm

Consider the constrained problem of minimizing
Q(Z, ) when a unitary basis matrix, U, has been fixed.
What remains is to find the matrix, S that contains the
eigenvalues, g1,...,gn, for the wavelet-based process, by
that maximize (%, ), subject to the constraint

N
Y gi=P
i=1

i.e., the power in the wavelet-based process equals the
power in the original process.
Q(3, %) can be expressed as:

®
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where a;5,4,7 = 1,..., N, are the elements of the symmet-
ric, positive definite matrix, A,
A=UHST. (10)

For notational convenience, allow the first determinant in
(9) to be known as GG, where

11

and the second determinant in (9) to be called V. Then,

Q(z,8) =GV. (12)
The i-th principal minor of V, which is the determinant of
the matrix formed by deleting the ¢-th row and ¢-th column,
is then denoted as V;.

_ To minimize (%, $%) with respect to the eigenvalues in
S, derivatives are first taken with respect to g;:
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_ 11 1 1 (14)

—S——V 4 —=Vi1.
26.v/G VG



Settmg £ equal to 0 in (14) and solving for g; leads to
the followmg expression:

1V
gi = IV (15)
Since V, and hence V;;, are a function of ¢,,..., gn, this

expression results in a fixed-point algorithm for g;. Using a
superscript to denote iterations, the iterative expression that
finds the optimal values for g1, ..., gn is expressed as

j 1
5 Vl’l‘_
= ki-tyi-t (16)
y L
N Vlf,jv

where a constant, k/~1, has been inserted as a normalizing
factor to preserve the total power, P, in the original process.
The requirement that g1, . .., g~ be strictly positive is met,
since both V and V;;,7 = 1,..., N, are guaranteed to be
positive. It has been found that an appropriate choice for
the starting values, g7, . .., g%, is the main diagonal of 4.

3.2. Optimal Eigenvectors: Basis Migration Algo-
rithm

Alternately, minimizing Q(2, ) when the eigenvalue
matrix of the wavelet-based process, S, is fixed, requires
a technique to find the only remaining variable quantity,
the unitary basis matrix, U. The challenge of finding the
best basis from a wavelet packet tree structure is a signif-
icant one. In [2, 7, 6] the problem is tackled when the
cost function is additive; the result is an unconstrained op-
timization in which branches of the wavelet packet tree can
be pruned independently of other branches until the overall
cost is minimized.

The Bhattacharyya coefficient, unfortunately, is not an
additive cost function, i.e., the branches of the wavelet
packet tree cannot be pruned independently and still lead
to an optimum solution. A naive approach to optimizing a
non-additive cost function would be to evaluate it for every
possible wavelet packet basis. A more efficient alternative
is to pick an initial basis and allow its vectors to “migrate”
up and down the branches of the tree until it arrives at a new
basis which maximizes the Bhattacharyya coefficient.

Consider the equality in (7). With S fixed, define

| 5+ UHSU |
|URUSTUHU + 5.

(5, 3)

an
18)
Let a superscript, j, indicate successive values for U. With-

out sacrificing generality, assume U?, the initial choice for
the unitary basis, is populated by the vectors at the bottom
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Figure 1. The wavelet packet tree

scale of the wavelet packet tree. Figure 1 illustrates this con-
cept. These vectors provide an STFT-like decomposition of
asignal. U° is:
O°=[ 9 81 ¥§ il |9 ¥R ]
(19
The vertical bars demarcate leaves on the tree that have been
spawned from the same branch. Vectors from the same
branch may either migrate together up to the node at the
next highest scale, or be filtered further by {cx, d } to yield
basis vectors on the next lower scale. In the case of the ba-
sis in (19), since the vectors are already on the lowest scale,
they may only migrate upwards.
Each pair of vectors in U (e.g., [/943]) may be replaced

by an alternative pair of vectors (e.g., [{z)?{pg]) residing on
the next higher scale, while maintaining the unitarity of the
matrix. Since there are N/2 groups in (19) there are 2% /2 .
1 new bases to which U° may migrate.

To illustrate the algorithm, consider the impact on

Q9(%, ) when [ 9] is replaced by [@2 Eg] Rewrit-

ing (18),
() = |UHTSUMU + 3| (20)
=2
= [UTY gupdydHU @1)
i=1
=N
+UH Y gy U + 5. 22
=3

If [¢? 9] is replaced by [@; Py] » the net change in contri-
bution by the first summation in (22) is

=2
= gy,

i=1

_——O—OH

502 = UH( gi

=1

(23)

where §; and g, is a redistribution of the power in g; and g-
when moving from one scale to another. This reallocation
of power among vectors on a common branch is not nec-
essary but is performed to maximize the similarity between



Y and ¥ and, ultimately, enhance the speed of the com-
plete algorithm. A significant point about the reallocation is
that the total power within a branch is reorganized, yet com-
pletely conserved. The algorithm described in Section 3.1
is responsible for optimally redistributing power between
all vectors while maintaining the overall power constraint.
The values for g;,7 = 1, 2, are:

—0H ,,—0

. 20 K,
" trace([Py Bl K1 95))

To decide whether the difference in migrating from
[4943] to [ﬁfb—g] lowers Q9(X,33), and hence maximizes
the Bhattacharyya coefficient, the N x N matrix, 5?2, is
multiplied, element-wise, with the gradient of the original
system in (21), and summed. The gradient of the original
system, V0, is the partial derivative of Q) (X, 3) with re-
spect to each matrix element in the original system:

(g1+g) @4

V0 = AdjUFTO°SUHU + S) (25)
= |L+X|(UHFU°SUHU +S)~t (26)
SUHTSUHU + 8)71 27

where c® is a constant that may be ignored. The impact
caused by migrating from [15943] to [%-45] on Q(E, ) is
therefore given by the innovation value, €J,:

N
&y =D 00,(6,5)V°(,J).

i,j=1

(28)

If ¢, > 0, then the migration increases 022(,3:) and
subsequently decreases the similarity between the two pro-
ceses. If €9, < 0 then the new basis will result in a wavelet-
based process that is closer to the original process, ¥, and
the migration is justified.

This procedure is repeated for each group of vectors in
the basis. Migration of one group of vectors to another scale
only occurs if its impact is to decrease (%, 32). When all
the basis vector groups have been evaluated for migration,
and a new basis, U 1 has been found, the pArocedure is re-
peated, initiated by calculating V*, using U?, and S, the
diagonal matrix of reallocated eigenvalues, if the eigenval-
ues have been reallocated, or S, if they have not.

4. The Complete Matching Algorithm

Starting with a scaling/wavelet filter pair, an initial
wavelet packet basis, U 0 is chosen. Initial results indicate
that selecting U0 to be the highest scale of wavelet packet
basis vectors provides an adequate starting point for a num-
ber of classes of matrices. S°, the initial eigenvalue matrix,
utilizes the diagonal of A°:

A° =[H 0. (29)
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Figure 2. The complete matching algorithm

3:9, the first approximation to X, may be constructed:

50 =yo8°oH, (30)
p°(%, £29) is calculated and recorded.

U is obtained by migrating U° using the basis migration
algorithm discussed in Section 3.2 when 59 is employed as
the set of eigenvalues. Successive values of U will reflect
incremental changes in vectors when compared to the pre-
ceding unitary basis. The eigenvalues in S! are determined
by iterating the fixed point algorithm described in Section
3.1 when U is the fixed unitary matrix. If the eigenvalues

in §° were reallocated to obtain U, then SO is the starting
point for determining St $31 is created in the same manner
as X0, p}(X, %) is then calculated, and the entire proce-
dure iterates until successive values of p? (3, £79) are equal
within a prescribed tolerance. Figure 2 illustrates the com-
plete matching algorithm.

5. Examples

Two examples demonstrate how the complete algorithm
arrives at an optimal basis and set of eigenvalues without



LIteration Scales of basis vectors | p(Z, ¥%) |
1 {3,3,3,3,3,3,3,3} 0.2791
2 {2,2,2,2,22,2,2} 0.4562
3 {1,1,1,1,3,3,3,3} 0.7643
4 {1,1,1,1,2,2,2,2} 0.7932
5 {1,1,1,1,3,3,3,3} 0.8158

Table 1. Results for Markov Process

exhaustively testing all possibilities. The first correlation
matrix to be matched is an 8 x 8 first-order Markov process
whose eigenvectors are known to be non-harmonic sinu-
soids. The second correlation matrix is an 8 x 8 bandlimited
process whose eigenvectors are from the family of angular
prolate spheroidal functions. The wavelet/scaling filter pair
used corresponds to the Daubechies-2 wavelet. The wavelet
packet tree has three levels, level three corresponding to the
highest scale (best temporal resolution and worst frequency
resolution), and level one corresponding to the lowest scale
(worst temporal resolution and best frequency resolution).
In both cases, the initial basis, U 0 are the vectors resid-
ing on the highest scale. The results were confirmed by an
exhaustive search over all possible bases.

5.1. First-Order Markov Process

¥ is a first-order Markov process with correlation coeffi-
cient, p = 0.95. The entries of £(3, j) are given by:

(i, ) = pl*~il. (31)

Table 1 summarizes the results of the iteration. The al-
gorithm arrived at a basis whose vectors come from both
the highest scale, and the lowest scale. It is worth noting
that although the algorithm started with basis vectors on the
highest scale, and then immediately migrated to the next
lower scale, half of the vectors in the final basis returned
to the highest scale. This is attributed to the effect of the
fixed-point eigenvalue algorithm in Section 3.1 which dy-
namically “steers” V, and returns half of the basis vectors in
U to the highest scale to arrive at a higher value of p(Z, 33).

5.2. Bandlimited Process

¥ is a bandlimited process whose bandwidth in the nor-
malized frequency domain is w = 0.41, The entries of
¥.(4, §) are given by:

. sin (2rw(i — 7))

E 2, = e
(i,5) R

Table 2 summarizes the results of the iteration. The phe-

nomenon of upwards and downwards vector migration dis-
cussed in Section 5.1 was also observed here.

(32)
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Iteration || Scales of basis vectors | (2,39 I

1 {3.3,3,3,3,3,3,3} 0.7658
2 {2,2,2,2,22,2,2} 0.8328
3 {1,1,1,1,1,1,1,1} 0.9450
4 {1,1,1,1,1,1,2,2} 0.9467

Table 2. Results for Bandlimited Process

6. Conclusion

We have demonstrated an algorithm for constructing a
wavelet-based correlation matrix that approximates the cor-
relation matrix for an arbitrary random process in the Bhat-
tacharyya sense. The algorithm searches a wavelet packet
tree for the unitary basis of eigenvectors that maximizes the
similarity between the two processes and also finds the as-
sociated eigenvalues.

Future work on this algorithm will concentrate on
demonstrating convergence and investigating its depen-
dence on starting values. These issues will become piv-
otal when the algorithm is tested on several varieties of pro-
cesses, in particular, high-pass and low-pass processes.
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