
ABSTRACT
Chip-based microfluidic separation systems often use ser-

pentine channels to achieve long separation lengths in mini-
mal area. Such designs suffer from the ‘racetrack’ effect due
to the bends in the microchannel. In addition, the skew pro-
duced by a bend cannot be undone by an equal and opposite
bend due to non-axial diffusion occurring in the inter-turn
straight channel. This paper analyzes the non-axial diffusion
of skewed bands of solute, in electrokinetic microchannels
containing turns, to develop models which can be used for a
system-level optimization of such designs. Distortion caused
by transition and wall effects in the turn geometry and the
inter-turn channel are also analyzed. Finite volume simula-
tions are used to verify the proposed theory.
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INTRODUCTION
Microfluidic channels and turns are finding increasing use

in micro total analysis systems (µTAS). Serpentine channels,
commonly used due to the simultaneous need for long separa-
tion lengths and compact microchip area, suffer from the
‘racetrack’ effect. Previous analytical models predict that
equal and opposite (complimentary) turns can cancel the
‘racetrack effect’ [1]. Recent studies indicate that non-axial
diffusion of the band after the first turn cannot be undone in
the equal and opposite second turn, and therefore, propose
non-uniform width turns [2][3][4]. These device-level optimi-
zations result in devices requiring high aspect ratio fabrication
facilities and potentially suffer from increased dispersion due
to Joule heating in the constricted portion of the turn. In con-
trast, this paper aims at a system-level approach to the optimi-
zation of microfluidic separation systems by developing a
model of the non-axial dispersion introduced in microfluidic

bends and inter-turn straight channels. Models capturing dis-
tortion induced by the channel wall and due to the field transi-
tion in the turn geometry are also proposed. Such models, and
the resulting optimization of the microfluidic system as a
whole, will lead to clearer trade-offs for µTAS designs.

BACKGROUND
Based on the advection-diffusion equation [5], the disper-

sion of solutes in a electrokinetic microchannel, due to turns
in the microchannel, can be analyzed by considering three
regimes [4] in the parameter space of dispersion Peclet num-
ber (Peturn) in the turn and ratio of axial length (Lturn) and
width (w) (Figure 1). The dispersion Peclet number (Peturn)
characterizes the relation between transport of solute due to
advection and diffusion respectively and is given by

where D is the diffusivity of the solute.

Uturn is the maximum velocity difference in a direction trans-
verse to the channel and for an axial electric field whose mag-
nitude is inversely proportional to radius is given by

where, rc, ri and ro are the radius of curva-

ture at the center, inner side and outer side of the turn respec-
tively, and Uc is the electric field at the center. When

, diffusion dominates over advection and hence the

effect of turn induced dispersion is negligible compared to the
dispersion due to axial diffusion. Similarly, when

(Taylor-Aris regime), the skew produced

by the turn is masked by the non-axial diffusion and hence the
behavior of the solute can be modeled using an effective diffu-
sivity (Deff). However, most microchannel system designs lie

in the Pure Advection regime where [1][2].

Here the turn causes a well-defined skew (∆L) in the solute
band, causing an additional dispersion referred to as the ‘race-
track’ effect. The amount of skew (∆L) [1] for a constant
radius turn of angle θ is given by . F is a factor
given by , where, w is the width of the

channel, tD is the transverse diffusion equilibrium time and tt
is the turn transit time. This implies that two equal and oppo-
site turns should nullify such a skew. However as observed in
[4], this cancellation depends on the distance between the two
turns (Lbt) and the Peclet number in the channel (Pebt) given

by where, U is the velocity of the solute in

the channel. Based on Lbt, the pure advection region can be
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Figure 1:  Geometrical parameters for a serpentine channel
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further subdivided into two regions: (a) where the non-axial
diffusion does not dominate ( and

) and (b) where the non-axial diffusion dominates

and hence the skew produced by a turn vanishes before reach-
ing the second turn. In both these cases the diffusion of the
band in the inter-turn channel is larger than predicted by the
diffusivity of the solute. Separate additional effects (described
below) cause distortion of the skewed band which cannot be
undone by the second turn.

DISPERSION MODELS
To understand the diffusion process in the inter-turn chan-

nel, consider a plug-shaped band, of solute, which becomes
skewed as it travels through the turn (Figure 2). To model the
diffusion of the band we utilize the assumption that all diffu-
sion occurs perpendicular to the face of the band. Before the
turn, as the band travels from a to b it undergoes broadening
due to axial diffusion which can be characterized by the diffu-

sion length (Ld’) given by . When this band

flows through the bend, it undergoes a skew characterized by
the angle α which for a turn of constant radius is given by

, θ being the angle of the bend. This skewed
band undergoes a diffusion perpendicular to it’s face, i.e.,
along the ordinate (x’) of the local reference system of the
band which is characterized by the diffusion length (Ld) given

by in the local reference system. This leads

to an effective axial diffusion length (Ldeff) given by

which can be modeled using an effective

axial diffusivity (Deff) of , which can be re-

expressed as . The resulting increase in the vari-

ance (∆σ2) is then given by , where t is the tran-

sit time.

In addition to the increased diffusivity for a skewed band,
as described above, wall-related effects also take place. For an
un-skewed band (orthogonal to the channel), the diffusion
behavior of the solute can be approximated as diffusion of a
plug in an infinite channel. Hence the concentration profile,
after diffusing for time t, is given by a gaussian having a stan-
dard deviation (σ) of 2Dt. However, this assumption is not
true for the acute-angled corners of a skewed band
(Figure 3(a)). Here the resulting concentration profile can be
obtained by assuming the walls to be reflecting surfaces which
folds the portions of the ideal gaussian profile that lie outside
the walls. This results in an increased concentration of the sol-
ute at the corners of the skewed band (as shown by the plot of
the concentration profiles at different regions of the band in
Figure 3(b)). Also, in order to maintain continuity of mass, the
obtuse-angled corners of the skewed band tend to pull the
expanding face of the band backward, resulting in a rounding
of the face of the band at these corners. Both these effects
result in a distortion of the face of the band (line of same sol-
ute concentration) and hence change the effective diffusivity
(Deff). Moreover, they tend to twist the skewed band to bring it
back to its original shape (orthogonal to the direction of flow).
When diffusion in the inter-turn length is small (i.e., when

and ) and the skew is small (i.e.,

the skew angle α is large), such second order effects can be
neglected and the diffusion in the inter-turn channel can be
modeled using a single value of effective diffusion. If these
conditions are not met then the diffusion in the inter-turn
channel needs to be modeled by an effective diffusivity which
varies with time.

In addition to the wall effects described above, micro-
channels containing turns also suffer from distortion caused
by the transition region of the electric field between the
straight channel and the turn. As the electric field changes
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Figure 2: Schematic illustration of dispersion of a band of
solute travelling through a bend
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Figure 3: Wall effects in the diffusion of a skewed band. (a)
the distorted band face after diffusion, (b) the concentration
profile at various regions of the band
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from a uniform field in the straight section to a radially
decreasing circumferential field in the turn (Figure 4(a) and
(b)), it passes through a transition region in which the field is
not purely axially directed. The extent of this transition region
varies with position along the width of the turn (Figure 4(c)).
When the solute passes through two complimentary turns, it
encounters two transition electric fields which are not equal
(e.g., the portion of solute which faces the transition region of
the outer curve of the first bend encounters the transition
region of the inner curve of the second bend). This causes an
effective delay in the motion of the solute near the walls of the
channel and produces a curved profile of the band after the
complimentary turns and hence causes an additional disper-
sion. This effect is additive and the distortion increases as the
number of complimentary turns in the microchannel
increases.

RESULTS
This section presents results from finite volume (FVM)

simulations of different geometries, using CoventorWare [6],
to demonstrate the various dispersive effects in a microchan-
nel described in the previous section. The skew angle (a) pro-

duced due to a 180o turn is 9.0o and that produced by a 90o

turn is 17.7o. Hence for the analyzing a skewed band in a

straight channel, the values for skew angle (α) have been

approximated as 10o and 20o. This helps us imitate the two
types of turns commonly used (a U turn and a right angle turn)
while maintaining the ease of fast mesh generation for these
test cases. Simulations for the worst and best case using these
values have been shown. Finally the analytical results are veri-
fied for a serpentine channel.

Skewed band in a straight channel
Figure 5(a) shows the dispersion of a skewed band in a

straight channel for and α = 20o. The dif-

fusivity for the solute was assumed to be 3 µm2/s. Figure 5(b)
compares the standard deviation (σ) obtained from simulation
with the value predicted using an effective diffusivity

( ). The standard deviation pre-

dicted from the derived analytical formula was found to be
within 3% of the standard deviation obtained from numerical
simulation). However when is reduced to 7 and the

skew angle decreased to 10o, the effects described above
become more prominent (Figure 6(a)) and the standard devia-
tion predicted by the formula using constant effective diffusiv-
ity no longer matches the value obtained from numerical
simulation. As seen in Figure 6(b), the change in standard
deviation (slope of the curve) obtained from simulation
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Figure 4: Numerical simulation showing the electric field in
transition region of a microfluidic bend. (a) Plot of
equipotential lines, (b) Plot of the streamlines, (c) Plot of
electric field magnitude with distance along different inverted
U-shaped contours. The channel width here has been
exaggerated in order to show the effect of the transition
region.
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Figure 5: Comparison of FVM simulation data with
analytical formula proposed for and
α = 20o. (a) shape of the band at start and after 5s, (b) plot
of standard deviation (σ) obtained from simulation and
from analytical formula using effective diffusivity
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decreases with time implying that the effective diffusivity
decreases with time as predicted, due to the wall effects.

Complementary turn channel
To demonstrate the system-level use of the proposed

models, we compare the sum of the effective dispersion in the
turns and the straight channels between the turns to numerical
simulation of a serpentine channel having a pair of compli-
mentary turns of radius 80 mm. and were set to

120 and the diffusivity of the species was set to 100. The ini-
tial and final values of standard deviation were found to be 1.4
and 79.7 respectively. Using the species diffusivity for travel

within the turn and effective diffusivity (100/sin2(9.0o)) for
the skewed band in the inter turn channel the analytically pre-
dicted standard deviation is 81.5, which differs from the FVM
simulation by only 2.3%.

CONCLUSION
A system level approach towards understanding the dis-

persion of solute bands in electrokinetic microchannels con-
taining turns has been described. An analytical formula for
diffusion in inter-turn channel for the commonly observed
flow regime has been derived and verified using finite volume
simulations. Additional effects in such channels have been
identified and their presence verified using numerical simula-
tions. Analytical models for such effects are currently being
formulated, so as to describe dispersion in microchannels for
all regimes. Such analytical models should facilitate system
level optimization of microfluidic channels, resulting in better
designs for micro total analytical systems.
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simulation and from analytical formula using effective
diffusivity.

Pe( ) L w⁄( )⁄ 7=

Pebt Peturn

σ = 1.4

σ = 79.7

Figure 7: Dispersion in serpentine channel from FVM
simulation.



[4] J.I. Molho, A.E. Herr, B.P. Mosier, J.G. Santiago, T.W.
Kenny, R.A. Brennen, G.B. Gordon, B. Mohammadi
“Optimization of Turn Geometries for Microchip Elec-
trophoresis,” Analytical Chemistry, vol. 73, no. 6,
March 15, 2001, pp. 1350-60.

[5] R.F. Probstein, Physicochemical Hydrodynamics: An
Introduction, 2nd edition, John Wiley & Sons, New
York, 1994.

[6] Coventor web page, http://www.coventor.com.


