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ABSTRACT

This paper discusses the distributed Kalman filter problem for the
state estimation of sparse large-scale systems monitored by sensor
networks. With limited computing resources at each sensor, no sen-
sor has the ability to replicate locally the entire large-scale state-
space model. We investigate techniques todistributethe model, i.e.,
to have at each sensor low-dimensional coupled local models that
are computationally viable and provide accurate representation of
the local states. We implement local Kalman filters over these cou-
pled reduced models. We use system digraphs and cut-point sets
for model distribution. Under certain conditions, the local Kalman
filters asymptotically guarantee the performance of the centralized
Kalman filter.

1. INTRODUCTION

Large-scale integration in sensing and communication technologies
has made possible for sensor networks to monitor sparse large-scale
dynamical systems, e.g., electric power systems, water management
systems, gas-pipeline systems, or weather forecast systems. State
estimation is necessary for control, tracking and navigational pur-
poses. Due to their large geographical span and their high dimen-
sionality, centralized state estimation schemes are challenged with
inordinate communication and computational needs. These can be
avoided if the system can be distributed into smaller coupled sys-
tems by exploiting the sparsity and locality inherent in the system
structure. Local estimation schemes can be employed on these low-
dimensional systems and information exchange among them is used
to achieve performance equivalent to the performance of a central-
ized scheme.

We study Kalman filters for the purpose of state estimation. Sev-
eral studies have been conducted to distribute the Kalman filter im-
plementation, but they have practical limitations when it comes to
large-scale systems. These include decentralizing the Kalman fil-
ter observation equations so that the distributed sensor observations
are not collected at a central location [1, 2, 3] and implementing lo-
cal Kalman filters based on reduced-order models [4, 5] so that the
computational requirements can be decreased. The former, [1, 2, 3],
involve computations withnth order vectors and matrices (wheren
is the dimension of the state vector), which is infeasible whenn is
extremely large as may be the case in large-scale systems. The lat-
ter, [4, 5], decouples the global model of the large-scale system into
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decoupled reduced-order models. This decoupling ignores relevant
correlation information among the states. Furthermore, sparse and
localized structures that underlie the system dynamics are also not
taken into account. Localized refers to model matrices in which the
coupling between states that are farther apart in the state vector de-
cays in an appropriate measure. Localized model matrices include,
but are not limited to, banded matrices. Banded matrices arise many
times as a result of discretizing random fields governed by partial
differential equations.

We present a completely decentralized solution where all the
sensor observations are never collected at the same location, and,
where only low order computations are implemented. This requires
the global model to be distributed into reduced-order models (so that
the computations required at each sensor are reduced), keeping the
coupling among these reduced models intact. We use the Informa-
tion filter [5], algebraically equivalent to the Kalman filter [6], for the
purposes of state estimation. In this paper, we distribute the global
model of the large-scale system into coupled sensor-based reduced
models by exploiting the inherent physical structure of such systems.
We can then implement local Information filters on these sensor-
based models. We achieve the decentralization by only collecting
the relevant sensor observations pertinent to the local Information
filter at that sensor. We take into account the coupling between the
reduced models through information exchange among the local In-
formation filters.

The model distribution we present here exploits the spatial struc-
ture of the large-scale systems. We provide a top-down approach for
spatially decomposing a large-scale system in which the large-scale
model dynamics are already fixed. A bottom-up approach, where
several local systems have fixed model dynamics but the coupling
topology among these local systems can be chosen is studied in [7].
An important question in this bottom-up setup is the following: un-
der what topological constraints on the coupling among local sys-
tems do the local estimation procedures remain optimal and track
the global performance. The top-down approach that we study has
a fixed dynamical topology for the large-scale systems. The notion
of local systems is not apparent in this scenario and several different
local systems can be chosen. We provide a sensor-based approach
to choose the local systems. Once the local systems are chosen, the
coupling topology among the local systems is fixed as given by the
large-scale model dynamics, which we cannot alter.

As an example, consider figure 1 where a large-scale system
with arbitrary dynamics is shown. The circles are the state variables
and the arrows among the state variables show the coupling between
them. Figure 2 shows the local systems implemented on the dynam-
ical system in figure 1 as larger (red) ovals. The local systems are
selected one at each sensor and they include all the states that the



Fig. 1. Arbitrary dynamical system: the state variables represented
by circles and the interconnections among them represent their cou-
pling.

Fig. 2. Sensor-based local systems are implemented on the arbitrary
large-scale dynamical system shown in figure 1.

sensors observe (directly or indirectly1). We assume here, without
loss of generality, that each state is observed (directly or indirectly)
at least at one sensor. The coupling topology among the local sys-
tems in figure 2 is now defined by the dynamics of the large-scale
system: there is an edge among the local systems if the states they
include have an interconnection.

Since the local systems are coupled, the local Information filters
implemented on them are also coupled. It can be shown that due to
this coupling the local error covariance matrix at each local system
is a function of the global error covariance matrix, see [8]. Hence, a
distributed procedure to compute the global error covariance matrix
is required. To achieve this, while preserving the locality of the com-
putations, we approximate the information matrices, inverse of the
error covariance matrices, to beL-banded. This approximation is
equivalent to forcing the Gaussian error processes in the Kalman fil-
ter to beLth order Gauss-Markovian [9] processes and is optimal in
Kullback-Leibler sense [10]. These approximations enable us going
from the local variables to the appropriate submatrices/subvectors
in the global variables through only local communication involving
only local variables. Implementing the centralized Information filter
with these approximations is shown to be practically indistinguish-
able from the exact scheme in [11].

This paper explains how to achieve model distribution using sys-
tem digraphs and cut-point sets in section 3 from the global model
representing the large-scale system presented in section 2. Section 2
also presents the centralized Information filter. A summary of the
steps required in implementing local Information filters is provided
in section 4. Section 5 presents simulation results and section 6 con-

1If a sensor observes a linear combination of some states, these states are
said to be observed indirectly by the corresponding sensor.

cludes the paper.

2. GLOBAL MODEL

The global model assumed is the discrete time state-space represen-
tation given by

xk+1 = Fxk + Guk, k ≥ 0, (1)

where:xk is then-dimensional state;F is the model matrix;uk ∼
N (0,Q) is the white noise input vector;x0 ∼ N (x0,Σ0) are the
initial conditions. We haveN sensors observing the random field
in (1). Thepl-dimensional observation vector for thelth sensor is
given by

y
(l)
k = Hlxk + w

(l)
k , (2)

whereHl is the local observation matrix with the white observation
noise vectorw(l)

k ∼ N (0,Rl).
We stack the local observations to get the global observation

vector,
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The global observation model is

yk = Hxk + wk. (4)

The noise sequences{u}k≥0 and {w}k≥0 and the initial condi-
tion, x0, are all statistically independent. Furthermore, the local
observation noise vectors are uncorrelated among the sensors and
we can writeR = blockdiag[R1,R2, ...,RN ]. We assume that the
global state-space dynamical and observation model, given by (1)
and (4), is(F,H)−observable.

Centralized Information Filter: In this version of the Kalman fil-
ter, the state estimate,bxk|k, and predictor,bxk|k−1, are transformed
asbzk|k= Zk|kbxk|k, andbzk|k−1= Zk|k−1bxk|k−1, respectively, where
the information matrices,Zk|k, andZk|k−1, are the inverses of the
estimation error covariance matrix,Sk|k, and prediction error covari-
ance matrix,Sk|k−1, respectively. Letik= HT R−1yk andIk =

HT R−1H. It is straightforward to write, [1, 5]

ik =

NX
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l y
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Ik =

NX
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HT
l R−1

l Hl. (6)

The centralized Information filter equations for the global model (1)
and (4) are given by: initial conditionsZ0|−1 = Σ−1

0 andbz0|−1 =
Z0|−1x0, a filter step (7), and a prediction step (8).

Zk|k = Zk|k−1 +
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Zk|k−1 = (FZ−1
k−1|k−1F

T +GQGT )−1 (8a)

bzk|k−1 = Zk|k−1
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3. MODEL DISTRIBUTION USING SYSTEM DIGRAPHS

We distribute the global model (1) and (4) to derive coupled low-
dimensional local models. With low-dimensional models, we can
implement local low-order Information filters at each sensor that are
computationally efficient. The coupling among the local models is
preserved through information exchange among the local Informa-
tion filters. We illustrate the procedure of model distribution using
an example. Consider a 5-dimensional system withN = 3 sensors.
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whereH = [HT
1 ,HT

2 ,HT
3 ]T . Equations (9) and (10) comprise the

global modelfor our example, which we will distribute by formu-
lating reduced order models with the help of system digraphs and
cut-point sets as follows.

A system digraph [7],J = [V, E], is a directed graphical repre-
sentation of the system, whereV is the vertex set that contains the
states,{xi}, and the inputs,{ui}, of the system, andE is the edge
matrix or the interconnection matrix of the system. The interconnec-
tion matrix,E, for the system in (9) is,

E =

2
6664

1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 0 1 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0

3
7775 , (11)

which is sparse, reflecting the system structure. The system digraph
is shown in figure 3 with black solid lines.

Each sensorl corresponds to acut-point setV(l) [12], which
contains a state variable,xi, if the corresponding sensor observes
xi directly or indirectly. Hence, the cut-point sets extract the state
variables relevant to the local dynamics at each sensor. From (10),
we have the following cut-point set at sensor1,

V (1) = [x1, x2] . (12)

The cut-point sets corresponding to this and the other two sensors
are shown in figure 3. We chose in this example that each state vari-
able is observed by at least one sensor. We are not restricted to this
choice.

x4

x2

x1

x3

x5

u2

u1

s1

s2

s3

Fig. 3. The system digraph of the5 dimensional system, (9)-(10) is
shown as black solid lines, where the circles represent the states,x,
of the system, and the squares represent the input noise sources,u.
The cut-point sets associated to the3 sensors (4) are shown in dotted
(colored) circles.

The local states at sensorl, x
(l)
k , are the vertices in its associ-

ated cut-point set,V (l). The local state vector,x(l)
k , is coupled to

the other reduced models through the arrows coming intoV (l), see
figure 3. The states that are coupled tox

(l)
k are the inputs required to

the local model at sensorl. The inputs are collected in a local input
vector,d(l)

k . The coupling coefficients are the corresponding terms

to the inputs,d(l)
k , in the model matrix,F, and are collected in the

local input matrixD(l). The local model matrix,F(l), corresponds
to the local state vector,x(l)

k . This partitioning gives us the following
reduced sensor-based model at sensor 1
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SinceF is sparse, there are only a few interconnections among the
reduced models. IfF is localized, the interconnections are from
neighboring sensors and thus long-distance communication links can
be avoided. The reduced local observation model is obtained by
retaining only the terms corresponding tox

(l)
k in Hl, and for sensor1

is given by

y
(1)
k = H(1)x

(1)
k + w

(1)
k , (14)

whereH(1) = [h11 h12]. The coupled state vector,d
(l)
k , associated

to a reduced model is unavailable. We use its estimate,bd(l)

k|k, to

account for the coupled information among the reduced models2.
Generalizing to an arbitrary sensorl, we have the following reduced
model.

x
(l)
k+1 = F(l)x

(l)
k + D(l)bd(l)

k|k + G(l)u
(l)
k (15)

y
(l)
k = H(l)x

(l)
k + w

(l)
k (16)

2The procedure of choosing the cut-point sets is different from [12]. Fur-
thermore, the notion of estimated inputs to a particular reduced model is
novel in this approach.



4. LOCAL INFORMATION FILTERS

The local Information filters are based on the reduced sensor-based
models (15) and (16). Since these reduced models may have shared
states as it is clear from the overlapped cut-point sets in figure 3, dif-
ferent observations of these shared states made by different sensors
should be fused in order to achieve the centralized performance [13].
It is shown in [13] that observation fusion for local Information fil-
ters only requires a particular subset of observations available at the
neighboring sensors and thus involves only local communication and
computations involving reduced variables. With the observation fu-
sion, thelocal filter stepof the local Information filters is given by

Z
(l)

k|k = Z
(l)

k|k−1+If,l,k, (17a)

bz(l)

k|k = bz(l)

k|k−1+if,l,k, (17b)

whereIf,l,k and if,l,k represent the fused observations at sensorl
and timek.

Gauss-Markovian Approximation of the Error Processes: The
Gaussian error processes of the Kalman filter, given by

εk|k = xk − bxk|k, (18)

εk|k−1 = xk − bxk|k−1, (19)

are completely characterized by theirn×n covariance matrices,Sk|k
andSk|k−1. Preserving these covariance matrices among the local
Information filters requiresO(n3) computation andO(n2) storage
at each sensor. This violates our requirement of a low-order com-
putational scheme. To overcome this, we approximate the Gaussian
error processes to beLth order Gauss-Markovian. This is equivalent
to approximating the information matrices,Zk|k andZk|k−1, inverse
of the error covariance matrices, to beL−banded3, see [9], and is
optimal in Kullback-Leibler or maximum entropy sense, see [10].

With the Gauss-Markovian approximation on the error processes,
their n × n covariance matrices,Sk|k andSk|k−1, are completely
characterized by theirL−band. Any nonL−band element of a ma-
trix whose inverse isL−banded can be written as a function of the
elements inside theL−band, see [11]. Thus, preserving the Gauss-
Markovian error structure is equivalent to preserving theL−band
of the error covariance matrices,Sk|k andSk|k−1. With this ap-
proximation, we proceed further with the local Information filters as
follows.

The filtered estimates,bz(l)

k|k, are converted to estimates in the

Kalman filter domain,bx(l)

k|k, by solving the linear systems of equa-
tions for banded matrices,Zk|kbxk|k = bzk|k, using a special case
of the distributed iterate-collapse inversion (DICI) algorithm [14],
which requires only local communication and processes local matri-
ces.

It can be shown [8], that the local error covariance matrix is
given by

S
(l)

k|k−1 = FlSk−1|k−1F
T
l + G(l)Q(l)G(l)T , (20)

whereFl is thenl × n submatrix of the model matrix,F, with nl

rows ofF that correspond to thenl local states at sensorl. From the
sparse and localized global model matrix,F, the submatrices local

3We refer to a matrix as anL-banded matrix (L ≥ 0), if the elements
outside the band defined by theLth upper andLth lower diagonal are zero.

to sensorl areF(l) andD(l), as shown in (15). It can be shown [8],
that (20) is equivalent to

S
(l)

k|k−1 = F(l)S
(l)

k−1|k−1F
(l)T + F(l)S

(q)

k−1|k−1D
(l)T

+
�
F(l)S

(q)

k−1|k−1D
(l)T

�T

+ D(l)S
(v)

k−1|k−1D
(l)T

+ G(l)Q(l)G(l)T , (21)

which requires submatrices (S
(·)
k−1|k−1) in the global estimation er-

ror covariance matrix,Sk−1|k−1, from the neighboring sensorsv

andq. To go from the local estimate information matrix,Z
(l)

k−1|k−1,
provided by the local filter step (17a), to the submatrices in the global
estimation error covariance matrix,S(·)

k−1|k−1, and hence compute
(21), we use the distributed iterate-collapse inversion (DICI) algo-
rithm presented in [14, 8]. The local prediction error covariance
matrix, S(l)

k|k−1, is inverted to get local prediction information ma-

trix, Z
(l)

k|k−1, using theL-banded inversion theorem [10]. Finally,
along with (21), thelocal prediction stepis completed by, see [8]
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�
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for someV,Q, neighbors of sensorl, and wheref1(·) is a linear
function that depends onL.

The local Information filter is given by the equations (17)-(22).
It can be noted that nowhere in these equations annth order variable
is required, i.e., all the variables involved are local to the sensors.

5. SIMULATION RESULTS

We simulate then = 5−dimensional system presented in (9)–(10)
monitored byN = 3 sensors. We implement the local Informa-
tion filters with L = 1−banded approximation on the informa-
tion matrices,Zk|k and Zk|k−1. Figure 4 and figure 5 show the
trace of the error covariance matrix,Sk|k, plotted against the In-
formation filter iterations. Figure 4 compares the optimal Informa-
tion filter performance with centralized Information filter withL =
2−banded approximation averaged over1000 Monte-Carlo simula-
tions. The solution of the Riccati equation is also shown in figure 4.
Figure 5 compares the trace of the error covariance matrix,Sk|k,
for the centralizedL = 1−banded Information filter and the lo-
cal L = 1−banded Information filters averaged over1000 Monte-
Carlo simulations. The local models have the dimensionsnl =
2, 3, 2, smaller thann = 5. Figure 6 shows the estimates of the
local L = 1−banded Information filters and the optimal Informa-
tion filter estimates along with the state variables.

6. CONCLUSIONS

From the simulation results, we deduce the following conclusions.
As L ↑, L−banded Information filters converge to the optimal Infor-
mation filter, as shown in figure 4. The localL−banded Information
filters asymptotically converge to the centralizedL−banded Infor-
mation filter. In figure 5, the performance of the local scheme is ex-
actly the same as that of the the centralizedL−banded scheme. The
estimates in figure 6 are virtually indistinguishable from the optimal
estimates. The steady state error forL = 1−banded approximation
is considerably removed whenL ↑.
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Fig. 4. Trace of the error covariance matrix,Sk|k, is plotted
for the centralized optimal Information filter and centralizedL =
2−banded Information filter. The solution to the Riccati equation is
also shown.
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Fig. 5. Trace of the error covariance matrix,Sk|k, is plotted for
the centralizedL = 1−banded Information filter and localL =
1−banded Information filters.

We presented a distributed implementation of the Kalman fil-
ter for large-scale systems when the exact centralized filter is practi-
cally infeasible. The local scheme we proposed approximates the fil-
ter error processes in the Kalman filter by Gauss-Markov processes.
The local scheme asymptotically guarantees the performance of the
centralized filter with the same Gauss-Markovian approximation of
the error processes. To derive the distributed filter, we spatially de-
compose the large-scale system dynamics into coupled low-order lo-
cal dynamical systems. Local Information filters are implemented
on the low-order models and centralized performance is guaranteed
through information exchange among the local Information filters.
The proposed scheme has significant computational advantages as
compared to the centralized optimal solution and thus provides a
practically viable implementation.
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