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Abstract

Schematic-based lumped parameterized behavioral modeling
and simulation methodologies have become available since the
emergence of analog HDLs. They greatly ease iterative hierarchical
multi-domain simulation, which is critical to the design of MEMS.
NODAS is one of such tools, with medels written in VerilogA and
simulation performed within the Cadence framework.

This paper focuses on several key modeling issues in NODAS,
including schematic representation, element communication, lin-
ear, nonlinear and multi-domain modeling, and extensibility to new
physical effects, processes and physical domains. A nonlinear
beam model and an electrostatic gap model are discussed as exam-
ples. Simulation comparison to finite element analyses and experi-
mental data verifies the accuracy of the models and validates the
simulation methodology.
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I. Introduction

Suspended MEMS

MicroElectroMechanical Systems (MEMS) include various
process technologies, each spanning a large design space. Sus-
pended MEMS, in which all the movable parts of a device are sus-
pended by springs attached to fixed anchor points, covers a wide
range of epplications including accelerometers, micromirrors, reso-
nator filters, and RF switches. Our discussion will be restricted to
the design space of suspended MEMS, with mechanical and ¢lec-
trostatic ¢ffects as the focus, for two reasons. First, many of these
devices have been commercialized. Secondly, unlike other emerg-
ing MEMS areas such as microfluidics and bioMEMS, there is a
tight integration with electronics.

Similar to CAD for integrated circuits, a performance evalua-
tion method for suspended-MEMS should have the characteristics
of good accuracy, fast speed, ease of iterative evaluation and the
ability to handle complexity. In addition, as the interactions
between multiple physical domaing, for instance, the mechanicat
domain and the electrical domain, are critical to the performance of
MEMS, CAD tools for MEMS are also expected to be able to han-
dle mixed-domain simulation, especially the co-simulation with
electrical circuits.

Existing Simulation Methodologies

Finite and boundary element analyses (FEA/BEA) are the
most commenly used methods for numerical mechanical and elec-
trostatic simulations. Commercial tools commonly used by the
MEMS design community include ANSYS [1], ABAQUS [2],
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Maxwell [3], and Coventorware [4]. These methods are accurate
for fine meshes. However, as they are layout-based, any change to
the geometric sizes requires a new mesh, leading to inconvenient
design iteration. Continwum simulation has been extended to
enable multi-physics simulation, by using self-consistent convey-
gence sclutions or by creating a composite system matrix for both
mechanical and electrostatic FEA. However, such solutions still do
not include the interactions between transducers and transistor-
level interface circuits.

Reduced-order modeling speeds up system simulation and
meets the co-simulation requirement [1][5}. Macromedels for the
entire system are based on prioritized parameters extracted from a
batch of FEA simulations, then instantiated in analog Hardware
Description Languages (AHDL). The AHDL models enable co-
simulation with circuits. The drawback is that as the models are
based on a prioritized motion shape subset, they are only valid for
specific structures. If there is any change to the geometric sizes or
topologies, new models will have to be recreated from the begin-
ning.

Circuit-level behavioral nodal simulation has been proposed to
meet the need for ease of iterative design evaluation. Existing cir-
cuit-level representations for suspended MEMS include MEMSPro
[6), ARCHITECT [7], SUGAR [8), MEMSMaster [9] and NODAS
[16]. In these methods, systems are represented from structure
using atomic elements such as anchors and beams. The system
matrices formed are much smaller than those from FEA. Each
atomic element has a Jumped behavioral moedel with geometric
parameters which can be specified individually, The geometric
parameterization simplifies the evaluation of changes in size on the
device performance in each design iteration. The models are imple-
mented in analog HDLs or directly in element matrices, bath inher-
ently supporting simulations in mixed physical domains. The major
distinctions among these tools are the representation styles, the
design frameworks and the availability of specific model libraries,
leading to varied capability of handling co-simulation and other
important design steps such as layout editing and extraction.

This paper presents the modeling and simulation methodology
in NODAS, including schematic representation, element communi-
cation, linear, nonlinear and multi-domain meodeling. The discus-
sion is followed by simulation examples of a CMOS-MEMS
bandpass fiiter and 2 RF-MEMS switch, and a section about the
extensibility of the methodology.

I1. Modeling and Simulation in NODAS

The modeling and simulation methodology in NODAS is
based on the composition property of suspended-MEMS: a large
variety of suspended MEMS devices, despite different topology
and complexity, can be structured from a small set of atomic ele-
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ments, including anchors, beams, plates, and electrostatic gaps.
Each element has a lumped behavioral medel, a symbol, a set of
process-dependent parameters, and a set of process-independent
geometric design parameters.

The models in NODAS are written in a mixed-domain analog
HDL, VerilogA [11], for simulation in Spectre [12]. Design with
NODAS starts from schematic entry, where MEMS and circuit ele-
ments, such as beams and transistors, can be wired together. A com-
posite netlist for the entire system is generated and sent to the
circuit simulator. Both mixed-domain simulation and transistor-
level co-simulation are thus supported.

Complicated MEMS devices, including accelerometers, gyro-
scopes and high-order filters, have been designed and fabricated
with the aid of NODAS. Fig. 1 shows a CMOS-MEMS bandpass
filter composed of three identical ¢rab-leg resonators [13], coupled
by “O” springs. Differential comb drives are employed for capaci-
tive driving and sensing. The schematic is fully compatible with the
electrical interface circuit. There is one-to-one correspondence
between the schematic and the layout.

Schematic Representation

In a NODAS schematic, connection terminals of element
instances are represented by groups of pins. Each pin has an associ-
ated discipline determining its physical nature.
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Fig. 1: (a) Top-level schematic of a bandpass filter (b)
constitutional crab-leg resonator layout (c) atomic-level
schematic of differential comb drive composed by gap and
beam ¢lements. -

Pin definition affects both schematic composition and behav-
toral modeling. Fig. 2(a) and (b) explain the pin definitions using a
cantitever beam as an example. The beam behavior is lumped at ter-
minal g and terminal b. Each terminal has three translaticnal pins,
named as x, y, z, to represent the translational motions along the X,
Y and Z axes, and three rotational pins, named as ¢, ¢,, and ¢,, to
represent the rotational motions about the X, ¥ and Z axes. The
beam is also an electrical conductor, which is crucial for electro-
static actuation and sensing. Thus, electrical pins v, and v, are

needed. In addition, as the initial pesition and orientation of the
beam in the chip layout are important for modeling mechanics, the
coordinates (X, Y.} of the beam center relative to the laycut origin
and the angle © of the beam relative to the X-axis in the c}l_lip frame
are included in the schematic representation. As the initial layout
positions are static values which do not change during -dynamic
simulation, they are represented as parameters. A topological con-
nectivity analysis algorithm calculates the layout coordinate values
based on the topology and the element sizes in the schematic.

Schematic assembly consumes much effort and is prone to
error when the schematic has many elements. As indicated in
Fig. 2(b), at least seven wires are needed for each MEMS element
terminal. In digital circuit schematics, buses are used for compac-
tion of schematic representation. Similarly, analog buses are used in
NODAS, as shown in Fig. 2(c}. Due to the existing limitation in the
analog HDLs, only pins of the same discipline are allowed to be
grouped as one bus, resulfing in three buses for each terminal
(translational, rotational, and electrical, respectively). This compact
terminal representation reduces wiring effort as well as the proba-
bility of wiring errors. Behavioral blocks that convert scalar wires
to bus wires (“splitters” in Figure 2{c)) are used to apply stimuli
and monitor simulation results at individual degrees of freedom.

When the chip experiences dynamics, the same amount of
external acceleration and rotational rate must be applied to every
element on the chip. Hence, global acceleration and rotational rate
pins are used and shared by all elements, in combination with hier-
archical schematic for each model element, to reduce clutter in the
schematic. As seen in Fig. 2(d), these pins are not shown in the top-
level symbel. Instead, they are defined as pins in the associated bot-
tom-leve! schematics.,

Another representation issue is the definition of across and
through variables. Mechanical systems in translational motion must

n
be in dynamic equilibrium: E F, = 0. Using the analogy of force
k=1

balance to KCL, forces are defined as through variables for the
mechanical translational discipline. There are three choices for the
definition of across variables for the translational discipline: posi-
tions, displacements or velocities. They all satisfy KVL. Displace-
ments are preferred in suspended MEMS as they are usually of
primary interest to be directly observed. Using displacements also
enables the kinematics to be modeled explicitly. For cases where
velocities are the primary interest, vsing velecities as across vari-
ables may be z better choice. Velocities are also convenient fer
cases where power is the main interest since the product of force
and velocity is the mechanical power as an analogy to F*/ in elec-
trical domain.
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Fig. 2: Pin definition in NODAS (a) a cantilever beam on a chip (b) schematic with individual pins (¢) schematic with bus pins (d)

common external acceleration pins and hierarchical schematic.

Coordinate Transformation

The transformation of forces and displacements are dependent
on the geometric orientation and positien of each elements. As
shown in Fig. 2(a), local frames of reference are attached to each
element to decouple physics modeling from the geometric transfor-
mations. The chip frame is where the layout position of each ele-
ment is defined. The across and through variables at the connection
terminals represent the displacements, forces and moments in the
chip frame and are used to form the system matrix [10]. The system
matrix is then solved in the chip frame, following Kirchhoff’s net-
waork laws specified by the topology.

The coordinate transformation between frames of reference is
done through a 3D rotation matrix, which can be defined in many
different ways [14]. A transformation matrix based on equivalent
rotation about a single axis is used in NODAS because of its unique
representation and independence on the order of rotations. In this
method, element orientation is represented as an equivalent rotation
about a rotation axis p by a rotation angle of 9, as shown in Fig. 3.
This method is commonly used in finite element packages.

The corresponding rotation matrix is:
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Fig. 3: Equivalent rotation about a single axis

describe the rotation between the chip frame and the local frame for

an in-plane beam element with an orientation angle @, p=[0 0 I]T,
and the rotation matrix simply reduces to:

¢c0s@ sin® 0 .
[R] = |=sin® cos® 0
0 0 1

Lumped Parameter Modeling

Geometrically parametrized lumped models are the core of the
circuit-level simulation methodology. They are derived from struc-
tural matrix analysis, which lumps the distributed element behavior
to a limited number of terminal nodes and describes the physics of
the element in the form of matrices [15}.

As an example, the linear beam model includes linear beam
bending and torsion, inertial forces and damping. External forces
and moments are restricted to concentrated loads at the beam ends.
Using energy methods, beam bending and torsion are modeled as 2
stiffness matrix [%], derived from beam mechanics equations [15],
Beam inertia is modeled as a mass matrix [m] and damping is mod-
eled as a damping matrix [B], derived by assuming that the static
mode shapes are effective for dynamic motion [15][16]. The rela-
tion between the force/moment and the displacement vector is

established as: [Fbeamj = [m] [x] + [B] [x] + [k:l [x] ;where [Fy, ]
=[Fa Fya Fra anMya Mg Frp Fyb Fop My Myb }u;.b}z; x] =[xy,

Zg Ora Opa 2o X6 Yo 25 Oxb Oyp 517, and node a and & are the termi-
nals at bearn ends.

This lumped beam model is composable. It has been verified
that using more beam elements to model a physical beam gives bet-
ter simulation accuracy. The comparison of NODAS simulation to
FEA simulation verifies the accuracy of the lumped model [10].
Lumped parameterized models for other atomic-level elements are
derived in a similar way. The physical equations can be imple-
mented in AHDLs in multiple alternative ways. The inclusion of
internal states for the acceleration node representation has been
shown to adversely affect the convergence property of the simula-
tion [17]. These states are unnecessary and should not be included.
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Nonlinear Beam Modeling

This section will discuss several specific issues about the non-
linear modeling in NODAS, taking the nonlinear beam model as an
example.

The stiffness matrix in the linear beam model is only good for
applications where the displacements are small. Although the linear
model covers the basic beam mechanics existing in devices such as
low-frequency resonators and accelerometers, it is unsuitable for
simulation of large stroke actuators and RF-MEMS switches where
the beam nenlinearity is nen-negligible. Due to the complexity of
the nonlinear beam mechanics and the inability to exploit superpo-
sition in nonlinear problems, analytical solutions are only available
for several simple cases [18). Finite element methods can analyze
the nonlinsar beam, but they do not fully support hierarchical multi-
physics ce-simulations, especially fast transient analysis and analy-
sis with electronics. A nonlinear behavioral beam mode] has been
developed in NODAS for use within conventional analog behav-
ioral simulators [19]. The model is reusable and composable hence
can be used as a building block for complicated systems. It captures
geometric nonlinearity, which is the main nonlinear beam mecha-
nism.

To handle large deflections, a dynamic coordinate transforma-
tion is introduced between the local frame and the displaced frame,
as shown in Fig. 4..The transformation includes a translation about
the center of the displaced beam, followed by a rotation about an
rotation axis by an angle of ¢, which is derived from the average of
angular displacements at beam ends a and &. The angle ¢ varies in
time along with the beam bending dynamics, thus the coordinate
transformation between the displaced frame and the local frame is a
dynamic transformation. This is in contrast to the static coordinate
transformation between chip frame and local frame, which is only a
function of initial orientation angles.

The effective beam length along the displaced beam, L', is a
critical variable for modeling the nonlinearity. L’ is calculated based
on the cubic beam bending shape functions, which is only good for
small deflection. Since the nonlinear stiffness matrix is based on the
effective beam length, spring forces and moments should be calcu-
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Fig. 6: Duffing effect simulations using linear beam model
and nonlinear beam model.

lated in the displaced frame based on variables in that frame, then
be transformed back to the local frame. The inertial forces and
moments are calculated in the fixed local frame rather than the dis-
placed frame because they occur in the inertial frame while the dis-
placed frame is a non-inertial dynamic frame. The same principle
applies to the calculation of damping forces and moments. These
three types of forces/moments are then summed up in the local
frame and transformed into the chip frame altogether to join the
analysis of system matrix, as shown in Fig. 5.

The accuracy of the NODAS nonlinear beam model has been
verified by detailed simulations and comparison to FEA results
[19]. As is the case with FEA, using multiple beam elements to
compose a physical beam allows the element cubic shape functions
to more closely fit the actual shape function of the non]mear beam,
thus improves the simulation accuracy.

Due to the limit of small-deflection shape functions, 'an incre-
mental loading method is needed to cobtain accurate simulation
results for large deflections. A nonlinear numeric method, such as
Newton-Raphson, is also needed to solve the nonlinear equations.
These techniques have to be included in the numeric solver, as is
done in commercial FEA tools and in behavioral simulation tools
with self-maintained numeric solvers such as SUGAR. Since the
NODAS models are embedded in Cadence, we take advantage of
the incremental foading and Newton-Raphson methods already
included in the Spectre simulator. Accurate nonlinear solution can
be obtained either by sweeping the load or by setting nodal dis-
placement values at critical nodes.

Fig. 6 shows the simulation of a folded-flexure resonator
excited by a large sinusoidal force. The steady-state envelope of the
displacement magnitude obtained from a series of transient analy-
ses with varying excitation frequencies are given. The existence of
the duffing effect, a well-known phenomenon caused by beam stiff-
ening nonlinearity, is clearly shown. The amplitude of the force is
set to be such that the displacements are small at low frequencies
but are large enough to cause the nonlinearity at frequencies near to
the resonance.

Electrostatic Gap

Electrostatic effects are widely used in MEMS for actuation
and sensing. This section takes the electrostatic gap model as an
example to discuss the modeling of interactions between multiple
physical domains.

The gap model with rigid parallel-plate approximation is the
most simplified gap model. It only captures the electrostalic effect
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Fig. 7: (a) Gap model with rigid parallel plates
(b) Gap model based on beam shape functions.

with acceptable accuracy in those cases where the comb fingers or
electrodes are very rigid and only move in parallel without rota-
tions. Consider a one-dimensional electrostatic gap for which the
electrodes forming the gap are rigid plates in paraliel, as in
_ &L

- 30_"'3’ , Where 1 is the thickness
of the electrodes, L is the length of the overlap region, g is the ini-
tial gap, and y is the variance of gap due to displacement. In
MEMS, electrodes are normally suspended by springs, thus y repre-
sents the electrode displacement due to spring deformation. When a
voltage, F, is applied, an electrostatic force will be gener-

dfl ) 1 &l
ated: Fey = —-(—C(y)V) ==5
& dnl 2(go+ )’

nonlinear and the electrostatic force is an attractive force.

Since y is not an arbitrary value but a variable determined by
the balance between the spring restoring force and the electrostatic
force, it’s critical for the gap model to capture the interaction
between the mechanical and the electrical domain to solve fer the
self-consistent solution. Fig. 8 describes pin definitions of the gap
model. Fig. 9 illustrates the algorithmic structure procedure of the
gap model in NODAS. The displacements of the electrodes are in
the chip frame, transformed into the local frame. Equivalent paral-
lel-plate capacitance and electrostatic force are then calculated. The
¢lectrostatic force is applied as through variables on the mechanical
pins to join the analysis of the system matrix. The simulator iterates
till a self-consistent solution is found for the system matrix.

Fig. 7(b) shows an improved gap model which captures the
deflection of flexible electrodes (modeled as beams) thus suitable
for simulation of comb drives with non-rigid fingers and MEMS
switches composed with beams. Cubic beam bending shape func-
tions are employed to capture the non-uniform electrical field in the
overlapping region. The gap along the bent beams is:
g(x) = gp(x) +y(x) = go(x) +y,(x) = y,(x), where y; (%) and y»(%)
are the displacements of the upper and lower electrodes, respec-
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total capacitance is obtained by integrating along the overlapping

region: C(x) = ILI

C(x)dx. The electrostatic force per unit
{Ly—ov)

length along the y-axis is obtained by taking the derivative about y:
f“,y(x) = %(%E?(x)vz). This force is a distributed force rather

than a concentrated load, therefore, the force is lumped based on
beam bending shape functions to transform into equivalent forces
and moments at the ends of electrodes [20]. The loads for the upper
electrode are:

-1 2 . N ! -
Fey,al-jL P LF, a5 M, = [ Fan LpF, (ds
Ll_xov) (Ly-%g)

F oy r‘ fysLpF, ode, M, = J'L‘ Fax LpF, (ode .
Ly-1,,) (Ly=%,,)
The loads for the lower electrode and the electrostatic force along
the x-direction are obtained in a similar way.

Another crucial physical phenomenon to be captured by the
gap model is the snap-in effect due to the nonlinear relation
between displacement and attractive electrostatic force. When the
voltage is larger than the puil-in threshold, the two electrodes come
so close that the electrostatic force begins to increase at a faster rate
than the spring force. The electrodes will then snap towards each
other. In practice, if no measure is taken, the snap-in will cause
short-circuit problems, hence a mechanical stop is normally
designed to prevent electrical shorting. In simulation, the snap-in
effect has the potential to cause instability and convergence prob-
lems, which are solved through proper structural definition in the
schematic.

As shown in Fig. 10, the contact mechanism is modeled in
NODAS by a stiff spring deforming in the direction of snap-in
formed by the contact region of the electrodes, and by assuming the
existence of an oxide insulator coated on both electrodes. Normally,
the electrades are made of metals or silicon, which will oxidize in
the air. The thickness of the oxide insulator is parameterized with a
defauit setting of 20 nm. When the gap is in normal operation, the
contact spring force does not add into the dynamics. Once the gap is
in contact, the contact spring begins to generate a large restoring
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Fig.10:  Contact mechanism in gap model (top view)



force, Fopaer to work together with the restoring force from exter-
nal elements to balance the large electrostatic force. The spring

constant of the contact spring is:
k, = E-ovt _ _E-ovet , where E is the Young’s
Wi ¥ Wo op Wit W 5
2 2 + IOX

Modulus of the electredes, t is the thickness of the electrodes, w;
and w; are the width of upper and lower electrodes, 1,,, is the thick-
ness of oxide insulator. The contact force s
Foomacs = ko-OL = k- (21, — (g9 + ¥, =¥)) , where AL is the
deformation of the contact spring.

II1. Simulation Examples

In this section, simulation examples are presented to verify the
accuracy of the beam and gap models and to validate the methodol-
ogy.

Fig. 11(a) shows the static analysis of a gap composed with a
cantilever beam over a plane. Results from NODAS are compared
to the simulation results from Coventorware, a combined FEA/
BEA tool which solves for the self~consistent solution through
alternative mechanical and electrostatic analyses. Snap-in voltages
agree to within 8%. Fig. 1 1(b) is the result of a transient simuiation
in NODAS, which shows the four states involved in the gap models:
normal operation, snap-in, contact and peel-off. The simulation
takes about 1 hour to finish, while in self-consistent FEA/BEA each
data points takes about 3¢ mins and dynamic simulation is not sup-
ported.

Fig. 12(2) illustrates a MEMS switch composed of a fixed-
fixed beam and an anchored surface. Each electrode is represented
by two beam elements, in order to access the displacement node at
the center of the beam. Accordingly, the physical gap is also com-
posed of two elements. A sinusoidal voitage of 1 kHz is applied to
the structure. Results from transient simulations with linear and
nonlinear beam models are given in Fig. 12(c). With the nonlinear
beam model, the beam stiffening effect is captured and the snap-in
voltage increases consequently. Since the electrostatic force is pro-
portional to ¥2, the second harmonic is the primary displacement
term when F is a sinusoidal voltage.

Fig. 13 shows the frequency response of the CMOS-MEMS
bandpass filter {output voltage of interface circuit) given in Fig. 1,
with comparison to experimental data [13]. Simulations with a
comb drive macromodel, in which the comb fingers are assumed to
be rigid, is compared to simulation with gap and beam madels, in
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which the compliance of comb fingers is considered. The compari-
son shows that the simulations matches the experimenta] results to
within 3%. With gap and beam models, the frequency reduction due
to the compliance of comb fingers is captured.

IV. Extensibility

A single cell library can not be expected to cover every desired
feature. A useful simulation methodology is desired to be applica-
ble to a wide range of applications and be extensible to new physi-
cal effects, new processes and new domains.

Extensibility to New Physical Effects

Any model is an abstraction of the real entity and cannot cover
all the physical effects involved in the actual physical elements.
Physical effects which are negligible in certain design spaces may
become non-negligible in seme other spaces. For instance, slender
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Fig. 13: Measured output veltage of sensing interface

circuit and output voltage from NODAS simulations with rigid
combdrive macromodel and gap model.
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bearns are widely used in low-frequency MEMS designs, but for
recently emerging designs of RF-MEMS, shorter beams are used
for higher frequency operation. The shear effect in beams thus
becomes non-negligible. The nonlinear beam model can be
extended to capture the shear effect by adding the energy due to
shear deformation to the strain energy caused by beam bending,
The shape functions are changed accordingly [15]. Nonlinear stiff-
ness and mass matrices with the shear effect have been developed,
following the same energy method as in the derivation of linear
beam model.

Several other physical effects, including residual stress in
microstructures [21] and finite sidewall angles due to etching have
also been added to the beam model. The effect of residual stress, o,
is modeled as an axial force F = oA applied to the beam ends,
where A is the cross-sectional area of the beam. The effect of side-
wall angle is modeled by changing the moment of inertia for rectan-
gular cross-section to that for a trapezoidal cross-section. The
addition of these new features are fully compatible with the base
beam model, as long as the fundamental algorithmic structure of the
mode] stated in Fig. 5 is not changed.

Extensibility to New Processes

The models mentioned above are for a single structural layer
process. In fact, there exist much more complicated processes, rais-
ing specific modeling issues. The models are expected to be exten-
sible to new processes. For example, the cross-sectional structure in
CMOS MEMS is a stack of metals and oxides. The moment of iner-
tia for the composite structure is one of the key parameters which
has to be captured. The misalignment of the multiple layers due to
manufacturing variations also causes changes in the moment of
inertia [22]. Moreover, since every metal layer is electrically con-
ducting, corresponding electrical pins must be created for each
layer. These issues are solved by properly modifying the construc-
tive variables and equations on basis of the original extensible
model structure.

Extensibility to New Domains

Physical domains involved in MEMS are not restricted to
mechanical, electrical and electrostatic domains. For instance, dif-
ferent thermal expansion coefficients between the layer stacks of
CMOS-MEMS devices cause curling problems. The NODAS beam
mode] has been successfully extended to the thermal domain to
capture this effect [21]. New pins associated with the temperature
discipline are defined and the stresses caused by thermal expansion
and compression are added into the beam model as an extra compo-
nent of internal forces.

CONCLUSION

The modeling and simulation methodology in NODAS has the
advantage in easy iterative hierarchical multi-domain co-simula-
tion. The current NODAS medel library is oriented to the mechani-
cal and electrostatic physical effects involved in the specific design
space of suspended MEMS. The accuracy of the existing models
have been verified by comparing to FEA results and experimental
data. This methodology is extensible to new physical effects, new
processes and new physical demains.
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