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ABSTRACT 

This paper presents an analytical and parameterized model 
for analyzing the effects of Joule heating on analyte dispersion 
in electrophoretic separation microchannels. We first obtain 
non-uniform temperature distributions in the channel resulting 
from Joule heating, and then determine variations in 
electrophoretic velocity, based on the fact that the analyte’s 
electrophoretic mobility depends on the buffer viscosity and 
hence temperature. The convection-diffusion equation is then 
formulated and solved in terms of spatial moments of the 
analyte concentration. The resulting model is validated by both 
numerical simulations and experimental data, and holds for all 
mass transfer regimes, including unsteady dispersion processes 
that commonly occur in microchip electrophoresis. This model, 
which is given in terms of analytical expressions and fully 
parameterized with channel dimensions and material properties, 
applies to dispersion of analyte bands of general initial shape in 
straight and constant-radius-turn channels. As such, the model 
can be used to represent analyte dispersion in microchannels of 
more general shape, such as serpentine- or spiral-shaped 
channels. 
 
 
INTRODUCTION 

Electrophoretic separation microchips have been actively 
pursued in the past decade [1-6], and hold great promise for a 
wide spectrum of applications in biology and chemistry [7, 8]. 
By performing separations in microchannels that are integrated 
with other microfluidic components, microchip electrophoresis 
is a key technology to enable lab-on-a-chip microsystems that 
integrate chemical analysis with other bio-analytical 
functionalities [7, 8]. While microchip electrophoresis is of 
great importance, the creation of such devices that have 
optimized geometry and performance and are suitable for 
specific applications is still an art, requiring long development 

cycle times. This is in a large part due to a lack of models that 
are accurate to capture the physics of electrophoretic 
separation, and yet efficient to allow fast evaluation of 
candidate designs in the chip design process. This paper 
addresses this issue by presenting a parameterized model for 
analyzing analyte dispersion caused by Joule heating effects in 
electrophoresis microchannels. 

In electrophoresis, an electric field is used to drive a band 
of charged analyte molecules through a microchannel filled 
with a conducting buffer. Different species in the analyte are 
thereby separated by their different electrophoretic mobilities. 
This process, however, is accompanied by the resistive heating, 
or Joule heating (JH), of the buffer as the electric field also 
induces a current. Joule heating leads to non-uniformities in the 
buffer temperature and electrophoretic mobility, which 
contribute to dispersion of the analyte transport. Joule heating 
can be significant in the presence of high electric fields, which 
are desired for improving electrophoretic separation speed and 
resolving power [9, 10]. There can also be appreciable Joule 
heating in microchannels of relatively large cross-sectional 
dimensions, which are at times used to allow longer detection 
cells, higher detectability, reduced adsorption of analytes to 
channel walls, and less stringent requirements on sample 
injection schemes [11]. It is therefore important to develop 
models that account for the effects of Joule heating on analyte 
dispersion to allow optimal design of electrophoretic separation 
microchips.  

Closed-form and parameterized models are highly 
desirable for describing dispersion in microchip 
electrophoresis, as they provide computational efficiency 
appropriate for use in iterative design processes to explore the 
parameter space [12, 13]. Taylor [14, 15] and Aris [16] 
pioneered studies of dispersion phenomena by considering 
dispersion of a solute in a hydrodynamically driven flow in a 
circular capillary, and developed the classical Taylor-Aris 
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theory in which dispersion at large analyte migration time (i.e., 
steady state) is represented by a constant dispersion coefficient. 
This theory has been used extensively in capillary 
electrophoresis. In particular, Knox et al. [17, 18] investigated 
JH-induced Taylor-Aris dispersion of electrophoresis in a 
circular capillary, while Cifuentes et al. [19] studied steady-
state JH-induced dispersion in a rectangular capillary that is 
assumed to have an infinitely large aspect ratio. In the context 
of microchip electrophoresis, Molho [10] presented an 
analytical and steady-state model for JH-induced dispersion in 
rectangular channels that is based on models developed for 
circular capillaries. For electrophoresis in a constricted turn, he 
also investigated dispersion effects of Joule heating and turn 
curvature at specific regimes, which were assumed to be 
decoupled. Jacobson et al. [9] used the results of Knox et al. for 
the capillaries to evaluate Joule heating dispersion effects in 
rectangular microchannels. It is important, however, to note 
that in microchip-based electrophoretic separations, dispersion 
is often not in steady state due to short analyte residence times 
in the channel. The use of steady-state dispersion models for 
unsteady dispersion, as well as approximation of rectangular 
channels by capillaries, in general leads to significant errors. 
Unsteady dispersion in rectangular channels has been 
investigated by Doshi et al. [20] in the context of a gravity-
driven hydrodynamic flow. They found that such dispersion 
involves three stages characterized by diffusion time constants 
along the two cross-sectional dimensions, and differs distinctly 
from dispersion in a hydrodynamic flow between two parallel 
plates, as further discussed by Dorfman and Brenner [21].  

We present an analytical model for Joule heating-induced 
analyte dispersion in electrophoretic separation microchannels. 
JH-induced variations in temperature and electrophoretic 
velocity in the channel are first obtained to establish the mass 
transfer equation, which is then formulated in terms of spatial 
moments of analyte concentration [16]. The equation is solved 
to yield an analytical, parameterized model for JH-induced 
dispersion, which holds for analyte bands of general initial 
shape in both straight channels and constant-radius turns. The 
model is validated with experimental data and full numerical 
simulation results, and employed to investigate the influence of 
geometrical and operational parameters on JH-induced 
dispersion in both straight channels and turns. A summary of 
the paper and a brief discussion of future work are finally 
presented. 
 
 
GOVERNING EQUATIONS 

This section presents the governing equations for 
dispersion, in the presence of Joule heating, of electrophoretic 
transport of a charged analyte in a microchannel. The 
microchannel is bounded by a pair of planes parallel to the chip 
surface, and a second pair of planes or a pair of concentric 
circular cylindrical surfaces perpendicular to the chip surface 
(Figure 1). The channel hence has constant rectangular cross 
sections with width w, height h, and aspect ratio w hβ = . The 
line connecting the cross-sectional centers (the channel axis) is 
straight with length L, or a circular arc with average radius R, 
included angle ϕ, and length L Rϕ= . In the latter case the 
channel is called a constant-radius turn, and it is assumed that 
the width-to-radius ratio (curvature) is small: 1b w R .  

We also assume that the channel is long, i.e. 1w L and 
/ 1h L . These straight and constant-radius turn geometries 

are sufficiently general to be used to represent the majority of 
general-shaped microchannels that are commonly seen in 
practice [22]. 
 

 (a) (b)

h

w

z y

x
R

h

w

L
h

w

z y

x
R

h

w

L

(a) (b)

h

w

z y

x
R

h

w

L
h

w

z y

x
R

h

w

L

 
Figure 1.  Geometry and coordinate frame for (a) a straight 
channel and (b) a semi-circular constant-radius turn. 
 

The electrophoresis of the analyte band is considered in the 
coordinate frame as shown in Figure 1. The governing 
equations will be given for a constant radius-turn, which, when 

0b = , reduces to the special case of a straight channel. Given a 
voltage V applied across the length of the channel, it can be 
shown that the electric field is approximately given by [22, 23] 
 

0( , , ) ( [1+ (1/2 / )],0,0)x y zE E E E b z w= −  (1) 
 

where 0E V L= . That is, the electric field, directed along the 
channel axis, is constant in a straight channel, and varies 
linearly across the width of a turn. The electric field induces a 
current in the conducting buffer generating Joule heating power 
[17, 18] 

 
2q Eρ=  (2) 

 
where ρ is the buffer’s electric conductivity. JH will cause 
temperature variations within the microchannel. Such 
temperature variations can be assumed in steady state, as the 
time required for the buffer to reach thermal equilibrium within 
the channel is generally much smaller than the characteristic 
diffusion time. For example, for a channel (h=50 um) filled 
with an aqueous buffer, its thermal time constant is ~1.8×10-3 s, 
which is 100 folds less than the transverse diffusion time 
(~2.5×10-1 s) of an ion species (D~1×10-9 m2/s). In addition, as 
the channel length is much larger than the cross-sectional 
dimensions, the temperature distribution can be assumed to be 
independent of the axial coordinate x. Thus, by neglecting 
terms of order b2 or higher [23], the steady-state heat transfer 
problem is governed by a two-dimensional equation: 

 
2 2

2 2

q
ky z

θ θ∂ ∂
+ = −

∂ ∂
 (3) 

 
where wT Tθ = − , T is the buffer temperature, Tw is the buffer 
temperature at the channel wall, and k is the buffer’s thermal 
conductivity. Here, to a first approximation, Tw is taken to be 
uniform everywhere on the channel wall. This approximation is 
valid especially when the substrate is a good thermal conductor 
(e.g., silicon) or the microchannel has a large aspect ratio 
( 1β , so that the temperature non-uniformity only occupies a 
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small portion of the cross sectional perimeter and around the 
channel corner). In this case 0θ =  everywhere on the channel 
wall.  

The effect of Joule heating on electrophoretic transport is 
primarily manifested via the temperature dependence of the 
buffer viscosity η. Within temperature ranges relevant to 
microchip electrophoresis, the viscosity is approximately linear 
in temperature: ( )1w αθ= −η η , where ηw is the buffer 
viscosity at the channel wall, and α is the temperature 
coefficient of the buffer viscosity [17, 18]. The electrophoretic 
mobility of the analyte is given by /aµ = εζ η , where ε is the 
permittivity of the buffer, ζ the zeta potential and a a constant 
[18]. It has been experimentally shown that εζ is independent 
of temperature [24]. Therefore µ depends on temperature only 
via the temperature dependence of viscosity. When 1αθ , 
we approximately have ( )1wµ µ αθ= + , where /w waµ = εζ η . 
It follows that the electrophoretic velocity, given by 

( )( , , ) ,0,0x y z xv v v Eµ= [10, 17-19], is non-uniform over the 
channel’s cross section and causes dispersion of the analyte 
band. The combined effect of JH and turn geometry on 
dispersion is represented by an apparent longitudinal analyte 
velocity ( )( )1 1 2x xu v b z w= − − [23]. For convenience we 

use a dimensionless frame ( )x Ut hξ = − , y hη =  and 
z hζ = , which moves with the average apparent analyte 

velocity ( ),0 1wU u αθ= + , and a dimensionless time 
2Dt hτ = . Here ,0 0w wu Eµ=  and the overbar denotes cross-

sectional average. The convection-diffusion equation, which 
governs the dispersion process, then takes the form [22] 
 

( )

2 2 2

2 2 2

0,1 0, 0

Pe

/ 0,    / 0,    , , ,0

c c c c c

c c c cη ζ β τ

χ
τ ξξ η ζ

η ζ ξ η ζ= = =

∂ ∂ ∂ ∂ ∂
= + + −

∂ ∂∂ ∂ ∂

∂ ∂ = ∂ ∂ = =
 (4) 

 
where c is the analyte concentration, Pe Uh D=  is the Peclet 
number representing the ratio of convection and diffusion 
transport rates. Here, χ is the normalized apparent analyte 
velocity with respect to the average U and is given by 

 

( ) ( )
( ) ( ) ( )

( , )
( , )

- 1   for a straight channel

- 1 2 1   for a turn

xu U
U

b

η ζ
χ η ζ

ε φ φ εφ

ε φ φ ζ β εφ

−
=

⎧ +⎪= ⎨
⎡ ⎤+ − +⎪⎣ ⎦⎩

 (5) 

 
where 2 2

0( / )E h kε α ρ=  and 2 2
0/( / ) /E h kφ θ ρ αθ ε= = , 

which can be found from Eqs. (1)-(3). From these equations we 
also note that 2 2

0 /E h kρ  is a characteristic temperature due to 
JH. Therefore the dimensionless parameter ε is the 
characteristic of JH intensity and will be hereafter called the 
Joule heating coefficient. Also note that ε  can be thought of 
as a dimensionless electric field strength. The dimensionless 

variable φ, which depends only on the dimensionless curvature 
b and aspect ratio β (Section 3), can be interpreted as the 
normalized buffer temperature. Terms of second or higher order 
in b and α have been neglected for a turn in Eq. (5). 

Eq. (4) can be formulated in closed form in terms of spatial 
moments of the analyte concentration [10, 16]. Specifically, if 
the entire analyte band is contained in the channel, Eq (4) holds 
effectively for ξ−∞ < < ∞ such that 0c →  as ξ → ±∞ . 
Define 
 

( ) ( )

( )
1

0 0

1

, , , ,    

   ( 0,1, 2,...)

p
p

p p p

c c d

m c c d d p
β

β

η ζ τ ξ ξ η τ ξ

τ η ζ

∞

−∞
=

= = =

∫

∫ ∫
 (6) 

 
where cp is the pth moment of the concentration in a 
longitudinal filament of the analyte band that intersects the 
cross sections at η and ζ, and mp is the pth moment of the cross-
sectional average concentration, respectively. Eq. (4) can be 
integrated with respect to ξ to yield 
 

( )

( )

2 2

2 12 2

0,1 0,

0 0

1 Pe

/ 0,    / 0   

( , ) , , , 0

p p p
p p

p p

p
p p
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p p c p c

c c

c c c d

η ζ β

τ

χ
τ η ζ

η ζ

η ζ ξ η ζ ξ ξ

− −

= =

∞

= −∞

∂ ∂ ∂
= + + − +

∂ ∂ ∂

∂ ∂ = ∂ ∂ =

= = ∫

 (7) 

 
which can be further integrated over the cross section to obtain 

 

( )

( )

2 1

1

0 00 0

1

1 Pe

0 ( , )

p
p p

p p p

dm
p p c p c

d

m m c d d
β

β

χ
τ

η ζ η ζ

− −= − +

= = ∫ ∫
 (8) 

 
In both Eqs. (7) and (8), any term that contains ci with i < 0 

is set to zero. To determine the broadening of the analyte band, 
these equations can be solved to obtain moments up to the 
second order. Then, c0(η,ζ,τ) is the analyte mass in the 
longitudinal analyte filament at η and ζ, while m0(τ) is the total 
analyte mass in the channel. Next, c1(η,ζ,τ) is the ξ-coordinate 
of the centroid of the longitudinal analyte filament at η and ζ, 
and hence indicates the skew of the analyte band. m1(τ), the 
cross-sectional average of c1, is the ξ-coordinate of the centroid 
of the entire analyte band. Finally, m2(τ) is used to determine 
the variance of the analyte band (next section). 

 It should be noted that in addition to the electrophoretic 
mobility µ, other material properties, such as the buffer’s 
electric conductivity ρ, thermal conductivity k and the analyte 
diffusivity D, in general also vary with temperature gradients 
within the channel through the temperature dependence of the 
buffer viscosity. However, the temperature dependence of these 
parameters influences dispersion less significantly than the 
temperature dependence of µ. For example, from Eqs. (2) and 
(3), the non-uniform component of Joule heating, due to the 
temperature dependence of ρ and k, is generally small 
compared with the total Joule heating. In addition, from a more 
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general form of the convection-diffusion equation [25], it can 
be shown that the effect on dispersion of temperature 
dependence of D, compared with that of temperature 
dependence of µ, is of second order. Therefore, it is reasonable 
to assume, as in the formulation above, that all material 
properties except µ are constant [17, 18] and can be evaluated 
at the average buffer temperature in the channel. 

 
JOULE HEATING DISPERSION MODEL 

This section presents analytical models for dispersion of 
electrophoretic transport in the presence of Joule heating. These 
models are obtained by first solving Eq. (3) for cross-sectional 
temperature distributions. Eq. (5) then provides the 
electrophoretic velocity profile, which can be used in solving 
Eqs. (7) and (8) for the moments of analyte concentration and 
hence the dispersion characteristics of the analyte band. 

The normalized buffer temperature φ, introduced with Eq. 
(5), can be found from Eqs. (1)-(3): 

 
2

1
2

(1 )
b

b
φ

φ φ
β

= + +  (9) 

 
where  
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κ βκ

β πζφ
π λ β

∞

=

+ −∞

=

⎧ ⎫−−⎪ ⎪⎛ ⎞= − − + −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞− ⎛ ⎞+
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∑

∑

 

with  ( )2 1 2i iκ π= − and ( )2
i iλ π β= (i=1, 2, 3,…). 

 The normalized velocity profile χ is then obtained from 
Eq. (5) and substituted into Eqs. (7) and (8), which can be 
solved for the moments of analyte concentration. The solution 
procedure has been outlined elsewhere [22], with the difference 
being that χ here includes JH velocity contribution and varies 
in both cross-sectional dimensions. First, by conservation of 
mass, m0 is constant. We choose 0 1m =  without loss of 
generality. In addition,  

 

( )0 , , ( , , , ) 1c c dη ζ τ ξ η ζ τ ξ
∞

−∞
= =∫  (10) 

 
provided the initial condition is such that ( , , ,0) 1c dξ η ζ ξ

∞

−∞
=∫ . 

This indicates that if all infinitesimal longitudinal analyte band 
filaments have the same mass initially, then this will be the case 
at all times. This is typically true in practice and will be 
assumed in the remainder of this paper. For example, this is the 
case for an analyte band that is initially a uniform rectangular 
plug (in a straight channel or a turn).  

For the first moment, it can then be found that m1(τ) = 0 if 
the origin of the moving frame is chosen such that it initially 
coincides with the analyte band’s centroid. Thus, the centroid 
and the moving origin coincide at all times if they do so 
initially. The first moment c1, which represents the skew of the 
analyte band, is found to be  
  

( ) ( )1
0 0

, , ( ) cos cosnm
m n

mc S n πζη ζ τ τ πη
β

∞ ∞

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∑  (11) 

 
where 00 00( ) (0)S Sτ =  and 
 

( )Pe 1
( ) (0)    if 1,

nm

nm
nm

nm nm
nm

e
S S e n m

λ τ
λ τ

χ
τ

λ

−

−
−

= + + ≥  (12) 

 
with ( ) ( ) ( )

1

100 0
(0) , cos cosnm nmS c n m d d

β
ν η ζ πη πζ β η ζ= ∫ ∫  

and ( ) ( )2 2
nm n mλ π π β= +  (n≥0 and m≥0). Here, νnm is 

defined as 00 1ν β= , 0 2mν β= , 0 2nν β=  and 4nmν β=  for 
n>0 and m>0, c10 is the initial skew (Eq. (7)). The Fourier 
coefficients for the normalized velocity χ are 00 0,χ =  

0 0 4 (1 ( 1) ) /m
m m mbχ εφ λ= + − − , nm nmχ εφ= , and 

( ) ( )
1

0 0
cos cosnm nm n m d d

β
φ ν φ πη πζ β η ζ= ∫ ∫ . 

The second-order moment m2 can be found by solving Eq. 
(8) with 2p = . The relationship ( )2 2 2 2

2 0 1 0h m m m mσ = − [10] 
yields the variance of the analyte band: 
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∑ ∑ ∑ ∑

∑ ∑
(13) 

 
where 2 2 2( ) ( ) (0)σ τ σ τ σ∆ = − , and 2 ( )σ τ  and 2 (0)σ  are the 
analyte band variance at time τ and 0 respectively, and 

( )2m mλ π= . It can be seen from the right-hand side of this 
equation that the increase in variance consists of contributions 
from molecular diffusion (the first term), the initial skew (the 
second term), Joule heating effects (the third term), turn 
curvature (the fourth term), and interactions between Joule 
heating and turn curvature (the last term). To our knowledge 
this is the first time these interactions are considered in 
microchip electrophoresis models in all mass regime and in a 
coupled manner.  

We now consider several special cases of electrophoretic 
transport. First, note that if 1ε , Eq. (13) indicates that Joule 
heating can be ignored. Analyte band broadening will then be 
exclusively caused by diffusion and turn geometry, and the 
details of this case have been discussed in Ref. [22]. Next, the 
Joule heating dispersion model can be considerably simplified 
for straight channels (b=0) when no initial skew is involved; 
and this case has been thoroughly discussed in Ref. [26]. 

Eq. (13) shows the evolution of the band spreading within 
the channels. In practice, chip designers are primarily interested 
in the resolving power at the outlet of the electrophoresis 
channel. Therefore, we introduce the plate number [27, 28]  

 
2

2 ( )f

LN
σ τ

=  (14) 
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and the dimensionless residence time 
 

( )2 Pef ft D h L hτ = =  (15) 
 
where L is the length of the separation channel 
( L R h bϕ ϕβ= =  for a turn), and ft L U=  is the dimensional 
residence time of the centroid of the analyte band in the 
channel. Plate number N can be interpreted as a normalized 
measure of resolving power of an electrophoretic separation 
system, or in the context of this paper, a component channel in 
such a system.  

We have thus derived an analytical model for dispersion 
due to Joule heating by focusing on electrophoresis. JH-induced 
dispersion in electroosmotic flow (EOF) is not considered in 
the model, but may be addressed by conceptually similar 
approaches. In particular, for the special case of a straight 
channel, dispersion caused by EOF may actually be negligible 
if the electric double layer is thin compared with the channel 
cross-sectional dimensions, if the channel wall temperature Tw 
is uniform (otherwise, additional dispersion due to the 
dependence of EOF mobility on temperature would need to be 
included) and if the similarity between electric field and EOF is 
approximately satisfied [29] (the absolute viscosity change 
outside the electric double layer is small). Then, the current 
model will still be valid if the moving frame is given velocity 

eofU U+ , where Ueof is the EOF velocity (which is almost 
uniform over the channel cross section) and the residence time 
in Eq. (15) is defined by ( ) 2

f eofLD U U hτ = + . 
  
 
JOULE HEATING EFFECTS IN STRAIGHT CHANNELS 

In this section, the analytical Joule heating dispersion 
model is first verified with numerical simulations as well as 
experimental data extracted from the literature [9]. Then, a 
parametric study is performed to investigate the dependence of 
JH-induced dispersion on the applied electric field, channel 
length and aspect ratio.  
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Figure 2. Comparison of model-predicted and 
experimentally determined plate height H [9] for RB and 
DCF. 

 
In Figure 2, the JH dispersion model (Eq.(13)) for a 

straight channel is compared with experimental data [9], where 

Rhodamine B (RB) and Dichlorofluorescein (DCF) (whose 
diffusivities and mobilities are given in the Ref. [9]) are 
separated in a straight channel of dimensions 200×26×7 µm3. 
For consistency with experimental data [9], the plate height H, 
defined as L/N, is employed here as a measure of resolving 
power. It can be seen that H obtained from the model is almost 
the same for RB and DCF. This is consistent with the 
experimental data, in which the RB and DCF plate heights do 
not differ significantly. The model-predicted and 
experimentally determined plate heights agree in the order of 
magnitude and exhibit the same trend in their dependence on 
electric field. The seemingly systematic deviation of the model 
from the experiment data could be attributed to uncertainties in 
the values of the geometric and material parameters given by 
the Ref. [9], and non-uniform wall temperature distributions 
that caused additional dispersion due to non-uniform EOF.   

The model-predicted evolution of the variance of an 
analyte band in a straight channel is also compared with 
numerical results. In this comparison, the channel is given a 
fixed width h=50 µm with an aspect ratio β varying from 1 to 8. 
The following parameters are used: σ2(0)=3600 µm2 and 
Snm(0)=0 (t=0 is the time instant when the band’s centroid is at 
the channel entrance), E=3.0 kV/cm, µw=2×10-8 m2/V·s, k=0.6 
W/m⋅K, α=0.025 K-1, ρ=0.1 S/m, and D=3.0×10-10m2/s. These 
values correspond to Pe=1072 and ε=0.94. As shown in Figure 
3, excellent agreement can be observed between the analytical 
modeling and simulation results (within 2%). We also observe 
that when t is fixed, both analytical and numerical results 
indicate that band broadening generally increases with β, but 
not in a monotonic manner. This is attributed to the role of 
transient dispersion and is explained below. 
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Figure 3.  Comparison of variance computed from the 
analytical model (lines) and numerical simulations 
(symbols) in straight channels 

 
We now demonstrate the utility of the model by applying it 

to a parametric analysis of JH-induced dispersion in a straight 
channel. It can be shown from Eqs. (14) and (15) that the plate 
number N depends on the parameters Pe, ε, L/h and β for a 
straight channel. For convenience of analysis and to aid 
intuition, we consider the effects of these parameters by 
examining the dependence of N on E0 as β (Figure 4) or L/h 
(Figure 5) is varied. In this parametric analysis, the values of 
µw, k, α, ρ and D are the same as those used above in the 
numerical verification; σ2(0)=0 and 0.1<E0<3 kV/cm (or 
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correspondingly 0.001<ε<0.94). As shown in Figure 4 (in 
which L/h=100 is fixed), N initially increases with E0 until 
achieving a maximum (Nmax), and then decreases with E0. In 
addition, N is virtually the same at sufficiently low E0 for all β 
considered. This is because at low electric fields, JH effects are 
negligible, and N is primarily determined by the effect of 
longitudinal molecular diffusion, which decreases as E0 grows. 
As E0 increases JH effects become increasingly significant and 
eventually dominate the dispersion, causing N to decrease. The 
value of Nmax varies with β, and is the largest (Nmax ≈ 22800) for 
β=1. This is not surprising, as of all rectangular cross sections, 
the square shape allows the most efficient heat dissipation and 
minimized JH effects. While Nmax generally decreases with β, it 
is interesting to note that the decrease is not monotonic. For 
example, Nmax for β=8 is slightly higher than that for β=4. This 
is because, as the band arrives at the channel exit (with the 
channel length fixed by holding L/h=100 constant), dispersion 
has reached steady state in both cross-sectional dimensions for 
β=4, but is still in transient state in the width-wise dimension 
for β=8, resulting in a variance smaller than the steady state 
variance for a lower aspect ratio [20, 26].  
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Figure 4. Dependence of the plate number N on average 
electric field E0 in a straight channel with different aspect 
ratios. 
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Figure 5. Dependence of the plate number N on average 
electric field E0 in a straight channel with different length-
to-depth ratios. 
 

The effect of the dimensionless channel length L/h on the 
JH dispersion is quite straightforward and is shown in Figure 5 
(in which β =8 is fixed). For the reason explained above, the 
plate number N again exhibits a maximum as the electric field 
E0 increases. Additionally, N increases with L/h. This is 
expected, as a longer (or equivalently, shallower) channel leads 
to a larger separation of the species and hence increased 
resolving power. However, it is important to note that L/h 
cannot be indefinitely increased to improve the separation 
performance, as it is not cost-effective to fabricate microchips 
with straight channels of overly large lengths. 
 
 
JOULE HEATING EFFECTS IN TURNS 

We consider JH-induced dispersion in constant radius-
turns in this section. The relative significance of Joule heating 
with respect to diffusion and curvature effects will first be 
examined. Then, a parametric analysis of JH dispersion in turns 
will be performed, and results from the analytical model and 
numerical simulations will also be compared. We will continue 
to use the plate number N (Eq. (14) defined for a single turn), 
with the residence time τf computed from Eq. (15). We will 
focus on turns with ϕ=π and an analyte band that is unskewed 
(e.g., Snm(0)=0) before its entry into the turn although the 
discussions can be readily extended to initially skewed bands in 
turns of different included angles. We choose D=1×10-9 m2/s, ρ 
=0.1 S/m, µw=2×10-8 m2/V·s, k=0.6 W/m·K, α=0.025 K-1, 
σ2(0)=0 µm2 and Snm(0)=0.  

First, the influence of JH-induced dispersion on the overall 
band broadening behavior is shown in Figure 6. Here the plate 
number N, calculated with and without consideration of JH 
effects, is shown as a function of E0 for β=1. The channel is 
given a depth h=50 µm and an average radius R=2000 µm. It 
can be seen that there exists a critical value of E0 at which N 
achieves a maximum (Nmax) regardless of JH effects. However, 
while the turn curvature effects cause only a slight decrease of 
N from Nmax, the presence of significant Joule heating results in 
a rather pronounced drop in N. Thus, at relatively high electric 
fields, consideration of Joule heating is crucial for the accuracy 
of band broadening modeling. For example, the prediction of 
plate number N without considering JH dispersion leads to an 
error of 30% at E0=3 kV/cm (ε=0.94 and Pe=322). As E0 
further increases to 4 kV/cm (ε=1.67 and Pe=423), this error is 
quadrupled, growing to 120%.   

We now perform a parametric analysis of analyte band 
broadening in the presence of Joule heating. It can be shown 
that the effect of channel length (or equivalently, the average 
radius R) is very similar to the straight channel case (Figure 5), 
and will not be repeated here. Hence, we will fix R=2000 µm 
along with h=50, and consider the influence of varying average 
electric field E0 and aspect ratio β, noting that the turn 
curvature is now uniquely determined by β through 
b=w/R=β(h/R). As shown in Figure 7, for a given E0 value, N 
increases with decreasing β because a more square cross-
sectional shape allows more efficient dissipation of Joule 
heating. Differing from the straight channel case, this increase 
in N is, in addition to JH effects, also attributable to reduced 
curvature-induced velocity non-uniformities in the turn, as 
smaller β means smaller turn curvature b. Additionally, it can 
be seen that when E0 is sufficiently small (e.g. E0<0.03 kV/cm), 
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N increases virtually linearly with E0 and almost coincides for 
all β. This is because at low electric fields, both JH and 
curvature dispersion effects are negligibly small compared with 
longitudinal diffusion effects, which are independent of β (Eq. 
(13)). Thus, Eqs. (13), (14) and (15) indicate that the N is 
approximately linear proportional to Pe number, and hence the 
electric field E0. In contrast, N behaves quite differently at 
higher electric fields (e.g. 0.03≤E0≤4 kV/cm). When β (and 
hence b) is small (e.g., β≤4) N is determined by the coupled 
effects of diffusion, JH and curvature-induced dispersion, with 
JH effects playing a more significant role than the curvature 
effects at a higher electric field (e.g., E0=3.5~4 kV/cm), as 
shown in Figure 6.  N initially increases with E0 until reaching a 
maximum (e.g., Nmax=7200 at E0=2.1 kV/cm for β=1), and then 
decreases due to JH and curvature-induced dispersion as E0 
further increases. On the other hand, when β (and hence b) is 
large (e.g. β≥8) dispersion due to curvature-induced velocity 
non-uniformities are more important (e.g., accounting for 75% 
of band-broadening for β=8 at E0=4 kV/cm), and more severely 
reduce Nmax as well as the electric field at which this maximum 
plate number is achieved. 
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Figure 6. Comparison of the plate number N computed with 
and without consideration of Joule heating, as well as the 
relative error introduced without considering JH effects on 
N.  
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Figure 7. The dependence of the plate number N on the 
average electric field E0 for varying values of the aspect 
ratio β of a turn, as computed from the analytical model 
(lines) and numerical simulations (symbols).  
 

The plate number N obtained from full numerical 
simulations is also compared with the analytical modeling 
results in Figure 7. When E0 < 0.5 kV/cm (ε<0.02), JH 
dispersion is negligible. The analytical dispersion model in this 
case  (the 1st, 2nd and 4th terms in Eq. (13)) has been verified 
elsewhere experimentally and numerically [22]. Thus, the 
numerical simulations are here performed for 0.5 kV/cm < E0 < 
3 kV/cm (or 0.02<ε<0.94), a practical range in which JH effects 
can be significant. It can be seen from the figure that there is 
good agreement between the analytical and numerical results. A 
worst-case error of 5.5% is observed for β=8 and E=3 kV/cm 
(Pe=322 and ε=0.94), and can be attributed to the relatively 
large curvature (b=0.2). 

Finally, it is interesting to note that the analytical JH 
dispersion model has led to a drastic improvement in 
computational efficiency over full numerical simulations. The 
numerical simulations presented in Figures 3 and 7 were 
performed, using a domain-wise approach [30], in FEMLAB 
3.0a [30] on a multi-user, 2-CPU 1-GHz Sun Fire 280 
processors with 4 GB RAM. Computation of a single plate 
number value required from 6 hours (for small β and E0 values) 
to four days (for the relatively large β and E0 values). In 
contrast, the analytical model required no more than a second 
of computation time to obtain a plate number value, and as such 
is suitable for use in simulations of complex electrophoretic 
separation systems [22]. 
 
 
CONCLUSIONS  

We have investigated Joule heating-induced analyte 
dispersion in electrophoretic separation microchannels. We 
considered non-uniform electrophoretic velocity distributions 
caused by Joule heating, and then obtained an analytical model 
for analyte dispersion, which is valid in all mass transfer 
regimes, and in particular can be used for unsteady dispersion 
processes that commonly occur in microchip electrophoresis. 
The model is given in terms of analytical expressions and fully 
parameterized with channel dimensions and material properties. 
It applies to analyte bands of general initial shape migrating in 
straight and constant-radius turn channels, and has been 
validated by both numerical simulations and experimental data. 
As such, the model can be used to represent analyte dispersion 
in microchannels of more general shape, such as serpentine- or 
spiral-shaped channels [22].  

The model has been used to study the effects of several key 
parameters on Joule heating-induced dispersion in both straight 
channels and turns. In straight channels, the dependence of the 
plate number, which characterizes the resolving power of 
separation, on electric field, channel’s length-to-depth ratio and 
aspect ratio are analyzed. It is found that a maximum plate 
number can be achieved when the combined dispersion due to 
molecular diffusion and Joule heating dispersion is minimized.  
A long (or equivalently, shallow) channel is preferred for chip 
design because it allows higher separation spacing between 
species or (and) generates less heat.  

Applying the model to a constant-radius-turn microchannel, 
we have considered the coupled dispersion effects of Joule 
heating and turn geometry. In particular, we investigated the 
influence on such dispersion of the electric field, aspect ratio 
and turn curvature. It was shown that when the curvature is 
small, both Joule heating and turn curvature effects are 
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important in practically relevant ranges of electric fields. JH 
dispersion shows a more significant influence on separation 
performance than the curvature at high electric fields, while 
curvature-effects, as expected, increase with the turn curvature. 
Additionally, JH-induced dispersion, coupled with curvature-
induced dispersion, increases with electric fields and eventually 
causes separation performance to deteriorate.  

There are two aspects to be addressed in future work. First, 
in the current model, channel walls are assumed to be at 
uniform temperature. This first approximation considerably 
simplifies the formulation of the heat transfer problem in the 
model, and is accurate for substrates that are good thermal 
conductors or channels that have large aspect ratios. To 
improve the accuracy of the model for general substrates and 
channel aspect ratios, where there may be significant 
temperature variations on channel walls, heat transfer in the 
substrate as well as in the buffer will need to be accounted for. 
This consideration will also provide a more accurate knowledge 
of average buffer temperature, allowing accurate evaluation of 
average material properties for use in the model. Such a heat 
transfer problem will generally no longer admit an analytical 
solution. However, it may still be possible to obtain closed-
form correlations that are fitted to numerical solutions 
expressed in appropriate dimensionless parameters [31]. The 
second aspect of future work concerns applying the Joule 
heating model to the design of complex electrophoretic 
systems, using the system simulation approach described in 
Ref. [22]. That is, a channel of complex shape can be 
decomposed into straight and turn elements, which are each 
described by the Joule heating model presented in this paper. 
These models then can be linked with the aid of appropriate 
parameters at interfaces of neighboring components, to 
represent the entire complex channel. This approach can be 
further extended to include other functional components such 
as reservoirs, mixers and reactors to efficiently simulate the 
complete electrokinetic microfluidic systems. 
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Nomenclature 

b curvature of the turn-geometry microchannels 
c analyte concentration 

cp 

the pth moment of the concentration in a 
longitudinal filament of the analyte band that 
intersects the cross sections at η and ζ 

D molecular diffusivity of the analyte, m2/s 
E electric field strength, V/cm 
E0 average electric field strength, V/cm 
h depth of the microchannels, µm 
k thermal conductivity of the buffer, W/(m⋅K) 
L length of the microchannels, µm 

mp 
pth moment of the cross-sectional average 
concentration 

N plate number of separation 
Pe Peclet number 
q  volumetric heat generation, W/m3 

R radius of the turn-geometry microchannels, µm 
Snm skew coefficients of the analyte band 
t Separation time, s 

tf 
dimensional residence time of the centroid of the 
analyte band in the channel, s 

T buffer temperature, K 
Tw buffer temperature at the channel wall, K 

u apparent electrophoretic velocity of the analyte, 
m/s 

U cross-sectional average of the apparent 
electrophoretic velocity, m/s 

Ueof electroosmotic flow velocity of the buffer, m/s 
v electrophoretic velocity of the analyte, m/s 
V voltage applied over the microchannels, V 
w width of the microchannels,  µm 
x longitudinal coordinate 
y depth-wise coordinate 
z width-wise coordinate 
α temperature coefficient of the buffer viscosity, K-1 

β aspect ratio of the microchannels 

χ normalized cross-sectional average electrophoretic 
velocity 

χnm 
Fourier series coefficients of the normalized cross-
sectional average electrophoretic velocity 

ε Joule heating coefficient 

ε permittivity of the buffer 
φ normalized excess temperature 

φnm 
Fourier series coefficients of the normalized 
excess temperature 

η normalized depth-wise coordinate 
η buffer viscosity, kg/(m⋅s) 

ηw 
buffer viscosity at the microchannel walls, 
kg/(m⋅s) 

ϕ angle included by the turn-geometry 
microchannels, rad 

µ electrophoretic mobility of the analyte, m2/(Vs) 

µw 
electrophoretic mobility of the analyte at 
microchannel walls, m2/(Vs) 

ρ electric conductivity of the buffer, S/m 
θ excess temperature, K 

θ  cross-sectional average of the excess temperature, 
K 

σ2 variance of the analyte band, m2 

τ dimensionless separation time 

τf 
dimensionless residence time of the centroid of the 
analyte band in the channel 

ξ normalized longitudinal coordinate 
ζ normalized width-wise coordinate 

ζ zeta potential in the electric double layer of the 
buffer, V 
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