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In this paper, we present a table-based numerical
macromodeling method in which a MEMS device is
modeled by a set of numerical ordinary differential
equations and model functions are represented by look-up
tables of numerical data. Cubic spline interpolation is
used to evaluate model functions during simulation.
Numerical linear models are also constructed for DC
analysis, AC analysis and feedback system design. This
method is demonstrated by modeling and simulating a
MEMS accelerometer.

Keywords: table-based numerical model; cubic spline
interpolation; linear fractional transformation

1   INTRODUCTION
As MEMS devices are studied by measurements or
device-level simulations, the results are usually in
numerical form. Meanwhile, the efficient system-level
simulation demands the use of behavioral macromodels of
devices, and the design of feedback control systems
requires linear models of system components.
Traditionally, macromodels are represented by either
equivalent lumped electrical network elements [1] or
analytical ordinary differential equations. Thus, great
efforts are devoted to extract analytical models from
numerical data. The model extraction process is difficult
to automate and will introduce systematic model errors.

This paper introduces a numerical modeling method that
uses tables of numerical data to describe the relationship
between variables. These table-based models are built
directly upon data obtained by measurements or device
simulations, without detailed knowledge of underlying
physics. Therefore, the difficulties and errors associated
with extracting analytical models are eliminated and the
model extraction can be easily automated. When the
table-based models are used in behavioral-level
simulations, cubic spline interpolation is used to evaluate
the model functions [2]. In addition to the nonlinear
numerical model, a set of numerical linear models are
constructed. They are used to solve for operating points,
to perform AC analysis and to design closed-loop
feedback systems.

MODELING
A surface micromachined accelerometer will be use
throughout this paper to demonstrate our method. Th
device is fabricated by CMU CMOS-MEMS process [4
It consists of a micromechanical resonator whic
translates the acceleration into the displacement of
proof-mass, a capacitive position sensor which conve
the displacement into electrical signal, and an electrosta
actuator to provide feedback and compensation. A SE
of the device is shown in Figure 1. The multi-layer latera
parallel-plate capacitor structure that forms both th
capacitive sensor and the electrostatic actuator is shown
Figure 3(a).

At behavioral level, this device is described by a set
coupled ordinary differential equations (ODEs),

wheremx and mz are the effective masses,bx and bz are
the damping factors,fspx(x, z) and fspz(x, z) are the spring
forces,s(x, z) is the sensitivity of the capacitive sensor
andex(d, z) andez(d, z) describe the electrostatic actuatio
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Figure 1: The CMOS-MEMS accelerometer
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force per square volt of the actuator. To characterize this
device, the mechanical part is simulated by Abaqus, a
mechanical simulator using finite element method
(FEM), and the capacitive sensor and the electrostatic
actuator are simulated by Raphael, a capacitance solver
based on boundary element method (BEM). The data
acquired by the simulations is plotted in Figure 2 and 3.
The elastic forces of the micro-machined spring have
good linearity within the operation range. However,
nonlinearity is introduced into the total spring force by
the parasitic electrostatic spring effects of the capacitive
sensor. The simulation also shows that the capacitance of
the multi-layer structure deviates significantly from the
ideal parallel-plate capacitor approximation because of
the fringing field.

In traditional behavioral macromodeling, the mode
functions are expressed in analytical form [1]. Therefor
the form of the analytical function must be firs
determined, often with the help of the knowledge of th
device physics. Then, the model parameters a
estimated by curve fitting on numerical data. Thi
process often takes iterations with the original functio
form modified or correction terms added. Except for
few ideal cases, the analytical model extractio
introduces global modeling error and is difficult to
automate because the forms of the functions must be p
determined. Although good analytical models provid
insight that will help device designers, it is not necessa
to have analytical model for simulation purposes.

In the table-based numerical modeling method, th
ordinary differential equations in (1) are expressed
numerical form. The functions that describe th
relationship between the variables, in our example,fspx,
fspz, s, ex and ez, are all represented by tables o
numerical data obtained by device simulations o
experimental characterizations. During simulations, th
models are evaluated by performing interpolation on th
tables. This approach avoids the difficulties in derivin
analytical functions and is much easier to automat
Once the order and the state variables of the ODEs
decided, the model construction is straightforward an
requires no human intervention. It also eliminates th
systematic global modeling errors if local interpolation i
used to evaluate the models. The table-based mac
modeling method is illustrated in Figure 4.

3  BEHAVIORAL-LEVEL TRANSIENT
SIMULATION

In system-level behavioral simulations, the table-bas
models are evaluated using cubic spline interpolation [2
The cubic spline interpolation is a 3rd-order loca
interpolation method which is smooth in the firs
derivative and continuous in the second derivative. F
an one-variable problem, the function valuey with
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Figure 2: Two main modes of the accelerometer (a, b)
and simulated total spring forces with parasitic

electrostatic spring effect adjustment (c, d)

Figure 3: The multi-layer lateral capacitor structure (a),
the simulated capacitive sensor sensitivity (b) and the
electrostatic force per square volt of the actuator (c, d)
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respect to the variable valuex betweenxi and xi+1 is
computed by a cubic polynomial,

The cubic spline interpolation is a stable and smooth
method in which the interpolation errors are localized and
well bounded. This is achieved by using globally
determined second derivatives. Therefore, for each model
function, a table of second derivatives must be pre-
computed and stored. The computation of the cubic spline
interpolation is more efficient than evaluating many
mathematical functions because of the low order of the
interpolation polynomials. One may argue that during
simulations, extra effort is needed to locate the
interpolation interval. In reality, since most functions vary
continuously, the data in two consecutive simulation steps
usually fall into the same or the neighboring intervals.
Thus, locating the interpolation intervals contributes very
little overhead in the simulation time. Figure 5 shows an
example of single-variable cubic spline interpolation.

In this work, the table-based model of the MEMS
accelerometer is used to simulate a delta-sigma
accelerometry system which includes the MEMS
transducer [5]. The block diagram of this system is shown
in Figure 6. This system employs closed-feedback control
to suppress nonlinearities and sensitivity variations, and
uses delta-sigma modulation technique to realize high-
resolution analog-to-digital conversion. A multivariate
cubic spline interpolation routine is inserted into a
customized behavioral simulator to simulate this system.
The transient simulation results are shown in Figure 7.

4  NUMERICAL LINEAR MODELS
Linear models are required to solve nonlinear equations
find operating points (DC analysis), to comput
frequency-domain responses (AC analysis), and to des
closed-loop feedback systems by using various line
feedback control techniques. Based on the table-ba
numerical modeling method, a set of numerical line
models could be computed directly by numerica
differentiation on the tabulated data and be represen
also by tables. As the device exhibits nonlinear behavio
the linear model parameters vary with the operatin
points. The other sources of the linear model parame
variations are the manufacturing variations and variatio
induced by surrounding environment, both are large
micro-fabricated devices.

For MEMS devices, high quality (Q) factor is desirabl
because that reduces the thermal-mechanical noise.
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Figure 5: One-variable cubic spline interpolation (line)
on a data set (dots)
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with the MEMS accelerometer

Figure 7: Simulation results: decimated output signal
waveforms (a) and quantization noise spectrum (b)
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avoid ringing, it is necessary to put a high-Q
underdamped device in a feedback loop to stabilize it.
However, simulations suggest the closed-loop system
performance degrades at high Q because the system tends
to go unstable. Designing robust feedback systems with
high-Q components is challenging. And the large
variations inherently possessed by MEMS devices make
this task even more difficult. This situation demands a
quantitative representation of the linear model variations.
Linear fractional transformation (LFT) is employed to
represent the linear model with parameter variations
(perturbations) by a multi-input-multi-output (MIMO)
system [3]. The LFT is explained in Figure 8. The LFT
model of the accelerometer is shown in Figure 9. And the
variational AC responses of the device computed by the
LFT model is shown in Figure 10. The LFT model
enables the use of modern robust control techniques
which take model perturbations into considerations [3].

5  CONCLUSIONS
We have demonstrated a table-based numeri
macromodeling method. The table-based numerical mo
consists of five integrated components: the numeric
ordinary differential equations; the tables of mode
functions; the tables of the first derivatives representin
the linear model; the tables of second derivatives used
the cubic spline interpolation; and the linear state-spa
LFT model that describes the linear model variation
This method enables us to construct models directly fro
experimental characterizations and device simulation
and to automate the model extraction process. The tab
based model could be used in transient, AC and D
simulations, as well as in the design of closed-loo
feedback systems.
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Figure 8: The linear fractional transformation (LFT)

Figure 9: The LFT model of the MEMS accelerometer
(Only the sensing direction is shown for simplicity)
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