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ABSTRACT decoupled reduced-order models. This decoupling ignores relevant

This paper discusses the distributed Kalman filter problem for th corrglatlon information among ;he states. Furthermgre, sparse and
alized structures that underlie the system dynamics are also not

state estimation of sparse large-scale systems monitored by sen %ﬁen into account. Localized refers to model matrices in which the

networks. With limited computing resources at each sensor, no S %upling between states that are farther apart in the state vector de-
sor has the ability to replicate locally the entire large-scale state- pling P

space model. We investigate techniquedistributethe model, i.e., cays in an appropriate measure. I__ocallzed model matrices include,
f t are not limited to, banded matrices. Banded matrices arise many

to have at each sensor low-dimensional coupled local models th es as a result of discretizing random fields qoverned by partial
are computationally viable and provide accurate representation 9 9 yp

the local states. We implement local Kalman filters over these cou-'ﬁerem'al equations.
p|ed reduced models. We use system digraphs and Cut-point sets We present a Completely decentralized solution where all the
for model distribution. Under certain conditions, the local KalmanSensor observations are never collected at the same location, and,
filters asymptotically guarantee the performance of the centralize®here only low order computations are implemented. This requires
Kalman filter. the global model to be distributed into reduced-order models (so that
the computations required at each sensor are reduced), keeping the
coupling among these reduced models intact. We use the Informa-
tion filter [5], algebraically equivalent to the Kalman filter [6], for the
dwirposes of state estimation. In this paper, we distribute the global
gﬂgdel of the large-scale system into coupled sensor-based reduced
Pdels by exploiting the inherent physical structure of such systems.
& can then implement local Information filters on these sensor-
based models. We achieve the decentralization by only collecting

he relevant sensor observations pertinent to the local Information

poses. Due to their large geographical span and their high dimel?. . X
sionality, centralized state estimation schemes are challenged wi Hter at that sensor. We t"’.‘ke Into ?‘CCOU”‘ the coupling between the
duced models through information exchange among the local In-

inordinate communication and computational needs. These can o
avoided if the system can be distributed into smaller coupled sys-Ormatlon filters.
tems by exploiting the sparsity and locality inherent in the system  The model distribution we present here exploits the spatial struc-
structure. Local estimation schemes can be employed on these lofre of the large-scale systems. We provide a top-down approach for
dimensional systems and information exchange among them is us&gatially decomposing a large-scale system in which the large-scale
to achieve performance equivalent to the performance of a centramodel dynamics are already fixed. A bottom-up approach, where
ized scheme. several local systems have fixed model dynamics but the coupling

We study Kalman filters for the purpose of state estimation. Sevtopology among these local systems can be chosen is studied in [7].
eral studies have been conducted to distribute the Kalman filter imAn important question in this bottom-up setup is the following: un-
plementation, but they have practical limitations when it comes tgler what topological constraints on the coupling among local sys-
large-scale systems. These include decentralizing the Kalman fitems do the local estimation procedures remain optimal and track
ter observation equations so that the distributed sensor observatiofite global performance. The top-down approach that we study has
are not collected at a central location [1, 2, 3] and implementing lo fixed dynamical topology for the large-scale systems. The notion
cal Kalman filters based on reduced-order models [4, 5] so that thef local systems is not apparent in this scenario and several different
computational requirements can be decreased. The former, [1, 2, 3pcal systems can be chosen. We provide a sensor-based approach
involve computations witmth order vectors and matrices (where t0 choose the local systems. Once the local systems are chosen, the
is the dimension of the state vector), which is infeasible whés  coupling topology among the local systems is fixed as given by the
extremely large as may be the case in large-scale systems. The lirge-scale model dynamics, which we cannot alter.
ter, [4, 5], decouples the global model of the large-scale system into  As an example, consider figure 1 where a large-scale system

- - with arbitrary dynamics is shown. The circles are the state variables
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1. INTRODUCTION

Large-scale integration in sensing and communication technologi
has made possible for sensor networks to monitor sparse large-sc
dynamical systems, e.g., electric power systems, water managem
systems, gas-pipeline systems, or weather forecast systems. St
estimation is necessary for control, tracking and navigational pur:




cludes the paper.

2. GLOBAL MODEL

The global model assumed is the discrete time state-space represen-
tation given by

Xkt+1 = Fx; + GUk7 k> 0, (1)

where:x;, is then-dimensional statel is the model matrixyy, ~
A4(0, Q) is the white noise input vectoky ~ .4 (X0, Xo) are the
initial conditions. We haveV sensors observing the random field
Fig. 1. Arbitrary dynamical system: the state variables representetf (1). Thep;-dimensional observation vector for thi sensor is
by circles and the interconnections among them represent their codiven by
pling. v = Hxi +w, 2
whereH; is the local observation matrix with the white observation
noise vectonwff) ~ A4 (0,Ry).
We stack the local observations to get the global observation
vector,

y’(€1> H, w}(cl)

ye=| o | H=| 1 | we=]|
g™ Hy w®)
(3)

The global observation model is

yr = Hxp + wi. (4)
Fig. 2. Sensor-based local systems are implemented on the arbitra%e noise sequencei}xso and {w},>o and the initial condi-
large-scale dynamical system shown in figure 1. tion, xo, are all statistically independent. Furthermore, the local
observation noise vectors are uncorrelated among the sensors and
we can writeR = blockdiagR1, R, ..., Rny]. We assume that the
sensors observe (directly or indirecfly We assume here, without global state-space dynamical and observation model, given by (1)
loss of generality, that each state is observed (directly or indirectlyand (4), is(F, H)—observable.
at least at one sensor. The coupling topology among the local sys-
tems in figure 2 is now defined by the dynamics of the large-scal€entralized Information Filter: In this version of the Kalman fil-
system: there is an edge among the local systems if the states thgy, the state estimat&y,, and predictorxy 1, are transformed
include have an interconnection. aszy k= Zy |1 Xk|k, AN0Zy ;1= Zg|x— 1%k k-1, respectively, where
Since the local systems are coupled, the local Information filtershe information matriceszy,,, andZy,,_1, are the inverses of the
implemented on them are also coupled. It can be shown that due stimation error covariance matri,,, and prediction error covari-
this coupling the local error covariance matrix at each local systemance matrix,Sy .1, respectively. Let,= H'R 'y, andI, =
is a function of the global error covariance matrix, see [8]. Hence, 31T R 1§ Itis straightforward to write, [1, 5]
distributed procedure to compute the global error covariance matrix
is required. To achieve this, while preserving the locality of the com- . N T 1. (D)
putations, we approximate the information matrices, inverse of the e = ZHl Ry’ ®)
error covariance matrices, to bebanded. This approximation is =1

equivalent to forcing the Gaussian error processes in the Kalman fil- N S
ter to beLth order Gauss-Markovian [9] processes and is optimal in I, =) H/R;'H. (6)
Kullback-Leibler sense [10]. These approximations enable us going =1

from the local variables to the appropriate submatrices/subvectorBhe centralized Information filter equations for the global model (1)

in the global variables through only local communication involving and (4) are given by: initial conditiory_; = 37" andzy_; =

only local variables. Implementing the centralized Information filter Z, %o, a filter step (7), and a prediction step (8).

with these approximations is shown to be practically indistinguish- N

able frpm the exact spheme in [11]-. S . Zip = Zupoi+ ZHzTRsz (7a)
This paper explains how to achieve model distribution using sys-

tem digraphs and cut-point sets in section 3 from the global model

=1

N
representing the large-scale system presented in section 2. Section 2 7 - 3 I HIR, v 7b
also presents the centralized Information filter. A summary of the klk klk—1 ; LYk (75)
steps required in implementing local Information filters is provided B
in section 4. Section 5 presents simulation results and section 6 con- - _
P Zup1r = (FZ.',, ,F'+GQG")" (8a)
Lif a sensor observes a linear combination of some states, these states are Zee1 = Zrls1 (qu T 1lk 1) (8b)
said to be observed indirectly by the corresponding sensor. k= Ie= k—1lk—1%k—1lk—



3. MODEL DISTRIBUTION USING SYSTEM DIGRAPHS

We distribute the global model (1) and (4) to derive coupled low-

dimensional local models. With low-dimensional models, we can

implement local low-order Information filters at each sensor that are
computationally efficient. The coupling among the local models is
preserved through information exchange among the local Informa-
tion filters. We illustrate the procedure of model distribution using

an example. Consider a 5-dimensional system Witk= 3 sensors.

rfir 0  fis O 0
for fe2 0 fa2a O
Xk+1 = f31 O f33 0 O Xk S3 e‘
0 0 faz 0  fas
L 0O 0 0 fsa fs5
) Fig. 3. The system digraph of thedimensional system, (9)-(10) is
gi2 . f .
0 0 shown as black solid lines, where the circles represent the states,
+ 0 0 uy, of the system, and the squares represent the input noise sources,
0 0 The cut-point sets associated to #®ensorsq) are shown in dotted
0 (colored) circles.
L g51
= Fxi + Gus. (9)
The local states at sensbrxg), are the vertices in its associ-
yl<€1> [ hit ki O 0 0 ated cut-point sety V. The local state vectoxg), is coupled to
Vi = yl(f) — 0 hos hos hos O Xk the other reduced models through the arrows cominglifito, see
y(3) | O 0 0  hss  hss figure 3. The states that are coupledcfﬁ are the inputs required to
. @ the local model at sensér The inputs are collected in a local input
U’;&) vector,d,(f). The coupling coefficients are the corresponding terms
+ wl(c?)) to the inputsd,(f), in the model matrix}', and are collected in the
L wy local input matrixD®. The local model matrixF"), corresponds
= Hxi + wy, (10)  tothelocal state vectoxg). This partitioning gives us the following

) ) reduced sensor-based model at sensor 1
whereH = [H ,H HI|”. Equations (9) and (10) comprise the

global modelfor our example, which we will distribute by formu- O [ fuin O ] Y

lating reduced order models with the help of system digraphs and kt1 for foa | 7K

cut-point sets as follows. fis 0 Tsk 912

A system digraph [7]J = [V, E], is a directed graphical repre- + [ 0 fou ] [ m’k ] + [ 0 ] U2k,

sentation of the system, whetéis the vertex set that contains the "

states{z;}, and the inputs{u; }, of the system, and’ is the edge = F(I)XS) + D(l)dg) + G(l)ug) (23)

matrix or the interconnection matrix of the system. The interconnec- ) ) .

tion matrix, £, for the system in (9) is, SinceF is sparse, there are only a few interconnections among the

reduced models. IF is localized, the interconnections are from
1 01 0 0 0 1 neighboring sensors and thus long-distance communication links can
1 1.0 1 0 0 0 be avoided. The reduced local observation model is obtained by
E=|1 01 0 0 0 0], (11)  retaining only the terms correspondingﬁgﬂ) in H;, and for sensot

001 01 00 is given by
0 001 1 10

. . _ vi) = HO5Y +w, (14)
which is sparse, reflecting the system structure. The system digraph

is shown in figure 3 with black solid lines. whereH") = [hy; h13]. The coupled state vectcdg), associated

_DO0i O] i PN
Each sensor corresponds to aut-point setv [12], which to a reduced model is unavailable. We use its estimf%e, to
contains a state variable,, if the corresponding sensor observes

«; directly or indirectly. Hence, the cut-point sets extract the statéccount for the coupled information among the reduced mbdels
variables relevant to the local dynamics at each sensor. From (10feneralizing to an arbitrary sendowe have the following reduced
we have the following cut-point set at sengor model.

® — DD D 10) DINO)
v = (e, 30 (12) i = FUx7+ DO + GOu) (15)
(O HW @ ) 16
The cut-point sets corresponding to this and the other two sensors Vi Xp T W (16)
are shown in figure 3. We chose in this example that each state vari- 21ne procedure of choosing the cut-point sets is different from [12]. Fur-

able is observed by at least one sensor. We are not restricted to thifrmore, the notion of estimated inputs to a particular reduced model is
choice. novel in this approach.




4. LOCAL INFORMATION FILTERS to sensot areF" andD™®, as shown in (15). It can be shown [8],

that (20) is equivalent to

The local Information filters are based on the reduced sensor-based

models (15) and (16). Since these reduced models may have share@l(j‘ki1

states as it is clear from the overlapped cut-point sets in figure 3, dif-

ferent observations of these shared states made by different sensors

should be fused in order to achieve the centralized performance [13].

It is shown in [13] that observation fusion for local Information fil- + Qe (21)

ters only requires a particular subset of observations available at the

neighboring sensors and thus involves only local communication anghich requires submatricesz)_uk_l) in the global estimation er-

computations involving reduced variables. With the observation furor covariance matrixS;_1|,—1, from the neighboring sensois

sion, thelocal filter stepof the local Information filters is given by  andq. To go from the local estimate information matmglllk_l,
provided by the local filter step (17a), to the submatrices in the global

estimation error covariance matrig,.’

g nT ) ala) nT
F()Sk—l\kle() +F()Skqfl|k—lD()

—+

Hala) nr\ 7T (1) a(v) T
(F( )Skqfl\kle( ) + D >Sk171\k71D( )

Zie = Ziho e (173) vanance matriy -, and hence compute
' v (21), we use the distributed iterate-collapse inversion (DICI) algo-
Egl)k - Egl)kfl—kif,l,k, (17b)  rithm presented in [14, 8]. The local prediction error covariance

matrix, S,(fl)kfl, is inverted to get local prediction information ma-

wherel;; ; andiy ;. represent the fused observations at sehsor

and timek trix, Z.") using theL-banded inversion theorem [10]. Finally,

k|k—1"
along with (21), thdocal prediction steps completed by, see [8]

Gauss-Markovian Approximation of the Error Processes: The

~(1 1 DENU 1701
Gaussian error processes of the Kalman filter, given by zl(c\>k—1 = Z;\)k—l (F( )Xl(czl\k—l +D )dl(cil|k—l)
~ V) V) %(Q)
€klk = Xk = Xklk, (18) + N (Zk\kﬂrF( )7xk—1\k—1) ) (22)

€klk—1 = Xk — )/Ek\k—lv (19) . . .
for someV, Q, neighbors of sensdr, and wheref; (-) is a linear

are completely characterized by theix n covariance matrice§,,, ~ function thatdependsob. _

andSy,_,. Preserving these covariance matrices among the local ~ The local Information filter is given by the equations (17)-(22).

Information filters require®(n®) computation and)(n?) storage Itcan b_e not_ed that nowhe_re in these equationsthrorder variable

at each sensor. This violates our requirement of a low-order conS required, i.e., all the variables involved are local to the sensors.

putational scheme. To overcome this, we approximate the Gaussian

error processes to beth order Gauss-Markovian. This is equivalent 5. SIMULATION RESULTS

to approximating the information matricé;,, andZy,,_+, inverse

of the error covariance matrices, to Bbe-banded, see [9], and is We simulate the: = 5—dimensional system presented in (9)—(10)

optimal in Kullback-Leibler or maximum entropy sense, see [10]. monitored byN = 3 sensors. We implement the local Informa-
With the Gauss-Markovian approximation on the error processetipn filters with L = 1—banded approximation on the informa-

theirn x n covariance matrices§,, andSy,_1, are completely  tion matrices,Z,;, andZg,_,. Figure 4 and figure 5 show the

characterized by theif—band. Any nonL—band element of a ma- trace of the error covariance matri%,,;, plotted against the In-

trix whose inverse id —banded can be written as a function of the formation filter iterations. Figure 4 compares the optimal Informa-

elements inside thé—band, see [11]. Thus, preserving the Gauss-tion filter performance with centralized Information filter with=

Markovian error structure is equivalent to preserving theband  2—banded approximation averaged o¥800 Monte-Carlo simula-

of the error covariance matriceSy,;, and Sy ,_;. With this ap-  tions. The solution of the Riccati equation is also shown in figure 4.

proximation, we proceed further with the local Information filters asFigure 5 compares the trace of the error covariance masfiy,,

follows. for the centralized. = 1—banded Information filter and the lo-
The filtered estimates%,(jfk, are converted to estimates in the cal L = 1—banded Information filters averaged ou&00 Monte-

Carlo simulations. The local models have the dimensions=

2,3,2, smaller thanm = 5. Figure 6 shows the estimates of the

t'?nﬁ f%r. ba}gde% mamcez’“kxk"“ = Bklk U%Tgla Slpec_'?ll Caii local L = 1—banded Information filters and the optimal Informa-
of the distributed iterate-collapse inversion (DICI) algorithm [ ]’_tion filter estimates along with the state variables.

which requires only local communication and processes local matri-
ces.

It can be shown [8], that the local error covariance matrix is 6. CONCLUSIONS
given by

Kalman filter domain?cgfl)k, by solving the linear systems of equa-

From the simulation results, we deduce the following conclusions.
= FiSi_1s 1 F7 + cqQ®a®T, (20)  AsL 1, L—banded Information filters converge to the optimal Infor-

mation filter, as shown in figure 4. The lodal-banded Information
whereF, is then; x n submatrix of the model matrib, with n; filters asymptotically converge to the centralizee-banded Infor-

rows of F that correspond to the; local states at sensarFrom the mation filter. In figure 5, the performanqe of the local scheme is ex-
sparse and localized global model mati#, the submatrices local actly the same as that of the the centraliZedbanded scheme. The

estimates in figure 6 are virtually indistinguishable from the optimal
3We refer to a matrix as afi-banded matrix, > 0), if the elements ~ €stimates. The steady state error for= 1—banded approximation
outside the band defined by tiig¢h upper and.th lower diagonal are zero.  is considerably removed whenT.

g0

k|k—1
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Fig. 6. Local L. = 1—banded Information filter estimates
(black/dash-dot) are compared to the optimal estimates (red/dashed)
and the actual states (blue/solid).

Fig. 4. Trace of the error covariance matriSy,, is plotted
for the centralized optimal Information filter and centralized=
2—banded Information filter. The solution to the Riccati equation is
also shown.
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