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ABSTRACT

Design of springs is a very important step in the design process of inertial sensors. A procedure for computing the spring
stiffness for any single-chain configuration of beams and a translator which converts beam-based schematic representation of
inertial sensors to higher-level behavioral representation are implemented. Combining the spring stiffness computation with the
translator, spring-mass behavioral models of inertial sensors are generated. The behavioral representation is used for rapid
design-space exploration. Simulations of the higher-level behavioral schematics are 10 to 100 times faster than simulation of
the atomic-elements based schematics and the results match to within 5%.

1. INTRODUCTION

Over the past few years a number of micromachined accelerometer and gyroscope designs have been published [1]. A humber
of inertial sensors are made up of one or more mechanical proof-masses suspended by four springs. Currently, the design of
these sensors involves extensive use of finite element analyses (FEA) in mechanical, electrostatic and mixed domains. Gener-
ally, performing FEA on 3D structures entails considerable time and effort on part of the designer for meshing the structure as
well as CPU time. Additionally, the results of FEA usually need post processing in order to identify the design components
which require modification. FEA does not lend itself naturally to a hierarchical design paradigm, wherein, the effect of changes
in the layout geometry is rapidly translated to changes in system performance or even on the performance contributions of the
different behavioral components of the system.

There are on-going efforts to establish a hierarchy of design levels for MEMS [2]. The basis for the hierarchy is decomposi-
tion of MEMS devices into MEMS atomic elements such as plate masses, beam springs, electrostatic air-gaps and anchors
which are at a similar level as resistors, capacitors and inductors in the electronics design hierarchy. A schematic representation
of MEMS using such elements bears a strong correspondence to the underlying layout. At higher design levels, a chain of beam
springs can be combined to form crab-leg springs, u-shaped springs or serpentine springs. At an even higher (behavioral) level,
all the springs which connect two rigid elements (for instance, a plate and an anchor) can be lumped together into a single behav-
ioral springelement. At this level the behavioral representation cannot be visually correlated to the layout of the device. How-
ever, this level closely approximates the spring-mass-damper way of visualizing an inertial sensor, which the designer is trying
to realize through the MEMS device. In order to simulate the performance of an entire system like a 3 axis inertial measurement
unit, behavioral models of the inertial sensors which encapsulate the non-idealities will be highly useful. This design hierarchy
lends more insight into the design problem by capturing the effects of geometry in high-level behavioral parameters such as
spring stiffness, damping coefficients and comb-drive sensitivities. A seamless translation between the different levels will
allow the designer to investigate more complex topologies and rapidly identify the critical components in a design.

In this paper, the use of spring models at the behavioral level and translation from layout geometry and atomic-element (e.g.
plate, beametc.) based schematics to higher-level behavioral representation of spring-mass systems is demonstrated. There is
prior work aimed at building behavioral models through FEA [3]. The commercial tool MEMCAD also has an in-built meth-
odology for generating macromodels of springs [4]. This work is different in the sense that it utilizes the specialized geometry
of single-chain-of-beams springs in which every beam is connected to at most one other beam at each end. Such springs are
commonly used in inertial sensors. Each spring can be represented by a lumped-element stiffness matrix. Stiffness matrices
(which are composed of analytical models for each stiffness constant) have been derived previously for beams [5], crab-leg, u-
shaped and serpentine springs [6][7]. However, there are a wide variety of spring topologies and it is practically impossible to
pre-derive the stiffness matrix for each of them. In order to cater to new spring topologies, we have implemented an algorithm,
based on energy methods, to compute the spring stiffness matrix for any single-chain configuration of beams. The stiffness con-
stants thus obtained are used as parameters of a highespaaglelement.
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FIGURE 1. (a) Spring with single-chain of 9 beams attached to a plate. C is the point of application of force. The
other end of the spring is anchored. (b) Free-body diagram of beam 6 and the bending moment along beam 6.

The atomic-elements based schematics and the higher behavioral schematics can be built using the NODAS tool developed
in CMU [8]. NODAS (NOdal Design of Sensors and Actuators) is a framework which implements the hierarchical representa-
tion and simulation of MEMS. In this framework schematics of MEMS sensors can be created using elementbsanisas
plates anchorsandcomb-drivesand electrical and mechanical independent sources. Different analyses such as DC, AC and
transient analysis can be performed on the MEMS sensors. A behaspoirad element has been implemented which is com-
patible with lower-levebeamelements in NODAS. The procedure mentioned above is used to compute the parameters which
go into the behavioral spring element.

The computation of the spring stiffness matrix is presented first. This is followed by a description of the algorithms for trans-
lation from low-level schematic to higher-level behavioral schematic. Following this, verification of the spring computation pro-
cedure is done by comparison with FEA. The usefulness of the simulation at the higher level is then demonstrated by design-
space exploration of two inertial sensors. Finally discussions and conclusions from the results obtained are presented.

2. SPRING STIFFNESS COMPUTATION

Figure 1 shows a spring composed of 9 beams in a single-chain configuration attached to a plate at one end and anchored
at the other end. The procedure for computing the spring stiffness matrix is described below. A force (or moment) is applied to
the point C, in the direction of interest, and the displacement is calculated symbolically (as a function of the design variables
and the applied force).When forces (moments) are applied at the end-points of the flexure, the total energy of defdrmation,
is calculated as:
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where,L; is the length of the'th beam in the flexureM; is the bending moment transmitted through beéaknis the Young'’s

modulus of the structural material ahds the moment of inertia of beamabout the relevant axis. The bending moment is a

linear function of the forces and moments applied to the end-points of the flexure. Further, for a single chain of beams, as shown
in Figure 1(a), the bending moment and, therefore, the energy stored in a beam, depends only on the position of the end-points
of the beam relative to the point of application of force C. The displacement of point C in any dféctipren as:

ouU
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where,F is the force applied in that direction [9]. Similarly, angular displacements can be related to applied moments. Since,
the moment is linearly dependent on the applied forces and moments, the displacement is also a linear function of the applied
forces, i.e.,

8= ZGZEiFEi ©))

where 8; is ageneralized displacement (includes translation and rotetign), is the generalized force in the &irection and

0gg» the compliance of théth beam. The displacement is derived using the equation for the moment in the beam. The total

displacement is obtained by summing up the individual displacements of each beam. This is possible only for a single-chain

configuration of beams, because at any point in the spring, there is no splitting of forces into different beams. Thus, we can

obtain the overall displacements as linear functions of the applied forces with the compliance matrix composed of
Ozg= ZGZH as the coefficients. Solving this matrix equation for different displacements gives the stiffness matrix [5].



The compliance matrix for a beam is:
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where,
(x1,Y1) (X, y,) are the coordinates of the beam end-points
(xc.yo) are the coordinates of the point of application of force
I is the length of the beam
E is the Young’s Modulus of the material of the beam
1, is the moment of inertia of the beam cross-section abouatakis

The above matrix is for the in-plane forces and displacements only. The actual implementation also computes the stiffness for
the out-of-plane directions.

3. TRANSLATION FROM ELEMENT LEVEL SCHEMATIC TO BEHAVIORAL SCHEMATIC

The layout of a nested resonator system is shown in Figure 2(a). A similar topology has been employed in a gyroscope
designed earlier [10]. The system is composed of an inner resonator which is suspended inside a movable rigid frame. The inner
resonator consists of four suspension springs and a central proof-mass. The frame is suspended by four springs which are
anchored at the outer ends. The micromechanical part of the layout is passed through a MEMS layout extractor [11]. The layout
extractor recognizes the different components in the layout and generates the NODAS schematic representation of the nested-
resonator system shown in Figure 2(b). The different components which are used in the schematic plategyitbxible
beamsand attachment points calledchors In the schematic shown, the central proof-mass is modeled by a piaggat the
center. Thiglateis connected through four identical chainsb@famgo the rigid frame. The rigid frame is modeled by four
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FIGURE 2. (a) Layout of a nested-resonator system (b) Corresponding NODAS schematic obtained through
layout extraction. The schematic consists of a central plate connected through the four inner springs to the
frame. The frame is composed of four plates which are suspended by the four outer springs. The other ends of
the four outer springs are connected to the chip substrate.
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FIGURE 3. Behavioral model generated from the schematic representation of the nested-resonator system
shown in Figure 2(b). The behavioral model comprises only of Zprings and 2 masseswhile the schematic
representation has Slatesand 76beams
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plates Theseplatesare anchored to the substrate using another set of four identical chdirarmk The NODAS schematic
representation is the starting point for the translation to the behavioral representation.

The translator implements the following tasks during the conversion to the behavioral representation.

1. Identifies groups of plates which are adjacent, lumps them into a single rigid body and computes the effective mass
for this rigid body.
2. ldentifies chains of beams and collects these chains into springs.
3. Uses the spring computation procedure described earlier to compute the stiffness matrices for the springs collected in
2.
4. ldentifies groups of springs which are connected between the same rigid bodies identified in 1 and sums up their stiff-
ness matrices so that there is at most one composite spring between any two rigid bodies.
When the schematic shown in Figure 2(b)is passed through this translator, the resulting behavioral representation is shown in
Figure 3 . The central plate is translated tmasselement at the behavioral level. The four plates forming the rigid frame are
adjacent. Therefore, they are combined by the translator to form amo#s=element. The four inner springs are combined to
form the spring which connects the tweasselements in the behavioral model. The four outer springs are combined to form
another spring element which connectitiesselement representing the rigid frame to the anchor.

Figure 4(a) shows the layout of an spring designed for useziaxas accelerometer. This spring has about 50 beams. The
schematic representation of this layout obtained by using the layout extractor is shown in Figure 4(b). Four such springs were
used to symmetrically suspend a proof-mass at the center of the layout. The resulting schematic representation is then translated
to the behavioral model which is shown in Figure 5. The schematic with all the four springs has more tleam2d0it.

In both the above examples, the nested-resonator and the accelerometer, the behavioral model has much fewer elements com-
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FIGURE 4. (a) Layout of a spring with about 50 beams connected to a proof-mass at one end
and anchored at the other end (b) Corresponding NODAS schematic of the spring obtained through layout
extraction. Beams marked with “1” and “2” have widths w; and w, respectively.
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FIGURE 5. Behavioral model generated from the schematic representation of the accelerometer shown in Figure

4(b). The behavioral model comprises only of &pring and a mass while the schematic representation has plate

and 200beams
pared to the schematic representation. Therefore, it is expected that the simulation of the behavioral model will be considerably
faster than the schematic. However, the behavioral model captures only the lowest resonant modes of the structure, whereas the
schematic representation shows many more modes.

4. VERIFICATION

The methodology described above for behavioral model generation is evaluated at two levels. First, the accuracy of the spring
stiffness computation is verified by comparison with FEA. Second, the two topologies described previously are simulated at the
schematic level and at the higher behavioral level and the results are compared with respect to the accuracy and the simulation
speed.

4.1 Verification of Spring Stiffness Computation

The layout of the spring used for verification is shown in Figure 6. The length and the width (measured from centers of the
adjacent beams) of the vertical beams are varied while the horizontal beams are unchanged. The comparisons of the spring stiff-
ness computations with the FEA results are shown in Figure 7, Figure 8 and Figurie, @ Ky; andkg,g, respectively. For the
range of widths and lengths considered, the match between the FEA and the spring stiffness computation procedure is very
good. The error surfaces fky,, k o, andk,g, with respect to the beam length and the width are not presented here, but are within
6%. The errors are more prominent at higher values of the beam widthis is because of the ambiguity in measuring beam
lengths i.e., whether the length is to be measured from the center of the horizontal beams or from the edge of the horizontal
beams. Similarly for the horizontal beams, the effective length is strongly correlated to the beam width since, the beam width
(4 um) is a significant fraction of the length (3@m). For the comparisons shown the beam length was measured from the edge
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FIGURE 6. Layout of the spring used for FEA. . . .
A is the anchored point. M is the point to which FIGURE 7. Comparison of spring stiffness
the mass is attached. The length and the width computation for ky, with FEA
w of the vertical beam are varied over a range of
values.
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FIGURE 8. Comparison of spring stiffness FIGURE 9. Comparison of spring stiffness
computation for ky, with FEA computation for kg,g, with FEA
of the adjacent beams and a correction of:
0.2 ljlv\jlv%e:imgwadjacent) (4)
is applied to both the ends of each beam,,, is the width of the beam itselgfd;en. is the width of the adjacent

beam.

4.2 Comparison of Schematic Simulation with Higher Level Behavioral Simulation

4.2.1 Example 1: Nested-Resonator Design Space Exploration

One of the design issues in a gyroscope which uses the nested-resonator topology is the difference in frequencies between
the drive-direction resonant moderode of the outer rigid frame) and the sense-direction resonant madede of the inner
proof-mass). For maximizing sensitivity and maintaining manufacturability at the same time, it is desired that the sense resonant
mode be higher than the drive resonant mode and also that the sense resonant mode be close enough to the drive resonant mode
The design of the suspension springs is crucial to achieve this goal. One of the ways of controlling the spring stiffness is by
changing the widths of the beams forming the spring. By this method the overall dimensions of the spring do not change much
and therefore, the design process is simplified.

The widths of the beams in the outer and inner springs were chosen as the two design variables. AC analysis of the schematic
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shown in Figure 2(b) was done for a range of these design variables. The dependence of the drive-mode and the sense-mode
resonant frequencies on the design variables was obtained from these analyses.

Similarly, these design variables were also passed to the spring computation code and the stiffness of the behavioral spring
was calculated for all the settings of these design variables. With these stiffness values AC analysis of the behavioral model of
the nested resonator system (shown in Figure 3) was done and again, the dependence of the drive-mode and the sense-modé
resonant frequencies on the design variables was obtained. The higher-level behavioral simulation was about 10 times faster
than the beam-based schematic simulation. The comparison between the resonant frequencies is shown in Figure 10(a) and (b)
for the drive and sense modes respectively. The difference is less than 2% for all values of the design variables. The difference
is larger for larger values of the inner spring width. This is because, in the current implementation, only the spring stiffness
value is computed. The effective mass contribution of the beams is not taken into account in the behavioral model. From the
results obtained it is possible to choose the beam widths so that the design objective is achieved.

4.2.2 Example 2: Resonance Frequency Analysis

The sensitivity of an accelerometer is inversely proportional to the resonance frequency in the sensing direction. The reso-
nance frequency of the other modes determine the mechanical cross-axis sensitivity of the accelerometer. Therefore, itis usually
preferred to have the other modes at much higher frequencies.

The schematic built using 4 of the springs shown in Figure 4(b) has more thame2@ts Two different beam widthsy,
andw,, were chosen as the design variables as shown in Figure 4(a). For different settings of these design variables AC analysis
was done on both the schematic as well as the behavioral model combined with the spring computation. The higher-level behav-
ioral simulation combined with the spring computation was almost 100 times faster than the beam-based schematic simulation
and the resonance frequencies match within 5%. This difference is because the springs are considered massless.

5. CONCLUSIONS

A simple method for computing stiffness matrix for springs has been implemented which can handle any single-chain con-
figuration of beams. This method is accurate to within 5% as long as all beams are atleast as long as they are wide. Currently,
this procedure does not compute the effective masses for the springs, but this can be incorporated easily. Nodal schematic rep-
resentations of inertial sensor layouts were generated by use of a MEMS layout extractor. This was coupled with a translator
for converting these schematics to a higher level of abstraction involvingspniyg andmasselements. Using this flow from
layout to schematic to behavioral model, faster design techniques for inertial sensors were demonstrated. Depending upon the
complexity of the inertial sensor design, the simulations using the behavioral model coupled with the spring computation pro-
cedure were upto 100 times faster than the nodal simulation of the schematic representatimaoessugdplates.
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