
Layout Verification by Extraction for Micro Total Analysis Systems
Bikram Baidya (bbaidya@ece.cmu.edu) and Tamal Mukherjee (tamal@ece.cmu.edu)

Carnegie Mellon University, Pittsburgh, PA 15213, USA
ABSTRACT
The increasing complexity of Micro Total Analysis Sys-

tems (µTAS) is leading to a growing need for layout verifica-
tion. Currently, verification involves numerical simulation,
which is slow, memory consuming and impractical for large
designs. An alternative is to couple layout extraction with
emerging schematic-based simulation for verification of com-
plex designs. This paper reports on a prototype µTAS layout
extractor which automatically constructs a schematic from a
given layout. The extractor presented is capable of handling
non-Manhattan and curved geometry and includes recognition
heuristics specific to µTAS designs. The utility of the extrac-
tor is demonstrated using selected designs.

Keywords: µTAS verification, extraction, non-Manhattan,
canonization, polygonization, element recognition

INTRODUCTION
Advances in microfabrication are enabling increasingly

complex Micro Total Analysis System (µTAS) designs. Cur-
rently the only means to verify µTAS layouts is to mesh the
design and then numerical analyze it. This approach is amena-
ble for small designs, but can become prohibitively slow for
large designs. Schematic-based simulation [1][2][3][4] have
been proposed for efficient characterization of complex
designs. Adopting this capability for layout verification cur-
rently requires manual translation of the layout into a sche-
matic form. This paper introduces a prototype µTAS layout
extractor capable of automatically reconstructing an extracted
schematic from any given µTAS layout for subsequent verifi-
cation via schematic-based simulation.

Layout extraction is widely used in VLSI and is increas-
ingly used in suspended MEMS design [5][6][7]. µTAS layout
extraction starts with the geometric data from the layout repre-
sentation. Unlike suspended MEMS, non-Manhattan and
curved geometry dominate µTAS layouts. Extraction uses
curve detection followed by geometry processing to create an
unique representation (which simplifies the element recogni-

tion heuristics). Finally the connectivity between the recog-
nized components is extracted and used to generate a netlist
which can be simulated using schematic models.

CURVE DETECTION 
Turns, which are widely used in µTAS layouts tend to be

stored as polygons by standard microfabrication layout repre-
sentations (CIF, GDS). This makes detection and extraction of
curved geometry essential. A survey of recently published
µTAS designs indicate that almost all the curves are formed
by a combination of circular arcs. This work assumes that all
curves are formed by arcs of a circle that are represented as
polygons using at least four non-trivial vertices. Geometri-
cally three points are sufficient to fit a circular arc. The extra
point is used by the curve detection algorithm to identify the
turn angle (the difference in angle) between successive edges
of a polygon. Pairs of adjacent edges for which the turn angle
is less than the user specified curve_angle, and have the same
turn angle sign are considered to be part of the same arc.

Accurate curve fitting algorithms use recursion and have
large time complexity. Faster approximate algorithms can
exploit the fact that the polygon vertices are generated from an
actual curve in the layout. We have adapted the bounding
sphere algorithm from [8] (see Fig. 1). First three spatially dis-
tributed points are selected to initialize the center and radius
of the arc. Next, a pass through the vertices uses the error at
each vertex to update the radius ( ) and
then update the center coordinates such that the new arc
passes through the point on one side and has the older arc on
the other side. The recognized arc is finally represented by an
imaginary edge (referred to as pseudoedge) connecting the
two end points of the arc.

CANONIZATION
In order to simplify the recognition heuristics used during

extraction, the layout geometry needs to be represented
uniquely. Edges of the geometry are classified into external
and internal edges (Fig. 2) and can be defined to have two
faces, one on either side of the edge. A face of an edge is visi-
ble if there exists a point, internal to the layout geometry, from
which a line perpendicular to the edge can be drawn without
intersecting any other edge. External edges form the boundary
of the geometry and can have only one visible face (the side
which faces the inside of the geometry). In contrast, internal
edges have visibility on both their faces. Two edges are said to

a

b

c

d

o1

r1
a

b

c

d

o1

r1

errorr2

a

b

c

d

o1

r2

o2

(a) (b) (c)

Fig. 1: Curve detection & fitting algorithm: (a) initial guess of
center (o1) and radius (r1) using perpendicular bisectors of
two chords, (b)  update radius to r2, (c) update center to o2.

ri ri 1– error 2⁄+=



be mutually visible if they are parallel and if a line perpendicu-
lar to both the edges can be drawn between visible faces of the
edges without intersecting any other edge. The area internal to
the geometry that is visible to both of the mutually visible
edges is called the visible area for the pair of edges. We use a
fractured representation of the layout geometry which we
refer to as the canonical representation [7]. This representa-
tion uses the minimum number of rectangles to cover layout
area between mutually visible parallel edges of the geometry
such that each polygon has at most one neighbor per edge and
each edge is either fully covered by a neighbor or not covered
at all. Fig. 2 explains the idea of the canonical representation
and shows the various types of edges in the final canonical
representation. 

The canonization algorithm works in two phases. The
split phase creates the edges for the canonized geometry and
is followed by the polygonization phase, where polygons used
in the final representation are created.

Split Phase
The split phase starts by enumerating the various angles

in the geometry. The angles corresponding to the pseudoedges
introduced to represent curves are not considered in this enu-
meration. A pair of scanline sweeps is done for each angle in
the geometry starting with the split scan which finds interedge
visibility of edges that are perpendicular to the direction of
scan. The edges that are perpendicular to the current direction
of scan are marked as active edges while the others are
marked as inactive edges. Pseudoedges are always repre-
sented as inactive edges. The components of the inactive
edges, on the scanline, are considered, as the scanline moves,
so that their contribution in shadowing the active edges is
accounted. For any two mutually visible active edges, the lines
orthogonal to the active edges at the boundary of the visible
area are entered as connecting edges and the pair of active

edges are split so that a junction is formed at their intersection
with the connecting edges. The insertion of such connecting
edges creates many overlapping edges in the edge database. A
second clean scan in a direction orthogonal to the split scan to
removes any overlap between the added connecting edges and
the existing edges, if any, in that direction. 

 The application of splitting algorithms is shown in Fig. 3.
When the scanline moves reaches active edge b (Fig. 3(c)), it
creates two connecting edges g and e. It also splits edge a into
edges d and f. While edge d ends due to its complete overlap
with edge b, edge f is dragged along with the scanline. An
active edge or parts of an active edge are removed from the
scanline only if they overlap with an inactive edge or if they
overlap with an active edge which is also an external edge.
Finally the edge f gets shadowed by the inactive edge h
(Fig. 3(d)) and hence no other connecting edges are formed. A
clean scan is then performed, in a direction perpendicular to
the split scan, to detect the overlap between edge e and c and
removes edge e (Fig. 3(e)). While removing edges, an exter-
nal edge is kept in preference to a connecting edge. Fig. 3(f)
shows the final partitioned structure after scans in all the
directions are completed.

Polygonization phase
A modified version of tree-link analysis [9] is used to

polygonize the edge database. First, the edges of the canon-
ized geometry (Fig. 4(a)) are represented as branches of a
graph with the vertices corresponding to the nodes of the
graph (Fig. 4(b)). Any consecutive trivial branches of the
graph are merged together for simplicity (for e.g. edges g, l, m
in Fig. 4(a) are merged to form branch g in Fig. 4(b)). Next,
the incidence matrix of the graph is manipulated to obtain the
cutset-loop matrix the columns of which give fundamental
loops in the graph (Tables 1-3). Since the graph is not a

Fig. 2: Example explaining canonical representation.
(a) initial layout geometry, (b) final canonized representation

(a)
internal edges external edges

visible area between edges 

rectangles A, B and C
visible faces of an edge. 

a bA B C
c d

(b)

a and b represented by 

External edge d has only
 one visible face while 
internal edge c has two 
visible faces

Fig. 3: example demonstrating the partitioning algorithm for
fluidic geometries. (a)-(d) Different stages of a split scan, (e)
result of a clean scan in the orthogonal direction, (f) final
partitioned geometry

a b
d bf

d bf
h

d bf

e, cc e, c c
(a) (b) (c) (d) (e) (f)

g g
g

clean scansplit scan

a b

d

c

e

f g

h

i

j

k l

m
no

a b
d
c
e

f g

h

i

1 2

3

4
5

Table1: Incidence(A) matrix
a b c d e f g h i

1 1 1 1
2 1 1 1
3 1 1 1 1
4 1 1 1

Table2: Modified A-matrix
a b c i d e f g h

1 1 1 1
2 1 1 1
3 1 1 1 1
4 1 1 1

Table3: cutset-
loop matrix

d e f g h
a 1 1
b 1 1
c 1 1 1
i 1 1
d 1
e 1
f 1
g 1
h 1

Table4: 
canonical loop 

matrix
d e f g h

a 1 1
b 1 1
c 1 1
i 1
d 1
e 1 1
f 1
g 1
h 1

Fig. 4: Example explaining polygonization algorithm. (a) edge 
database after split phase, (b) the reduced graph. The tables 1-
4 show the steps from A-matrix to the final canonical matrix

(a)

(b)



directed graph, the only operations used in the manipulation of
incidence matrix are modified to be XORs of rows and
exchanging of order if columns. Finally columns of the cutset-
loop matrix are checked against each other to see if XOR of
one column with another produces a loop with a smaller area.
In the example column h of Table 3 is XOR’ed with column e
to get the new column h in Table 4 because the operation
reduces the area of the polygon formed by column h. The col-
umns of the resulting canonical-loop matrix give the canonical
loops, i.e. loops that are not contained by other loops, and
hence the polygons of the canonical representation. A sparse
matrix implementation is used for the matrices and the algo-
rithms to reduce storage and time complexity.

ELEMENT RECOGNITION
Various approaches for fluid transport in microchannel-

based systems have been explored. The prototype implemen-
tation presented here focusses on electrokinetically driven flu-
idic separation systems because of its wide use in µTAS. The
elements constituting such systems can be classified into
channels, bends and connectors (Fig. 5). The recognition
algorithm uses the neighbor and geometry information of each
of the polygons, generated from the canonization routine, to
detect the elements. The polygons are first sorted using the
number of neighbors. Channels and bends have only two
neighbors while connectors may have more than two neigh-
bors (three neighbors for Y-connector and four neighbors for
cross-connector). The two neighbor polygons are then classi-
fied based on the direction of turn from one neighbor to the
other. Channels produce no change in the flow direction while
bends introduce change in flow direction. The channels and
bends may be either tapered (width at two ends not equal) or
non tapered (width same along the axis). The channels and
two port connectors can be further classified as wide or nar-

row depending on their width. The turns are classified as
tapered or non tapered based on the number of curves used in
the polygon and by checking the center coordinates of the
curved edges. A non tapered turn will have only two curved
edges which will be concentric.

The recognized geometry together with all the neighbor
information is then used to generate the netlist using sche-
matic models.

RESULTS
This section presents some results highlighting the useful-

ness of the µTAS layout extractor.

Serpentine channel 
Fig. 6 uses a serpentine channel using tapered turns [10]

to highlight the various steps in extraction. The input layout
(Fig. 6(a)) is first converted into a canonized edge database
(Fig. 6(b)) in the split phase of the canonization routine. The
inset of Fig. 6(b) shows the pseudoedges for a single tapered
turn. The pseudoedges (represented by dotted lines) 1, 2 and 3
form the inner curve of the turn and the pseudoedge 4 repre-
sents the outer curve of the turn. Fig. 6(c) and (d) show the
geometry after polygonization and recognition respectively.
The final recognized polygons contain the element type,
geometry information and the neighbor information and hence
can be used to generate the extracted schematic.

Parallel mixer 
Fig. 7(a) shows the layout of a parallel mixer identical to

the one described in [1]. The sample and the buffer added to
the respective reservoirs are electrokinetically driven so that
they mix in the merged channels. Detectors are placed near the
waste reservoir to observe the mixing ratio. The extracted
schematic (Fig. 7(b) was simulated using the resistance-based
models from ARCHITECT [2] to get the mixing ratio in the
detection channels (Fig. 7(c)). The results (Fig. 7(c)) are com-
pared with actual data in [1] and have very small differences
which can be attributed to parasitics, similar to the ones for
suspended MEMS described in [11], which will be investi-
gated in future. This example demonstrates the usefulness of
the µTAS layout extractor in capturing the behavior of a
microfluidic system.

Non-Manhattan mixer 
The usefulness of the extractor in verifying complex non-

Manhattan µTAS designs is demonstrated using the layout
(Fig. 8(a)) of a mixer similar to the D32 mixer in [3]. The
extractor successfully recognized the different channels and
connectors in the layout. The extracted schematic (Fig. 8(b))
was simulated using resistance-based models similar to [3].
Note that the connectors and the wide channels have been cur-
rently represented using a resistance network as suggested in

channels bends connectors
tapered non tapered tapered non tapered

fluidic elements

Fig. 5: Fluidic elements for separation systems

Fig. 6: Example demonstrating the extraction steps. (a) input
layout, (b) edge database after split phase showing the
pseudoedges for a single turn, (c) after polygonization, (d)
final recognized geometry.

1

2

34 tapered 

elbow
channel

U bend

(a) (b) (c) (d)



[3]. The sample to buffer ratio in each of the detector positions
A1-4 were found to be 6.12, 12.5, 3.6 and 0.36 respectively.

CONCLUSION
This paper reports a prototype implementation of a µTAS

layout extractor. Computationally efficient algorithms for rep-
resentation and recognition of microfluidic elements from the
layout geometry have been detailed. The results presented
highlight the usefulness of the extraction tool in accurately
constructing a schematic from a given layout. The verification
methodology, using extraction, presented here will help
reduce the verification cycle of µTAS designs.

ACKNOWLEDGEMENTS
This research effort is sponsored by the Defense

Advanced Research Projects Agency under the Air Force
Research Laboratory, Air Force Material Command, USAF,
under grant number F30602-01-2-0587 and in part by
National Science Foundation (NSF) Award CCR-9901171.

REFERENCES
[1] S.C. Jacobson, T.E. McKnight, J.M. Ramsey, “Microf-

luidic Devices for Electrokinetically Driven Parallel
and Serial Mixing,” Analytical Chemistry, 1999, vol.
71, pp. 4455-9.

[2] J.C. Harley, R.F. Day, J.R. Gilbert, M. Deshpande J.M.
Ramsey, S.C. Jacobson, “System Design of Two
Dimensional Microchip Separation Devices,” µTAS
2001, pp. 63-5.

[3] S.B. Cheng, C.D. Skinner, W. Allegretto, D.J. Harrison, “F
luid Mixing Design: Comparison of Simple versus
Complex Modeling Methods,” µTAS 2001, pp. 617-8.

[4] R. Qiao, N.R. Aluru, “A Compact Model for Flowrate
and Pressure Computation in Micro-fluidic Devices,”
MSM ‘02, pp. 58-61.

[5] M.A. Maher and H.J. Lee, “MEMS Systems Design
and Verification Tools,” Proc. SPIE Smart Structures
and Materials ‘98, pp. 40-48.

[6] N.R. Swart, “A Design Flow for Micromachined Elec-
tromechanical systems,” IEEE Design and Test of Com-
puters, vol. 16, No. 19, 1999, pp. 39-47.

[7] B. Baidya, S.K. Gupta, T. Mukherjee, “An Extraction
based Verification Methodology for MEMS,” J.
MEMS, vol. 11, no. 1, pp. 2-11

[8] A.S. Glassner, Graphics Gems, Academic Press, 1990.
[9] L.T. Pillage, R.A. Rohrer, C. Visweswariah, Electronic

Circuit and System Simulation Methods, McGraw-Hill.
[10] J.I. Molho, et. al. “A low dispersion turn for miniatur-

ized electrophoresis,” Sensor & Actuator Workshop
2000, pp. 132-7.

[11] B. Baidya and T. Mukherjee, “Layout Extraction for
Integrated Electronics and MEMS Devices,” Transduc-
ers ‘01, pp. 280-3.

experimental
simulation

detector position

co
nc

en
tra

tio
n 

of
 sa

m
pl

e

(c)

(a)

a1
a2
a3

a4
a5
a6
a7

B1
S3

B2 S2

S1 B3

waste

(b)

Sn - sample 
reservoir 

Bn - buffer
reservoir 

an - detector position
Fig. 7: (a) Parallel mixer [1] layout, (b) extracted schematic
using ARCHITECT [2] models, (c) results from the
simulation of extracted schematic compared with
experimental data [1]

narrow connector

wide channel

narrow channel

wide connector

(b)

Sample

Buffer

A2 A3

A1

A4

(a)

Fig. 8: Example of a non-Manhattan layout extraction. (a)
Layout of a mixer similar to D32 mixer in [3], (b) extracted
schematic using resistance-based models similar to [3].


