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Abstract—We study distributed detection in a sensor network

where the sensors cooperate by exchanging information to reach

a common understanding about the environment. We address

two main issues: (1) distributed fusion: how to achieve a global

decision without transmitting the information (measurements or

local decisions) from all the sensors to a common central location

like in parallel architectures; and (2) connectivity graph: what

should be the connectivity pattern among the sensors, in other

words, with which sensors should each sensor communicate. This

is a nontrivial question since it corresponds to designing the

structure of a graph to achieve a given goal. For the first issue, we

propose an iterative algorithm that fuses the data globally without

the need for collecting them at one central location. For the

second issue, we present a design methodology based on “small

world” network engines that leads to connectivity patterns that

provide fast convergence to the distributed detection algorithm.

Results show that introducing 10% to 30% randomness in the

connectivity graph leads to significant improvements over both

regular patterns and totally random networks.

I. INTRODUCTION

An important issue in sensor networks is the design of the

underlying connectivity network that supports the information

exchange among sensors. We refer to this problem as the

connectivity graph or pattern of the sensor network. This paper

discusses a methodology to design the connectivity graph of

a sensor network that supports efficient and good performing

distributed decision making algorithms in the network. This

is a difficult problem since it corresponds to the design of

the structure of a graph rather than the easier problem of

designing the weights of a graph with pre-specified structure.

Our solution finds the “best” connectivity graph within a

specified class of graphs that exhibit “small world” properties.

Parallel fusion networks, which have been studied exten-

sively in the literature ([1], Ch. 3), assume global connectivity

of all the sensors in the network to a central location. Parallel

networks are unduly dependent on the reliable operation of a

single fusion center. They also require direct linkage of all

sensors to the same global location. In many applications,

these are not justifiable assumptions and architectures that

support distributed decision making are needed. In this paper,

we consider two related important issues: an iterative distrib-

uted detection algorithm that, unlike parallel fusion, can handle

arbitrary connectivity patterns among sensors; and the design

of the structure of the graph representing the sensor network

connectivity pattern to guarantee fast convergence of the

iterative distributed detection algorithm. To design the graph

structure, we present a design methodology based on “small

world” network engines that leads to connectivity patterns that

provide fast convergence to the distributed detection algorithm.

The connectivity graph is derived from a regular pattern by

random rewiring of a few connections—we show that random

rewiring of only a small fraction of the original connections,

10% to 30% leads to significant faster convergence over

regular patterns or totally random networks.

We present the problem in the very simple context of binary

hypothesis testing, in which the state of the environment takes

one of two possible alternatives, H0 (target absent) or H1

(target present). The true state H is monitored by N sensors,

which collect N real measurements y = (y1, . . . yN ). Given

the true state Hi, the sensor measurements are assumed to

be independent and identically distributed (i.i.d.) with known

conditional density fi(y) = f(y|Hi), i = 0, 1. Sensors are

not assumed to be fully connected but, rather, they com-

municate over a network described by an undirected graph

G = (V,E). The graph is specified by a set of N vertices

V = {s1, . . . , sN}, which correspond to sensor nodes, and

a set of M edges E = {lm = (im, jm), m = 1, . . . ,M},

where (i, j) ∈ E whenever sensor si can communicate with

sj . We assume the graph G to be connected in the sense that

there is a path from every vertex si to every other vertex sj ,

i, j = 1, . . . , N .

The goal of distributed detection is for all sensor nodes to

reach a global common decision H̃ about the true state H

based on the measurements collected by all sensors through

exchange of information over the network G. We adopt a

Bayesian framework for which the detection performance is

measured by the average probability of decision error Pe =

Pr(H̃ �= H) = π0Pe0 + π1Pe1, where Pe0 = Pr(H̃ =

H1|H0), Pe1 = Pr(H̃ = H0|H1), and π0, π1 are the prior

probabilities of H0 and H1, respectively.

We focus on two main problems related to this distributed

fusion task. First, how to achieve global fusion of the informa-

tion collected by all sensors without having all data delivered

to one central location and without requiring a fully connected

network as is usually done in parallel architectures. Second,

how does the connectivity pattern of the network affect the
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overall detection performance. Specifically, for example, if the

total number of communication links is constrained, should

these links be arranged regularly to connect neighboring sen-

sors or should they distribute randomly without any particular

structure.

To address the first problem, we consider an iterative

algorithm, which enables all sensor nodes to reach a consensus

about the true hypothesis H through iterative exchange of

information through the edges E of the network G. This

distributed iterative algorithm does not require any routing

mechanism since we do not need to collect the information

at any one central location. Our design goal for this iterative

algorithm is to maximize convergence speed because it is

directly related to the communication cost. It turns out that

convergence speed is intimately dependent on the connectivity

pattern of the network G, which motivates our investigation of

the second problem above. We adopt the convergence speed

as performance measure to compare different connectivity

structures. For simplicity, in this paper, we assume equal

cost for all communication links, i.e., Cost(li) =Cost(lj),

i, j = 1, . . . ,M , regardless of the physical length of these

links. While such assumption may not hold for every wireless

networks, it does accommodate many wireless and wired

sensor network scenarios. In any case, results based on this

cost assumption can serve as a first-cut study to have insight

over what can be characterized as“good” connectivity patterns.

II. ITERATIVE DISTRIBUTED DETECTION

In this section, we assume that the structure of the con-

nectivity graph of the sensor network has been fixed and is

known. There still is the problem of determining the weights of

this graph to speed the convergence of the iterative distributed

detection algorithm. This is discussed in subsection II-B.

Section III addresses the more difficult problem of designing

the structure of the connectivity graph.

A. Parallel Fusion

To better understand the proposed iterative algorithm we

first explain how the data are fused in parallel architectures. In

the parallel fusion model, which has been extensively studied

in the literature, all sensors deliver their measurements to

one location known as the fusion center. This could be done

through single or multi-hop links between every sensor and

the fusion center. Once the data are collected at one location

the task of fusing them to reach the decision with minimum

Bayesian probability of error is a likelihood ratio test (LRT)

of the form

f(y|H1)

f(y|H0)

˜

H=1

≷

˜

H=0

π0

π1

.

Due to the conditional independence of the samples y1, . . . yN ,

the optimum fusion rule can be written as a function of the

sum of local log likelihood ratios (LLRs) as follows

R =

N∑
n=1

rn

1

≷

0

log

π0

π1

� υ,

where R is the global LLR, rn = log
Pr(y

n
|H

1
)

Pr(y
n
|H

0
)
is the local

log likelihood ratio of the measurement of sensor n, and υ is

the fusion threshold.

From this discussion, it is clear that the optimal fusion rule

requires computing the sum of all the local statistics. This can

be carried out by delivering all the data to a central location

through direct or multihop communication links. Next, we

propose a technique that accomplishes optimal fusion without

routing all data to a single location.

B. Iterative Detection Procedure

We propose an iterative algorithm that does not require

collecting all the information in a single central location. The

scheme is based on a distributed linear averaging algorithm,

which has been recently proposed in the context of estimation

[2],[3]. It does not require any routing or flooding mechanism.

Rather, the statistics stored at each sensor are updated in

an iterative manner to reach a consensus about the global

statistic. This updating is accomplished by exchanging the

current statistics only with neighboring sensors.

Initially, sensors take measurements y1, . . . yN , after which

each sensor sn, n = 1, . . . , N computes the log likelihood

ratio rn = log
Pr(y

n
|H

1
)

Pr(y
n
|H

0
)
of its measurement yn. These LLR

values serve as the initial states of the iterative algorithm. We

denote the value stored at sensor sn at iteration t by xn(t),

and we refer to it as the state of sn at time t. At t = 0, the

initial states are given by xn(t = 0) = rn, n = 1, . . . , N .

The iterative procedure is then carried out according to the

following linear operation [2]

xn(t) = wnnxn(t− 1) +

N∑
i∈Ω

n

wnixi(t− 1), (1)

where Ωn is the set of neighbors of sensor sn and wij is

a weight associated with edge (i, j) if this edge exists. The

weight value is zero when there is no link associated with it,

i.e., wij = 0 if (i, j) /∈ E . This can be expressed in matrix

format as follows

x(t) = Wx(t− 1), (2)

where x(t) is an N × 1 vector of all current states and W =

{wij} is a matrix of all weights. The iterative procedure is

carried out until xn(t) of all sensors converge to the global

average log likelihood ratio R/N . The final decision is then

obtained locally at each sensor according to its current state

xn(t)

˜

H(n)=1

≷

˜

H(n)=0

υ/N,

where H̃(n) denotes the decision of sensor sn. Note that the

updating rule (2) can be written in terms of the initial states

as follows

x(t) = W
t
x(0), (3)

where x(0) is an N × 1 vector of all the initial states xn(0),

n = 1, . . . , N .
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C. Weight Design

The goal of the iterative algorithm proposed above is for

every sensor state xn(t) to converge to the global average

LLR R/N =
1

N

N∑
n=1

rn. This is done by designing the weight

matrix W to ensure and accelerate the convergence of the

iterative procedure. From (3), this is equivalent to requiring

that W
t
converge to the scaled all-ones matrix, i.e., lim

t→∞
W

t
=

1

N
1N×N . For a fixed network topology G, the issue of optimal

design of the weights W has been treated in [2] and [3].

Several techniques have been proposed and their performance

have been compared. One of the simplest techniques from the

point of view of practical implementation is to assign an equal

weight α to all network links. The weight associated with a

link (i, j) is given by

wij =

⎧⎨
⎩

α if (i, j) ∈ E

1− αdi if i = j

0 otherwise

, (4)

where di = |Ωn| is the degree of sensor node i, i.e., the number

of sensors connected to sensor si. This can be written in matrix

form as W = IN−αL, where IN is the N×N identity matrix

and L is the Laplacian matrix associated with the graph G,

the elements of which are given by

lij =

⎧⎨
⎩

−1 if (i, j) ∈ E

di if i = j

0 otherwise

.

The optimum choice of α that minimizes the spectral radius

of (W − 1

N
1N×N ) and, hence, accelerates the convergence is

given by [2]

α
∗
=

2

λ1(L) + λN−1(L)

, (5)

where λ1(L) > · · · > λN−1(L) > 0 are the ordered eigenval-

ues of L. For proofs and other weight design techniques the

reader is referred to [2] and [3].

D. Performance Analysis

We analyze the performance of the proposed iterative

consensus detection algorithm. To facilitate the analysis, we

consider a Gaussian shift-in-mean model for which the obser-

vation at sensor sn under Hi is characterized by

under Hi : yn = µ
i
+ z, z ∼ N (0, σ

2
)

where µ
i
is the signal mean under Hi, i = 0, 1 and z is a

zero-mean Gaussian noise with variance σ
2
. Without loss of

generality, we let µ
1
= −µ

0
= µ. Under this model it can be

shown that the local LLRs rn are also Gaussian distributed,

i.e.,

under Hi : rn ∼ N (

2µµ
i

σ
2

,

4µ
2

σ
2
)

Before analyzing the iterative algorithm, let us first consider

the performance of the parallel fusion architecture. In a cen-

tralized scheme, the decision is simply based on R, which

is a sum of N i.i.d. variables rn. Due to the conditional

independence assumption, this sum is Gaussian with mean and

variance given by

under Hi : R ∼ N (

2µµ
i

σ
2

N,

4µ
2

σ
2
N).

The probability of error is given by the tail distribution of R,

i.e.,

P
∗
e1

= Q

(
−
υ − 2µ

2
N/σ

2

2µ

√
N/σ

)

P
∗
e0

= Q

(
υ + 2µ

2
N/σ

2

2µ

√
N/σ

)
, (6)

where Q(x) =

∫∞

x

1√
2π

e
−y

2

/2
dy is the normal right-tail

distribution. The last equation provides the minimum error

probabilities achieved by a parallel fusion network, which can

serve as a lower bound for other fusion techniques.

In the proposed iterative algorithm (2), decisions are made

at all sensor nodes based on a weighted sum of the measured

LLRs rn, n = 1, . . . , N . In the limit, when the number of

iterations t go to ∞, the weight matrix W
t
converges to

1

N
1N×N and therefore, the detection performance approaches

that of the optimum centralized scheme in (6). It can be shown

that at iteration t, the probability of error of the sensor sn is

given by

P
n

e1
= Q

(
−

υ − 2µ
2
N/σ

2

2µN

√
[W

2t
]ii/σ

)
,

P
n

e0
= Q

(
υ + 2µ

2
N/σ

2

2µN

√
[W

2t
]ii/σ

)
, (7)

where [W
2t
]ii denotes the ith diagonal element of W

2t
. As

t → ∞, [W
2t
]ii converges to 1/N and (7) approaches (6).

E. Numerical Examples

We present numerical examples to illustrate the operation of

the iterative detection algorithm and to motivate the discussion

in the following section. We consider two simple 5-sensor

networks with circular and linear topologies as shown in Fig.

1. These simple cases are intended to illustrate the idea and

simplify the discussion but the algorithm itself is in no way

limited to such simple scenarios. In the following section, we

deal with more complex examples involving large number of

sensors and random topologies.

We let the signal strength be µ = 1 while the noise variance

σ
2
= 0.501, which results in a signal-to-noise ratio of SNR=

3dB, where the SNR in dB is given by 10 log
10
(µ

2
/σ

2
). We

also assume equal priors for the state H, i.e., π0 = π1 = 1/2,

which leads to a zero optimum fusion threshold υ = 0.

In the proposed iterative algorithm the data are not delivered

to one location. Instead, sensor nodes exchange and update

their information in an iterative process till they reach a

consensus about the monitored hypothesis H. Initially, all

sensors s1, . . . , s5 take measurements y1, . . . , y5 and com-

pute their LLRs r1, . . . , r5, which serve as the initial states

x1(0), . . . , x5(0) for the iterative algorithm. Each sensor, then,

exchanges its stored state xn(0) with neighboring sensors
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Fig. 1. A five node (a) circular graph, (b) linear graph.

then updates its current state xn(1) according to (1). We

use the optimal constant weights method described by (4).

From (5), the optimum constant weights are found to be

α
∗
circular

= 0.4 and α
∗
linear

= 0.5 for the circular and linear

topologies, respectively. The iterative algorithm continues until

the states xn(t), n = 1, . . . , 5 simultaneously converge to the

global average LLR R/N =
1

5

5∑

n=1

rn or until a predefined

maximum number of iterations T is reached. The sensor

nodes then make their own decisions locally based on the

last states xn(T ). The probability of error for any sensor

node sn at any iteration t can be computed from (7). Fig. 2

shows the convergence of the error probability as the number

of iterations is increased. Note that in this special example,

all nodes perform equally but this may not be the case in

general. It can be seen that the algorithm converges in both

topologies to the optimum performance 7.93×10
−4

(computed

from (6) ). However, there is a considerable difference in

the convergence speed of the two topologies. For the linear

topology, the algorithm converges in about 12 iterations which

means a communication load of (12)(5) = 60 transmissions.

On the other hand, by adding the shortcut between s1 and s5,

the circular topology converges in 3 iterations resulting in a

load of (3)(5) = 15 transmissions. It is interesting to see how

a single shortcut can speed up the convergence by 4 times.

Aside from illustrating the basic idea, results demonstrate

the impact of the connection pattern of the network on the

performance of the iterative algorithm. Next, we elaborate

more on this issue by studying the performance of the iterative

detection algorithm as applied to a class of random networks.

III. CONNECTIVITY GRAPH DESIGN

The example in the previous section showed how the simple

modification of the underlying connectivity pattern of the

sensor network, obtained by adding a single shortcut, can

dramatically improve the convergence speed of the iterative

algorithm. In this section, we address the difficult problem of

designing the structure of the connectivity graph of the sensor

network. Rather than attacking this problem in general, we

consider the optimization of the network within a given class

of random networks that exhibit small-world behavior.

0 5 10 15
10

−4

10
−3

10
−2

10
−1

# iterations

P
e

linear graph
circular graph

Fig. 2. Convergence of the detection error of the iterative algorithm.

A. Small-World Networks

In many applications, it is commonly desirable to have net-

works that exhibit small diameter and strong local clustering.

Regular networks (e.g., with nearest neighbor connectivity)

are highly structured networks characterized by their strong

clustering behavior but they suffer from their large diameter,

which grows with the network size. On the other extreme,

random networks are characterized by their small diameter

but they have poor clustering. Small-world networks have

small diameters close to that of random networks yet they

are highly structured. Examples of such networks include the

Internet, nervous system, US power grid, and social networks.

The network diameter is measured by the characteristic path

length, which is defined as the average path length between

any pair of nodes. The clustering is quantified by a clustering

coefficient defined as the fraction of neighbors of a node sn

that are also neighbors of each other.

In [4], Watts and Strogatz presented a formal model that

enables the generation of graphs ranging from a completely

random to a highly structured network. Also, it was shown

through numerical simulation that in order for the network

to exhibit a small-world phenomenon, it does not have to be

highly random. In this section, we restrict our attention to this

model to study the effect of adding random shortcuts on the

behavior of the iterative detection algorithm.

In the Watts and Strogatz model [4], a graph is generated

by first constructing a highly structured circular network as in

Fig. 1 (a). However, all nodes are connected to their k nearest

neighbors. Then a random rewiring procedure is conducted

on all graph links. With probability ρ, a link is rewired to a

different destination chosen uniformly at random. Notice that

the ρ parameter controls the "randomness" of the graph in the

sense that ρ = 0 corresponds to the original highly structured

network while ρ = 1 results in a completely random network.

Self and parallel links are prevented in the rewiring procedure

while the number of links is always kept constant regardless

of ρ.
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B. Effect of Random Rewiring on Iterative Detection

Due to space limitation we only show results of one

example. We study the effect of the connectivity pattern on

the performance of the iterative algorithm. Due to their small

diameter, one may expect that completely random networks

outperform other structured networks. We investigate this

issue through studying the convergence speed of the iterative

detection algorithm on graphs generated using the Watts and

Strogatz model.

We consider a class of networks with N = 200 sen-

sors generated using the Watts and Strogatz model. Prior to

rewiring, an initial circular graph is constructed where each

node is connected with its k = 3 nearest neighbors. The

probability ρ of rewiring is varied from 0 to 1. For each

generated network, we apply the iterative detection algorithm

and measure the average number of iterations T (ρ) it takes

to reach within 10% of the optimum error probability when

the SNR is −10 dB. In addition, we evaluate the characteristic

path length J and the average clustering coefficient C. Results

are averaged over 1000 graphs generated using the Watts and

Strogatz model. Fig. 3 shows the characteristic path length

and the clustering coefficients normalized with that of regular

networks (ρ = 0). The figure confirms the original findings

Watts and Strogatz model [4] in that there is a range of ρ where

the generated graphs exhibit a small-world phenomenon, i.e.,

high clustering coefficient and low path length. It also illus-

trates the fundamental difference between completely regular

(ρ = 0) networks with high clustering coefficient and path

length versus completely random networks (ρ = 1) having

low path length but also poor clustering coefficient.

Fig. 4 shows the convergence speed of the iterative detection

algorithm normalized with that of regular networks (ρ =

0). The figure exhibit a peak at ρ = 0.3, which clearly

demonstrates the importance of having a "certain amount" of

structure in the connectivity pattern. In other words, having

a low characteristic length alone is not enough but it is also

desirable to have a reasonable clustering coefficient. Fig. 4 also

exhibit a phase-change phenomenon similar to that observed

in [5]. In [5] the performance is quantified using the algebraic

connectivity measure, which depends on the Laplacian matrix

L of the graph. In contrast, we consider a measure that is

directly related to detection applications. The phase-change in

both cases occur around ρ = 0.1. It is interesting to see how

the random rewiring procedure with small rewiring probability

ρ can result in large speed-ups. When ρ = 0.3 the convergence

speed is 35 times higher than that of regular networks and 2

times higher than a completely random network.

IV. CONCLUSIONS

We addressed two issues related to distributed detection

in sensor networks. First, we proposed an iterative algorithm

that fuses the information globally in a distributed manner

without relying on any sort of centralized processing. This

is crucial from the point of view of reliability and resource

balancing. A single attack on the "fusion center" of a parallel

architecture can bring the whole network down. In contrast,
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Fig. 4. Normalized convergence speed of the iterative detection algorithm

for a range of small-world networks.

similar attacks (or faults) on the proposed fusion scheme will

only cause a graceful degradation in performance. The second

issue that we addressed is the design of the connectivity

pattern to ensure fastest convergence of the iterative algorithm.

Simulation results show that the best network structure within

a class of small-world networks is neither completely random

nor totally regular, which is surprising given the small char-

acteristic length exhibited by completely random networks.
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