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ABSTRACT
Design of springs is a very important step in the design process of inertial sensors. A procedure for computing the

stiffness for any single-chain configuration of beams and a translator which converts beam-based schematic represe
inertial sensors to higher-level behavioral representation are implemented. Combining the spring stiffness computation
translator, spring-mass behavioral models of inertial sensors are generated. The behavioral representation is used
design-space exploration. Simulations of the higher-level behavioral schematics are 10 to 100 times faster than simu
the atomic-elements based schematics and the results match to within 5%.

1.  INTRODUCTION

Over the past few years a number of micromachined accelerometer and gyroscope designs have been published [1].
of inertial sensors are made up of one or more mechanical proof-masses suspended by four springs. Currently, the
these sensors involves extensive use of finite element analyses (FEA) in mechanical, electrostatic and mixed domain
ally, performing FEA on 3D structures entails considerable time and effort on part of the designer for meshing the struc
well as CPU time. Additionally, the results of FEA usually need post processing in order to identify the design comp
which require modification. FEA does not lend itself naturally to a hierarchical design paradigm, wherein, the effect of ch
in the layout geometry is rapidly translated to changes in system performance or even on the performance contributio
different behavioral components of the system.

There are on-going efforts to establish a hierarchy of design levels for MEMS [2]. The basis for the hierarchy is deco
tion of MEMS devices into MEMS atomic elements such as plate masses, beam springs, electrostatic air-gaps and
which are at a similar level as resistors, capacitors and inductors in the electronics design hierarchy. A schematic repre
of MEMS using such elements bears a strong correspondence to the underlying layout. At higher design levels, a chain
springs can be combined to form crab-leg springs, u-shaped springs or serpentine springs. At an even higher (behavio
all the springs which connect two rigid elements (for instance, a plate and an anchor) can be lumped together into a singl
ioral springelement. At this level the behavioral representation cannot be visually correlated to the layout of the device
ever, this level closely approximates the spring-mass-damper way of visualizing an inertial sensor, which the designer
to realize through the MEMS device. In order to simulate the performance of an entire system like a 3 axis inertial measu
unit, behavioral models of the inertial sensors which encapsulate the non-idealities will be highly useful.This design hie
lends more insight into the design problem by capturing the effects of geometry in high-level behavioral parameters
spring stiffness, damping coefficients and comb-drive sensitivities. A seamless translation between the different lev
allow the designer to investigate more complex topologies and rapidly identify the critical components in a design.

In this paper, the use of spring models at the behavioral level and translation from layout geometry and atomic-elem
plate, beametc.) based schematics to higher-level behavioral representation of spring-mass systems is demonstrated.
prior work aimed at building behavioral models through FEA [3]. The commercial tool MEMCAD also has an in-built m
odology for generating macromodels of springs [4]. This work is different in the sense that it utilizes the specialized ge
of single-chain-of-beams springs in which every beam is connected to at most one other beam at each end. Such sp
commonly used in inertial sensors. Each spring can be represented by a lumped-element stiffness matrix. Stiffness
(which are composed of analytical models for each stiffness constant) have been derived previously for beams [5], cra
shaped and serpentine springs [6][7]. However, there are a wide variety of spring topologies and it is practically impos
pre-derive the stiffness matrix for each of them. In order to cater to new spring topologies, we have implemented an alg
based on energy methods, to compute the spring stiffness matrix for any single-chain configuration of beams. The stiffn
stants thus obtained are used as parameters of a higher-levelspring element.
1
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The atomic-elements based schematics and the higher behavioral schematics can be built using the NODAS tool d
in CMU [8]. NODAS (NOdal Design of Sensors and Actuators) is a framework which implements the hierarchical repre
tion and simulation of MEMS. In this framework schematics of MEMS sensors can be created using elements such asbeams,
plates, anchorsandcomb-drivesand electrical and mechanical independent sources. Different analyses such as DC, A
transient analysis can be performed on the MEMS sensors. A behavioralspringelement has been implemented which is com
patible with lower-levelbeamelements in NODAS. The procedure mentioned above is used to compute the parameters
go into the behavioral spring element.

The computation of the spring stiffness matrix is presented first. This is followed by a description of the algorithms for
lation from low-level schematic to higher-level behavioral schematic. Following this, verification of the spring computatio
cedure is done by comparison with FEA. The usefulness of the simulation at the higher level is then demonstrated by
space exploration of two inertial sensors. Finally discussions and conclusions from the results obtained are presente

2.  SPRING STIFFNESS COMPUTATION

Figure 1 shows a spring composed of 9 beams in a single-chain configuration attached to a plate at one end and
at the other end. The procedure for computing the spring stiffness matrix is described below. A force (or moment) is ap
the point C, in the direction of interest, and the displacement is calculated symbolically (as a function of the design va
and the applied force).When forces (moments) are applied at the end-points of the flexure, the total energy of deformaU,
is calculated as:

  (1)

where,Li is the length of thei’th beam in the flexure,Mi is the bending moment transmitted through beami, E is the Young’s
modulus of the structural material andIi is the moment of inertia of beami, about the relevant axis. The bending moment is
linear function of the forces and moments applied to the end-points of the flexure. Further, for a single chain of beams, a
in Figure 1(a), the bending moment and, therefore, the energy stored in a beam, depends only on the position of the en
of the beam relative to the point of application of force C. The displacement of point C in any directionζ is given as:

  (2)

where,Fζ is the force applied in that direction [9]. Similarly, angular displacements can be related to applied moments.
the moment is linearly dependent on the applied forces and moments, the displacement is also a linear function of the
forces, i.e.,

  (3)

where is a generalized displacement (includes translation and rotation), is the generalized force in the directio
, the compliance of thei’th beam. The displacement is derived using the equation for the moment in the beam. The

displacement is obtained by summing up the individual displacements of each beam. This is possible only for a sing
configuration of beams, because at any point in the spring, there is no splitting of forces into different beams. Thus,
obtain the overall displacements as linear functions of the applied forces with the compliance matrix compo

as the coefficients. Solving this matrix equation for different displacements gives the stiffness matrix [
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FIGURE 1. (a) Spring with single-chain of 9 beams attached to a plate. C is the point of application of force. The
other end of the spring is anchored. (b) Free-body diagram of beam 6 and the bending moment along beam 6.
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The compliance matrix for a beam is:

where,
 are the coordinates of the beam end-points

 are the coordinates of the point of application of force
 is the length of the beam
 is the Young’s Modulus of the material of the beam
 is the moment of inertia of the beam cross-section about thez-axis

The above matrix is for the in-plane forces and displacements only. The actual implementation also computes the stiff
the out-of-plane directions.

3.  TRANSLATION FROM ELEMENT LEVEL SCHEMATIC TO BEHAVIORAL SCHEMATIC

The layout of a nested resonator system is shown in Figure 2(a). A similar topology has been employed in a gyr
designed earlier [10]. The system is composed of an inner resonator which is suspended inside a movable rigid frame. T
resonator consists of four suspension springs and a central proof-mass. The frame is suspended by four springs w
anchored at the outer ends. The micromechanical part of the layout is passed through a MEMS layout extractor [11]. Th
extractor recognizes the different components in the layout and generates the NODAS schematic representation of th
resonator system shown in Figure 2(b). The different components which are used in the schematic are rigidplates, flexible
beamsand attachment points calledanchors. In the schematic shown, the central proof-mass is modeled by a singleplateat the
center. Thisplate is connected through four identical chains ofbeamsto the rigid frame. The rigid frame is modeled by fou
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FIGURE 2. (a) Layout of a nested-resonator system (b) Corresponding NODAS schematic obtained through
layout extraction. The schematic consists of a central plate connected through the four inner springs to the
frame. The frame is composed of four plates which are suspended by the four outer springs. The other ends of
the four outer springs are connected to the chip substrate.
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plates. Theseplatesare anchored to the substrate using another set of four identical chains ofbeams. The NODAS schematic
representation is the starting point for the translation to the behavioral representation.

The translator implements the following tasks during the conversion to the behavioral representation.
1. Identifies groups of plates which are adjacent, lumps them into a single rigid body and computes the effectiv

for this rigid body.
2. Identifies chains of beams and collects these chains into springs.
3. Uses the spring computation procedure described earlier to compute the stiffness matrices for the springs coll

2.
4. Identifies groups of springs which are connected between the same rigid bodies identified in 1 and sums up th

ness matrices so that there is at most one composite spring between any two rigid bodies.
When the schematic shown in Figure 2(b)is passed through this translator, the resulting behavioral representation is
Figure 3 . The central plate is translated to amasselement at the behavioral level. The four plates forming the rigid frame
adjacent. Therefore, they are combined by the translator to form anothermasselement. The four inner springs are combined
form the spring which connects the twomasselements in the behavioral model. The four outer springs are combined to f
another spring element which connect themass element representing the rigid frame to the anchor.

Figure 4(a) shows the layout of an spring designed for use in az-axis accelerometer. This spring has about 50 beams. T
schematic representation of this layout obtained by using the layout extractor is shown in Figure 4(b). Four such sprin
used to symmetrically suspend a proof-mass at the center of the layout. The resulting schematic representation is then
to the behavioral model which is shown in Figure 5. The schematic with all the four springs has more than 200beams in it.

In both the above examples, the nested-resonator and the accelerometer, the behavioral model has much fewer elem

FIGURE 3. Behavioral model generated from the schematic representation of the nested-resonator system
shown in Figure 2(b). The behavioral model comprises only of 2springs and 2 masses, while the schematic
representation has 5plates and 76beams
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FIGURE 4. (a) Layout of a spring with about 50 beams connected to a proof-mass at one end
and anchored at the other end (b) Corresponding NODAS schematic of the spring obtained through layout
extraction. Beams marked with “1” and “2” have widths w1 and w2 respectively.
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pared to the schematic representation. Therefore, it is expected that the simulation of the behavioral model will be cons
faster than the schematic. However, the behavioral model captures only the lowest resonant modes of the structure, wh
schematic representation shows many more modes.

4.  VERIFICATION

The methodology described above for behavioral model generation is evaluated at two levels. First, the accuracy of th
stiffness computation is verified by comparison with FEA. Second, the two topologies described previously are simulate
schematic level and at the higher behavioral level and the results are compared with respect to the accuracy and the s
speed.

4.1 Verification of Spring Stiffness Computation

The layout of the spring used for verification is shown in Figure 6. The length and the width (measured from centers
adjacent beams) of the vertical beams are varied while the horizontal beams are unchanged. The comparisons of the sp
ness computations with the FEA results are shown in Figure 7, Figure 8 and Figure 9 forkxx, kyy andkθzθz respectively. For the
range of widths and lengths considered, the match between the FEA and the spring stiffness computation procedur
good. The error surfaces forkxy, kyθzandkxθzwith respect to the beam length and the width are not presented here, but are w
6%. The errors are more prominent at higher values of the beam widthw. This is because of the ambiguity in measuring bea
lengths i.e., whether the length is to be measured from the center of the horizontal beams or from the edge of the ho
beams. Similarly for the horizontal beams, the effective length is strongly correlated to the beam width since, the beam
(4 µm) is a significant fraction of the length (10µm). For the comparisons shown the beam length was measured from the

SPRING

MASSANCHOR

FIGURE 5. Behavioral model generated from the schematic representation of the accelerometer shown in Figure
4(b). The behavioral model comprises only of aspring and a mass, while the schematic representation has 1plate
and 200beams
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FIGURE 6. Layout of the spring used for FEA.
A is the anchored point. M is the point to which
the mass is attached. The lengthl and the width
w of the vertical beam are varied over a range of
values.

l

w
A

FIGURE 7. Comparison of spring stiffness
computation for kxx with FEA

10 µm
4µm

E
rr

o
r 

(%
)

l (µm) w (µm)
5



jacent

between

esonant
nant mode.
ss is by
e much

chematic
of the adjacent beams and a correction of:

(4)

is applied to both the ends of each beam. is the width of the beam itself and is the width of the ad
beam.

4.2 Comparison of Schematic Simulation with Higher Level Behavioral Simulation

4.2.1 Example 1: Nested-Resonator Design Space Exploration

One of the design issues in a gyroscope which uses the nested-resonator topology is the difference in frequencies
the drive-direction resonant mode (x-mode of the outer rigid frame) and the sense-direction resonant mode (y-mode of the inner
proof-mass). For maximizing sensitivity and maintaining manufacturability at the same time, it is desired that the sense r
mode be higher than the drive resonant mode and also that the sense resonant mode be close enough to the drive reso
The design of the suspension springs is crucial to achieve this goal. One of the ways of controlling the spring stiffne
changing the widths of the beams forming the spring. By this method the overall dimensions of the spring do not chang
and therefore, the design process is simplified.

The widths of the beams in the outer and inner springs were chosen as the two design variables. AC analysis of the s
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shown in Figure 2(b) was done for a range of these design variables. The dependence of the drive-mode and the se
resonant frequencies on the design variables was obtained from these analyses.

Similarly, these design variables were also passed to the spring computation code and the stiffness of the behavior
was calculated for all the settings of these design variables. With these stiffness values AC analysis of the behavioral m
the nested resonator system (shown in Figure 3) was done and again, the dependence of the drive-mode and the se
resonant frequencies on the design variables was obtained. The higher-level behavioral simulation was about 10 tim
than the beam-based schematic simulation. The comparison between the resonant frequencies is shown in Figure 10(
for the drive and sense modes respectively. The difference is less than 2% for all values of the design variables. The d
is larger for larger values of the inner spring width. This is because, in the current implementation, only the spring s
value is computed. The effective mass contribution of the beams is not taken into account in the behavioral model. F
results obtained it is possible to choose the beam widths so that the design objective is achieved.

4.2.2 Example 2: Resonance Frequency Analysis

The sensitivity of an accelerometer is inversely proportional to the resonance frequency in the sensing direction. T
nance frequency of the other modes determine the mechanical cross-axis sensitivity of the accelerometer. Therefore, it
preferred to have the other modes at much higher frequencies.

The schematic built using 4 of the springs shown in Figure 4(b) has more than 200beams. Two different beam widths,w1
andw2, were chosen as the design variables as shown in Figure 4(a). For different settings of these design variables AC
was done on both the schematic as well as the behavioral model combined with the spring computation. The higher-leve
ioral simulation combined with the spring computation was almost 100 times faster than the beam-based schematic si
and the resonance frequencies match within 5%. This difference is because the springs are considered massless.

5.  CONCLUSIONS

A simple method for computing stiffness matrix for springs has been implemented which can handle any single-cha
figuration of beams. This method is accurate to within 5% as long as all beams are atleast as long as they are wide. C
this procedure does not compute the effective masses for the springs, but this can be incorporated easily. Nodal schem
resentations of inertial sensor layouts were generated by use of a MEMS layout extractor. This was coupled with a tr
for converting these schematics to a higher level of abstraction involving onlyspringandmasselements. Using this flow from
layout to schematic to behavioral model, faster design techniques for inertial sensors were demonstrated. Depending
complexity of the inertial sensor design, the simulations using the behavioral model coupled with the spring computati
cedure were upto 100 times faster than the nodal simulation of the schematic representation usingbeams andplates.
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