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Abstract

Unanticipated runtime events, such as faults, can lead
to missed deadlines in real-time systems. While it is not
always possible to know when a fault will occur, we can
sometimes exploit pre-fault “symptoms™ to initiate proac-
tive (rather than reactive) fault-recovery. In this paper, we
describe the design and implementation of a proactive re-
covery strategy for distributed CORBA applications in the
presence of resource-exhaustion faults. We analyze the ef-
fect of different proactive recovery schemes on client/server
response times, and we demonstrate a significant reduction,
both in jitter and in the number of client-side failures.

1. Introduction

Middleware platforms, such as CORBA [11] and Java, are
increasingly being adopted because they simplify applica-
tion programming by rendering transparent the low-level
details of networking, distribution, physical location, hard-
ware, operating systems, and byte order. Since CORBA and
Java have come to support many “-ilities” (e.g., reliabil-
ity, real-time, security), these middleware platforms have
become even more attractive to applications that require a
higher quality of service. The push for Commercial-Off-
The-Shelf (COTS) products, along with the recent support
for “-ilities” within middleware, have furthered the adop-
tion of middleware within mission-critical applications.
Mission-critical systems, like avionics applications and
drive-by-wire systems, have stringent reliability and avail-
ability requirements, and need to exhibit both real-time and
fault-tolerance properties. The Object Management Group
(OMG) CORBA standard has attempted to address the
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needs of such applications by developing separate Real-
Time [12] and Fault-Tolerance [11] specifications. How-
ever, due to some inherent conflicts in providing simulta-
neous real-time and fault-tolerance support [9], it is simply
not possible for today’s CORBA applications to obtain both
real-time and fault-tolerance guarantees through a straight-
forward adoption of the CORBA standards. The difficulty in
supporting both real-time and fault tolerance arises because
real-time systems require predictable end-to-end schedules
and bounded temporal behavior in order to meet task dead-
lines; however, faults are unanticipated system events that
can disrupt the predefined real-time schedule and result in
missed task deadlines. Our preliminary measurements in
this paper demonstrate that faults can disrupt a Real-Time
CORBA application, and do lead to unbounded and vari-
able fault-detection and fault-recovery times.

The MEAD (Middleware for Embedded Adaptive De-
pendability) system [10] that we are developing at Carnegie
Mellon University attempts to reconcile the conflicts be-
tween real-time and fault-tolerance properties in a resource-
aware manner. One novel aspect of the MEAD system is its
use of a proactive dependability framework to lower the im-
pact of faults on a distributed application’s real-time sched-
ule. Proactive dependability involves designing and imple-
menting mechanisms that can predict, with some confi-
dence, when a failure might occur, and compensating for the
failure even before it occurs. For instance, if we knew that
a node had an 80% chance of failing within the next 5 min-
utes, we could migrate all of its hosted processes to another
working node in the system, with the aim of meeting the
application’s real-time deadlines. This proactive process-
migration would incur a lower penalty than if we had first
waited for the process to crash before taking any action. The
proactive approach is in sharp contrast to the reactive fault-
tolerance strategy adopted by the Fault-Tolerant CORBA
standard, which first waits to detect a fault, and then initiates
fault-recovery mechanisms. In this paper, we show that, by
developing such a proactive strategy, we can not only mask
the occurrence of faults altogether from the clients of our



application, but that we can also reduce the jitter and the la-
tency “spikes” which manifest themselves when faults oc-
cur in the middle of a real-time operation.

There are two aspects to proactive dependability: first,
the ability to predict failures and, second, the mechanisms
to compensate for the failures, hopefully before the failures
can actually occur. Of course, we recognize that some fail-
ures might occur so abruptly that we cannot possibly hope
to predict them; for example, if someone accidentally un-
plugs the power supply of a node! However, a number of
interesting computer-related faults are often preceded by
a visible pattern of abnormal behavior that favors the use
of some form of prediction. Typically, these failures result
from gradual degradation faults, like resource exhaustion
[5], or from transient and intermittent hardware faults, like
disk crashes [7] or telecommunication equipment failures
[16]. Because it is not always possible to predict failures for
every kind of fault, proactive dependability complements
(and for certain kinds of faults, out-performs), but does not
replace, the traditional reactive fault-tolerance schemes.

Our hope is that we can provide bounded fault-recovery
times for distributed real-time applications, in the face of
a predictable class of faults, thereby allowing the support
of both fault-tolerance and real-time properties, for at least
these kinds of faults. In this paper, we focus on the mech-
anisms needed to implement proactive recovery in a dis-
tributed CORBA-based system. We do not attempt to de-
velop a new failure-prediction technique; rather, we exploit
relatively simple failure-prediction mechanisms within the
MEAD system, and we show how to use these resulting pre-
dictions to develop a proactive recovery strategy that min-
imizes both the jitter and the “latency” spikes experienced
by distributed applications in the presence of faults. This pa-
per makes the following concrete contributions:

e Describes our development of a transparent, proactive
recovery infrastructure for distributed CORBA appli-
cations,

e Discusses the design choices that we faced in imple-
menting a proactive strategy, along with the impact of
these choices on client-to-server response times and on
client-side fail-over times, and

e Presents our empirical evaluation and measurements
to quantify the overhead and performance of our proac-
tive strategy, as compared with the classical reactive
fault-tolerance approach.

We emphasize here that, while we employ CORBA
as the vehicle for our investigations of proactive fault-
tolerance, our techniques are, for the most part, inde-
pendent of CORBA. In those cases where we exploit
CORBA-specific mechanisms to accomplish our goals, we
highlight our use of these mechanisms so that our proac-
tive strategy can be readily extended to hon-CORBA-based
distributed applications.

2. Related Work

Huang et al [5] proposed a proactive approach, called soft-
ware rejuvenation, for handling transient software failures.
Software rejuvenation involves gracefully halting an appli-
cation once errors accumulate beyond a specified thresh-
old, and then restarting the application in a clean internal
state. One example of this is killing and relaunching a pro-
cess periodically in order to eliminate memory leaks. Sub-
sequent work in software rejuvenation has focused on con-
structing rejuvenation policies that increase system avail-
ability and reduce the cost of rejuvenation [2, 4, 20]. We
found that simply restarting a faulty server that has ongo-
ing client transactions can lead to unacceptable jitter and
missed real-time deadlines at the client. Our work focuses
on the mechanisms needed to gracefully hand-off existing
clients on faulty CORBA servers, at the onset of the rejuve-
nation threshold.

Castro and Liskov [3] describe a proactive recovery
scheme for Byzantine fault-tolerant systems. In their sys-
tem, clients detect a faulty primary by timing out and re-
transmitting their requests to all the replicas in the group.
Again, this fail-over process may result in increased jitter at
the client. Our system uses proactive notifications to lower
fail-over times in systems with trusted clients.

Ruggaber and Seitz [14] consider the hand-off (similar to
fail-over) problem in wireless CORBA systems. They de-
velop a proxy platform that uses a modified CORBA Ob-
ject Request Broker (ORB) to transparently hand-off mobile
CORBA clients to wired CORBA servers. Instead, our ap-
proach implements transparent fail-over in wired environ-
ments using interception mechanisms [6] that do not require
us to modify the ORB.

There is also a whole array of statistical fault-prediction
techniques. Lin and Siewiorek [7] developed a failure pre-
diction heuristic that achieved a 93.7% success rate in pre-
dicting faults in the campus-wide Andrew File System at
Carnegie Mellon University. Rubino [13] proposed a model
that employs observations of the system behavior made
during the operational phase in order to refine the predic-
tions that system designers made concerning the system’s
dependability. Xu et al. [19] studied failure behavior in a
networked Windows NT system by analyzing the system-
reboot information contained in the event logs. Their re-
sults showed a strong likelihood of error propagation be-
tween servers within the same domain.

We reiterate that our research in this paper does not fo-
cus on fault-prediction techniques, but rather on how to ex-
ploit fault prediction in systems that have real-time dead-
lines; thus, while it might be possible for us to improve
the performance of our system using more accurate, statisti-
cal (rather than heuristic) fault-prediction techniques, this is
outside the scope of this paper, and forms a part of our future
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Figure 1. MEAD’s proactive recovery framework.

directions. Instead, this paper serves to establish concretely
that proactive recovery is effective and that it can provide
bounded temporal behavior, in the presence of certain kinds
of faults, thereby enabling us to support both fault-tolerance
and real-time properties in distributed applications.

3. MEAD’sProactive Recovery Framework

MEAD?’s proactive recovery framework helps lower the im-
pact of faults on real-time schedules. Our main objective
when designing this framework was to build a transparent
fault-tolerant infrastructure that masked failures at the ap-
plication, lowered the average fail-over time, and incurred
a reasonable overhead. Our framework uses replication and
proactive fault-notifications to protect applications against
faults. Although we use CORBA to develop our system, the
concept of proactive notifications can be extended to other
types of middleware.

The CORBA stardard specifies an Object Request Bro-
ker (ORB) that enables clients to request object implemen-
tations from servers seamlessly without having to worry
about network-specific details. Our architecture leverages
on the transparency provided by CORBA and makes use of
some of the notification messages already supported by the
CORBA standard. In our development of the MEAD sys-
tem, we make the following assumptions:

e Operation in an asynchronous distributed system;

e Deterministic, reproducible behavior of the application
and the ORB;

¢ Independent failures across the server replicas and the
nodes;

e A fault model that covers process crash-faults,
node crash-faults, message-loss faults and resource-
exhaustion faults.

Our proactive framework has three main components:
the MEAD Interceptor, the MEAD Recovery Manager and
the MEAD Proactive Fault-Tolerance Manager, as shown in
Figure 1. MEAD exploits an underlying totally-ordered reli-
able group communication system, specifically, the Spread
system [1], to obtain the reliable delivery and ordering guar-
antees required for consistent node-level and process-level
membership.

3.1. The MEAD Interceptor

Interceptors are software components that can transparently
modify the behavior of the function calls invoked by an ap-
plication. CORBA provides standardized support for inter-
ception through its Portable Interceptors mechanism [11],
which requires modification of the application code to in-
sert hooks for intercepting the application’s request and re-
ply messages. Due to the lack of transparency in Portable
Interceptors, and also due to some limitations [8] in their
usage, such as the inability to block server replies without



raising an exception at the application, we favored a trans-
parent library interpositioning approach [6] instead. Library
interpositioning provides us with greater flexibility, and al-
lows us to implement proactive recovery transparently un-
derneath an unmodified CORBA application running over
an unmodified Linux kernel.

Library interpositioning is based on the runtime dynamic
linking/loading facilities supported by most operating sys-
tems. At runtime, we can “preload” a custom library (the
MEAD Interceptor) ahead of all of the other dynamically
linked libraries in a process’ address space. The idea is that
runtime symbol resolution will first “discover” and use the
symbols inside the custom Interceptor library, rather than
the default ones provided by the operating system. Thus, if
our custom Interceptor library provides an overridden def-
inition of a system call, say socket (), then, the inter-
cepted process will end up using our redefinition of the
socket () call, rather than the default one.

Clearly, we might also need to access the default system
definitions (for instance, our overridden socket () call
might wish to do some additional processing before ulti-
mately invoking the default socket () call); through calls
such asdl open and dl sym our Interceptor can access the
default system libraries, and retrieve the default symbol def-
initions.

Of direct relevance to fault-tolerance and fail-over
are the system calls related to a CORBA applica-
tion’s communication over the network. CORBA uses
a connection-oriented communication protocol known
as General-Inter-ORB-Protocol (GIOP) to facillitate in-
teroperability between ORBs developed by different
ORB vendors. MEAD’s proactive recovery framework
tracks GIOP messages communicated over TCP/IP sock-
ets by intercepting the following eight UNIX system calls:
socket (), accept(), connect(), listen(),
close(), read(), witev() and select(). We
keep track of each socket that either the CORBA client
or server opens, and identify the client-server com-
munication sockets based on the sequence of system
calls executed. For instance, if a specific socket file de-
scriptor appears within the accept () call, we asso-
ciate the descriptor with a server-side socket because only
the server-side logic of a CORBA application would in-
voke the accept () call.

Most of our proactive-recovery logic is imple-
mented within the intercepted read(), witev()
and sel ect () calls because all of the communica-
tion in CORBA is connection-oriented and these calls cap-
ture the message-exchange interface between the CORBA
client and server. The Interceptor uses the information from
the remainder of the socket-related calls simply for dif-
ferentiating between client and server sockets. Based on
whether the invoking process is a client or a server, the in-

tercepted read() and writev() calls have different
overridden implementations.

For server sockets, we use read() to keep track
of incoming client requests, and writev() to trig-
ger our proactive recovery mechanisms. While we could
use a separate thread within the Interceptor to imple-
ment our proactive-recovery mechanisms instead of em-
bedding our logic in the wri t ev() call, multithreading
poses its own problems:

e Multithreading introduced a great deal of overhead in
some of our earlier implementations, and sometimes
led to nondeterministic behavior at the client based on
the order in which the Interceptor’s proactive-recovery
thread executed at the server.

e Multithreading is a timer-driven (rather than event-
driven) mechanism, and involved continuous periodic
checking of resources. We do not really require this
constant resource monitoring because proactive recov-
ery complements, and does not replace, the reactive
fault-tolerance mechanisms that handle periodic state
transfer and fail-over. Therefore, proactive recovery
needs to be triggered only when there are active client
connections at the server.

For client sockets, we use the read() call to filter
and interpret the custom MEAD messages that we piggy-
back onto regular GIOP messages. We use the wr i t ev()
call to redirect client requests to non-faulty server replicas
in the event of proactive fail-over. We also intercept the
sel ect () call in both the client and server, and add the
group-communication socket (which allows our intercepted
process to communicate over Spread) into the list of read-
sockets examined by sel ect () . This enables us to receive
group communication messages without resorting to multi-
threading.

3.2. TheMEAD Proactive Fault-Tolerance
M anager

The Proactive Fault-Tolerance Manager is embedded
within the server-side and client-side Interceptors. Be-
cause our focus is on resource-exhaustion faults, the
Proactive Fault-Tolerance Manager monitors the re-
source usage at the server, and triggers proactive recovery
mechanisms when it senses that resource usage has ex-
ceeded a predefined threshold. Here, “resource” refers
loosely to any resource of interest (e.g., memory, file de-
scriptors, threads) to us that could lead to a process-crash
fault if it was exhausted.

We implemented proactive recovery using a two-step
threshold-based scheme similar to the soft hand-off pro-
cess employed in cellular systems [18]. When a replica’s
resource usage exceeds our first threshold, e.g., when the



replica has used 80% of its allocated resources, the Proac-
tive Fault-Tolerance Manager at that replica requests the Re-
covery Manager to launch a new replica. If the replica’s re-
source usage exceeds our second threshold, e.g., when 90%
of the allocated resources have been consumed, the Proac-
tive Fault-Tolerance Manager at that replica can initiate the
migration of all its current clients to the next non-faulty
server replica in the group.

We faced two main challenges when developing the
Proactive Fault-Tolerance Manager. The first challenge lay
in determining how often to initiate proactive recovery. If we
triggered fault-recovery too early, the additional overhead
of unnecessarily failing over clients to non-faulty servers
quickly negated the benefits of using a proactive strategy.
On the other hand, if we waited too long to initiate recov-
ery, the very purpose of a proactive strategy is lost because
we simply did not allow the system enough time to fail-over
client processes to a non-faulty server; in this case, the re-
sulting fault-recovery ends up resembling a reactive strat-
egy. The ideal time to trigger proactive recovery depends on
a number of factors, such as the server’s fault-rate as well
as the amount of time required for fault-recovery. The fault-
recovery time includes the time to find an alternative work-
ing server replica, to restore its state consistently, and then
to fail-over clients to use this working replica.

The second challenge lay in ensuring that the faulty
replica reached a quiescent state before it could be restarted.
We found that simply restarting a server replica when the re-
juvenation threshold was reached caused clients to experi-
ence a large “spike” in their measured round-trip times, due
to the resulting CORBA exceptions that are handled on the
client side. To reduce these “spikes,” we used proactive re-
covery messages to seamlessly redirect existing clients to
the next non-faulty server in the group. These proactive re-
covery messages are described in detail in Section 4.

3.3. The MEAD Recovery Manager

Within our proactive dependability framework, the MEAD
Recovery Manager is responsible for launching new server
replicas that restore the application’s resilience after a
server replica or a node crashes. Thus, the Recovery Man-
ager needs to have up-to-date information about the server’s
degree of replication (i.e., number of replicas). To propa-
gate the replicated server’s group membership information
to the Recovery Manager, we ensure that new server repli-
cas join a unique server-specific group as soon as they
are launched. By subscribing to the same group, the Re-
covery Manager can receive membership-change noti-
fications. For instance, if a server replica crashes, the
Recovery Manager receives a membership-change notifica-
tion from Spread, and can launch a new replica to replace
the failed one.

The Recovery Manager also receives messages from the
MEAD Proactive Fault-Tolerance Manager whenever the
Fault-Tolerance Manager anticipates that a server replica
is about to fail. These proactive fault-notification messages
can also trigger the Recovery Manager to launch a new
replica to replace the one that is expected to fail. We recog-
nize that our Recovery Manager is currently a single point-
of-failure — future implementations of our framework will
allow us to extend our proactive mechanisms to the Recov-
ery Manager as well.

4. Proactive Recovery Schemes

The Proactive Fault-Tolerance Manager implements proac-
tive recovery through three different schemes: GIOP
LOCATION_.FORWARD Reply messages, GIOP
NEEDS_ADDRESSING_MODE Repl y messages and, fi-
nally, through MEAD’s own proactive fail-over mes-
sages. For each of these schemes, we describe how the
Proactive Fault-Tolerance Manager transfers clients con-
nected to a faulty replica over to a non-faulty replica,
along with the associated trade-offs. Each scheme as-
sumes that the application uses CORBA's persistent
object key policies to uniquely identify CORBA ob-
jects in the system. Persistent keys transcend the life-time
of a server-instance and allow us to forward requests eas-
ily between server replicas in a group. Persistent object
keys also eliminate any non-determinism due to differ-
ences in object keys across different replicas.

4.1. GIOPLOCATION_FORWARD M essages

CORBA’s GIOP specification [11] defines a LOCA-
TION_FORWARD Repl y message that a server can use
to redirect its current clients to an alternative server lo-
cation. The body of this Repl y message consists of an
Interoperable Object Reference (IOR) that uniquely identi-
fies the CORBA object at the new server location. To im-
plement this scheme, we intercept the IOR returned
by the Naming Service when each server replica regis-
ters its objects with the Naming Service. We then broad-
cast these 10Rs, through the Spread group communication
system, to the MEAD Fault-Tolerance Managers col-
located with the server replicas. Thus, each MEAD
Fault-Tolerance Manager hosting a server replica is popu-
lated with the references of all of the other replicas of the
server.

When the server-side MEAD Fault-Tolerance Manager
senses that its replica is about to crash, it suppresses its
replica’s normal GIOP Repl y message to the client, and
instead sends a LOCATION_FORWARD Repl y message
containing the address of the next available server replica.
The client ORB, on receiving this message, transparently
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retransmits the client request to the new replica without no-
tifying the client application (see Figure 2a). The main ad-
vantage of this technique is that it does not require an In-
terceptor at the client because the client ORB handles the
retransmission through native CORBA mechanisms. How-
ever, the server-side Interceptor must maintain some sys-
tem state because an IOR entry is required for every object
instantiated within the server; in addition, the client ORB
has to resend the request, leading to increased bandwidth.
This scheme also incurs a high overhead because we need
to parse incoming GIOP Request messages to extract the
request _i d field so that we can generate corresponding
LOCATION_FORWARD Repl y messages that contain the
correct r equest _i d and object key. One of the optimiza-
tions that we add to this scheme is the use of a 16-bit hash of
the object key that facilitates the easy look-up of the IORs,
as opposed to a byte-by-byte comparison of the object key
(which was typically 52 bytes in our test application).

4.2. NEEDS ADDRESSING_M ODE M essages

The GIOP NEEDS_ADDRESSING_MODE Repl y mes-
sage [11] directs the client to supply more addressing in-
formation, and usually prompts the client ORB to resend
the request. We used this scheme to investigate the effect of
suppressing abrupt server failures from the client applica-
tion, in case the server does not have enough time to initiate
proactive recovery before it fails. We detect abrupt server
failures when the r ead() call at the client Interceptor re-
turns an End-Of-File (EOF) response. At this point, we con-
tact the MEAD Fault-Tolerance Manager at the server repli-
cas (using the underlying group communication system) to
obtain the address of the next available replica. The first
server replica listed in Spread’s group-membership list re-
sponds to the client’s request (see Figure 2b).

If the client does not receive a response from the server
group within a specified time (we used a 10ms timeout),
the blocking r ead() at the client-side times out, and a
CORBA COMM_FAILURE exception is propagated up to
the client application. If, on the other hand, we receive the
address of the next available replica, we then redirect the
current client connection to the new replica at the Intercep-
tor level, and fabricate a NEEDS_ADDRESSING_MODE
Repl y message that causes the client-side ORB to retrans-
mit its last request over the new connection.

The advantage of this technique is that it masks com-
munication failures from the client application, but it some-
times takes the client longer to recover from the failure, as
compared to a reactive scheme where we would expose the
client to the failure and let it recover on its own. We do not
recommend this technique because it sometimes increases
the average fail-over time, and it is based on the assump-
tion that an EOF response corresponds to an abrupt server
failure, which is not always the case.

4.3. MEAD Proactive Fail-over M essages

In this scheme, the Proactive Fault-Tolerance Manager in-
tercepts the | i st en() call at the server to determine
the port on which the server-side ORB is listening for
clients. We then broadcast this information over Spread so
that the Proactive Fault-Tolerance Manager at each server
replica knows the hostname and the port of the other repli-
cas in the group. Whenever group-membership changes oc-
cur (and are disseminated automatically over Spread), the
first replica listed in the Spread group-membership mes-
sage sends a message that synchronizes the listing of ac-
tive servers across the group.

When MEAD detects that a replica is about to fail,
it sends the client-side Proactive Fault-Tolerance Manager



a MEAD proactive fail-over message containing the ad-
dress of the next available replica in the group (see Fig-
ure 2c). We accomplish this by piggybacking regular GIOP
Repl y messages onto the MEAD proactive failover mes-
sages. When the client-side Interceptor receives this com-
bined message, it extracts (the address in) the MEAD mes-
sage to redirect the client connection to the new replica so
that subsequent client requests are sent to the new replica.
The Interceptor then transmits the regular GIOP Repl y
message up to the client application.

The redirection of existing client connections is accom-
plished by the Interceptor opening a new TCP socket, con-
necting to the new replica address, and then using the UNIX
dup?2() call to close the connection to the failing replica,
and point the connection to the new address (an alternative
to this scheme would be to use the migratory TCP proto-
col [15]). This scheme reduces the average failover time be-
cause, unlike the previous two schemes, it avoids the re-
transmission of client requests. The scheme also incurs a
low overhead since we do not need to parse GIOP mes-
sages and keep track of IORs. However, this scheme does
not readily support replicated clients.

5. Empirical Evaluation

We ran our initial experiments on five Emulab [17]
nodes with the following specifications: 850MHz pro-
cessor, 512MB RAM, and the REDHAT Linux 9 oper-
ating system. For our test application, we used a sim-
ple CORBA client implemented over the TAO ORB (ACE
and TAO version 5.4) that requested the time-of-day at
Ims intervals from one of three warm-passively repli-
cated CORBA servers managed by the MEAD Recovery
Manager. Each experiment covered 10,000 client invoca-
tions. We activated a specific kind of resource-exhaustion
fault, namely, a memory-leak, when the primary server
replica responded to its first client request. The Proac-
tive Fault-Tolerance Manager constantly monitored the
memory usage on the faulty server replica, and trig-
gered proactive recovery when the resource usage reached
a preset threshold, for instance, when 80% of the allo-
cated memory was consumed.

We compared our proactive schemes against two tradi-
tional reactive recovery schemes. In the first scheme, the
client waited until it detected a server failure before contact-
ing the CORBA Naming Service for the address of the next
available server replica. In our second scheme, the client
first contacted the CORBA Naming Service and obtained
the addresses of the three server replicas, and stored them
in a collocated cache. When the client detected the failure
of aserver replica, it moved on to the next entry in the cache,
and only contacted the CORBA Naming Service once it ex-
hausted all of the entries in the cache.

5.1. Fault-Injection Strategy

We injected a memory-leak fault by declaring a 32KB
buffer of memory within the Interceptor, and then slowly
exhausting the buffer according to a Weibull probability dis-
tribution (commonly used in software reliability and fault-
prediction). The memory leak at a server replica was acti-
vated when the server received its first client request. At ev-
ery subsequent 150ms intervals after the onset of the fault,
we exhausted chunks of memory according to a Weibull
distribution with a scale parameter of 64, and a shape pa-
rameter of 2.0. This setting led to approximately one server
failure for every 250 client invocations. We used this ap-
proach to inject a memory leak as opposed to limiting the
maximum heap size or the resident set size (rss) in Linux
because Linux uses optimistic memory allocation whereby
memory is allocated without first checking if the total re-
quired amount of memory is available at the time of the re-
quest. This means that an application might exhaust its heap
size without raising a segmentation violation. The buffer-
based approach provided us with a deterministic fault model
which we could then use to test the effectiveness of our
proactive recovery schemes, in a reproducible manner.

5.2. Reaults

For both the reactive and proactive schemes, we measured
the following parameters (see Table 1):

e Percentage increase in client-server round-trip times
over the reactive schemes;

o Percentage of failures exposed to the client application
per server-side failure;

e Time needed by the client to failover to a new server
replica.

In our proactive schemes, we also measured the effec-

tiveness of failing over clients at different thresholds.

Recovery Increase | Client Failover Time

Strategy in RTT | Failures|| (ms) change
(%) (%) (%)

Reactive Without || baseline | 100% 10.177 | baseline

Cache

Reactive With 0% 146% 10.461 | +2.8%

Cache

NEEDS_ 8% 25% 9.396 -1.7%

ADDRESSING

Mode

LOCATION. 90% 0% 8.803 -13.5%

FORWARD

MEAD Message || 3% 0% 2.661 -73.9%

Table 1. Overhead and fail-over times.




5.21. Number of client-side failures: In the reac-
tive scheme that did not cache server references, there
was an exact 1:1 correspondence between the num-
ber of observed failures at the client and the number
of server-side failures. The client-side failures we ob-
served were purely CORBA COMM _FAILURE exceptions
which are raised when a replica fails after the client has suc-
cessfully established a connection with the replica.

The reactive scheme that used cached server references
experienced a higher failure rate. There was a 1:1 corre-
spondence between the number of server-side failures and
the number of COMM_FAILURE exceptions observed by
the client. In addition to COMM_FAILURE exceptions, the
client also experienced a number of TRANSIENT excep-
tions that occurred when the client accessed a stale replica
reference within the cache. Stale cache references occur
when we refreshed the cache before a faulty replica has
had a chance to restart and register itself with the CORBA
Naming Service, thereby leaving its old invalid reference
in the cache. This problem can be avoided by staggering the
cache-refresh process over time, instead of refreshing all the
cache references in one sweep.

In the NEEDS_ADDRESSING_MODE scheme, which
is equivalent to a proactive recovery scheme with insuf-
ficient advance warning of the impending failure, we ob-
served eleven client-side failures. These occurred when the
client requested the next available replica from the Spread
group at the point when the previous replica died, but be-
fore the group-membership message indicating the replica’s
crash had been received by all the replicas in the group. At
this point, there is no agreed-upon primary replica to ser-
vice the client request; therefore, the blocking r ead at the
client timed out and the client catches a COMM_FAILURE
exception.

For the proactive schemes in which there was enough
advance warning of the impending failure, i.e., thresh-
olds below 100% (these correspond to the LOCA-
TION_FORWARD scheme and the MEAD proactive
fail-over message scheme), the client does not catch any ex-
ceptions at all!

5.2.2. Overhead: We measured the overhead in terms of
the percentage increase in client-server round-trip times
(RTT). We defined round-trip time as the amount of time
that elapsed from the time the client application sent the re-
quest to the time it received a reply from the server. The
overhead in the reactive schemes, which averaged 0.75ms,
served as our baseline reference.

The scheme which used GIOP LOCATION_FORWARD
messages to trigger proactive recovery incurred an
overhead of about 90% over the baseline round-trip
time. This overhead resulted from parsing GIOP mes-
sages so that we could keep track of object keys and
request _i ds and fabricate the appropriate GIOP mes-

sages needed to forward requests to the next available
replica. The NEEDS_ADDRESSING_MODE scheme’s
overhead was only 8% higher than the baseline since we
did not need to keep track of object keys. The scheme
in which we used MEAD messages introduced an over-
head of about 3% over the baseline client-server round-trip
time.

The communication overhead introduced by the proac-
tive schemes depends on the frequency with which proac-
tive recovery is invoked. The additional messages sent by
MEAD'’s proactive dependability framework, in the event of
a failure, typically range between 100-150 bytes per client-
server connection. Since systems typically experience more
non-faulty, rather than faulty, behavior, the overall commu-
nication overhead introduced by our approach is reasonable.

The differences in memory and CPU usage for our ap-
plication were not significant. However, we expect that
as the server supports more objects, the overhead of the
GIOP LOCATION_FORWARD scheme will increase sig-
nificantly above the rest since it maintains an IOR entry for
each object instantiated.

5.2.3. Average fail-over times. The fail-over time in-
cludes both the fault-detection time and the fault recovery
time. The initial transient spike shown on each graph repre-
sents the first call to the CORBA Naming Service (see Fig-
ure 3). In the reactive scheme where we did not cache
server replica references, the client first experienced a
COMM_FAILURE exception when the server replica dies;
the COMM_FAILURE exception takes about 1.8ms to reg-
ister at the client. The client then incurs a spike of about
8.4ms to resolve the next server replica’s reference (result-
ing in an overall failover time of 10.2ms).

In the case where we cache server references, we ex-
perience about one TRANSIENT exception for every two
COMM_FAILURE exceptions. The COMM_FAILURE ex-
ception takes about 1.1ms, and the time needed to fail-over
to the next cached replica reference and receive a normal re-
sponse is 7.9ms. However, when the client accesses a stale
cache reference, the client experiences a TRANSIENT fail-
ure in addition to the COMM_FAILURE exception. The
TRANSIENT failure takes about 2.4ms since it includes the
time to redirect entries to the new replica, as well as the
time to process the the actual TRANSIENT exception. Fi-
nally, the client also experiences a spike of about 9.7ms,
which is the time taken to resolve all three replica refer-
ences and receive a correct response. The average fail-over
time for this scheme is about 10.5ms, i.e., ((1.1+7.9)*2/3 +
(1.1+2.4+9.7)/3) ms. (See Figure 3).

For the proactive scheme that used LOCA-
TION_FORWARD messages, the average fail-over
time was 8.8ms (13.5% below the reactive scheme with
no cache) because when the client ORB receives the LO-
CATION_FORWARD, it has to resend the request to the
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Figure 4. Proactive recovery schemes.

next server replica. For the scheme using MEAD mes-
sages, the average fail-over time was about 2.7 ms (73.9%
below the reactive scheme with no cache), since we
avoided request retransmissions and incurred an over-
head only when redirecting a connection to a new server
(see Figure 4).

Finally, for the NEEDS_ADDRESSING_MODE
scheme, the average fail-over time is about 9.4ms (7.7% be-
low the reactive scheme with no cache), which is the time
taken to contact the Spread group, redirect the client con-
nection and retransmit the request to the new server.

5.24. Effect of varying threshold: For the proac-
tive schemes, we analyzed the effect of varying the proac-
tive recovery threshold. Our results showed that if the
threshold is set too low, the overhead in the system in-
creases due to unnecessarily migrating clients. For example,
the group communication bandwidth between the servers
is about 6,000 bytes/sec at an 80% threshold, but this in-
creases to about 10,000 bytes/sec at a 20% threshold. The
increase in bandwidth happens because we are restart-
ing the servers more often at lower rejuvenation thresholds
and more bandwidth is used up in reaching group consen-
sus (See Figure 5). The best performance is achieved by
delaying proactive recovery so that the proactive depend-
ability framework has just enough time to redirect clients
away from the faulty server replica to a non-faulty server
replica in the system.

5.2.5. Jitter: In both the fault-free and the faulty (reac-
tive and proactive) schemes, we observed spikes that ex-
ceeded our average round-trip times by 3-o. These outliers
occurred between 1-2.5% of the time. In the fault-free run,
the highest spike we observed was 2.3ms. (These spikes
might be due to file system journaling done by the oper-
ating system.) We also observed one large spike of about
30ms that occurred 0.01% of the time in the GIOP proac-
tive recovery schemes. This spike occurred when we set
the rejuvenation threshold below 80%. We suspect the spike
happens when a client sends a request to a newly restarted
server that is updating its group membership information.
The highest spike we observed with the MEAD proactive
messages was 6.9 ms at the 20% rejuvenation threshold.

Effect of varying threshold

-©- GIOP Location_Fwd
- MEAD

Bandwidth (bytes/sec)

20 40 60

Threshold (%)

80

Figure 5. Varying thresholds.




6. Conclusion

In this paper, we describe the development of a trans-
parent proactive recovery framework for CORBA applica-
tions, and show that proactive recovery can indeed provide
bounded temporal behavior in the presence of certain kinds
of faults, thereby enabling the development of real-time,
fault-tolerant distributed systems.

Our preliminary results show that the use of MEAD’s
proactive fail-over messages can yield a promising 73.9%
reduction in average fail-over times over a traditional reac-
tive recovery scheme. We incur a reasonable overhead of
about 3% over the normal client/server round-trip times.
When we use GIOP messaging schemes, the fail-over time
is about 13.5% lower, but we need to maintain additional
state at the server and incur an round-trip time overhead
of about 90%. If we attempt to suppress exceptions at the
client whenever we have insufficient time to initiate proac-
tive recovery, our fail-over time is about 7.7% lower than in
the reactive case. However, we also observe a 25% client-
side failure rate. Since it is not possible to predict every sys-
tem failure, (or have enough time to recover from a fail-
ure, even if fault-prediction is possible), proactive recovery
schemes should be used to complement, but not replace, re-
active schemes.

We also show that if we trigger proactive recovery too
early, the additional overhead of migrating clients too fre-
quently can quickly negate the benefits of proactive recov-
ery. The ideal scenario is to delay proactive recovery so that
the proactive dependability framework has just enough time
to redirect clients and objects away from the faulty server
replica to a non-faulty server replica in the system.

As part of our future work, we plan to extend our proac-
tive dependability framework to include more sophisticated
failure prediction. We also plan to integrate adaptive thresh-
olds into our framework rather than relying on preset thresh-
olds supplied by the user.
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