Evolving the CORBA standard to support new distributed real-time and embedded systems

Tom Bracewell
Senior Principal Software Engineer
Raytheon Integrated Defense Systems
Sudbury, MA. / (978) 440-2539
bracewell@raytheon.com

Priya Narasimhan
Asst. Professor of ECE and CS
Carnegie Mellon University
Pittsburgh, PA / (412) 268-8801
priya@cs.cmu.edu
What’s Needed?

- How does the CORBA standard need to evolve to meet the needs of large distributed real-time and embedded systems?

- Examples
 - total ship computing – a system of systems
 - surface radar systems – a large DRE system

- Will the CORBA standard address the needs of real time and embedded systems of the near future?

- We need to be able to “pick standards, not products”
Will CORBA support embedded systems?

- A computer (and its SW) is considered embedded if it is an integral component of a larger system and is used to control and/or directly monitor that system, using special hardware devices.” - IEEE

- Is it embedded?
 - program that understands physics, a PDA - no
 - disk controller, a microprocessor controlling cell phone - yes
 - radar computing system – yes, nowadays

- Where’s the boundary - focus on intent
 - If it’s embedded, it’s controlling special hardware
 - If I shoot this component, will the special hardware stop working?

- New, large DRE systems create new challenges for CORBA
Issues driving new systems

- **End-to-end QoS, predictability, scalability**

- **Dependability, survivability, vulnerability, recoverability**
 - vulnerability \(1 - P(\text{maintain mission readiness after } n \text{ hits}) \)
 - recoverability \(P(\text{restore mission capability in timeframe } T) \)

- **Resource management**
 - application needs (e.g. real-time)
 - mission needs (e.g. fault tolerance)
 - component-level redundancy in both HW and SW
 - high performance in less weight, volume and cost
More Issues driving new DRE systems

- Work with multi-level security (MLS)
- Must lower the cost of developing, verifying and fielding SW
- “Pick standards not products”
 - Standards bodies important
 - define standards
 - conformance tests
 - performance metrics
Total Ship Computing Environment

- Distributed ship-wide for both tactical and non-tactical uses
- COTS-based open-system network of multiprocessor systems
- Total ship approach to survivability and performance
 - Manage vulnerability and recoverability
 - Monitor resource configuration and performance
 - Provide continuous reconfiguration recommendations
 - Adaptive, fault tolerant, self-reconfiguring - and real-time
- Supports network-centric warfare
- MLS environment, intrusion tolerant
- Supports rapid, cost-effective application development
TSCE Open System Architecture

Each layer uses commercially defined common open standards

- **Diverse applications**
 - Sensors/ Sensor Control
 - Comms Control
 - Command & Control
 - Weapons/ Weapons Control
 - Others: Trng, QoL, Readiness
 - System Simulators
 - Power & Propulsion Control
 - Ship Navigation/ Control
 - Damage Control

- **Domain services, e.g.**
 - Information Assurance & Security Services
 - Database Services
 - Mission Specific Resource Mgt.

- **Standards-based middleware, e.g.**
 - ORB
 - RT FT Services
 - RT FT Resource Management

- **COTS real-time operating systems and computers**
Surface Radar Product Line

- Multifunction Radar (MFR)
- Volume Search Radar (VSR)

- MFR meets all horizon search and fire control requirements of 21st-century fleet
 - support precision approach & landing
 - support missile engagements
 - detect stealthy targets in clutter
 - cruise missiles, periscopes
 - horizon aircraft, ships
Surface Radar Systems

- VSR supports aircraft, long range target tracking

- DBR includes MFR and VSR

- **Bottom line:**
 - 160+ high-end processors
 - DRE system uses COTS HW, OS
 - SW fault tolerance important
 - less cost per functionality
 - eliminates special equipment
Managed Product Evolution

Functionality enhancements

Technology insertions

Integrate with CORBA standard roadmap
CORBA: Support Two Worlds

<table>
<thead>
<tr>
<th>Issue</th>
<th>Real-time System</th>
<th>Fault-Tolerant System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>a priori knowledge of events is required</td>
<td>faults might occur at any time</td>
</tr>
<tr>
<td>Ordering of Operations</td>
<td>meet task deadlines</td>
<td>preserve replica consistency</td>
</tr>
<tr>
<td>Determinism</td>
<td>“bounded predictable temporal behavior”</td>
<td>“coherent state across replicas for every input” (FT-Determinism)</td>
</tr>
<tr>
<td>Multithreading</td>
<td>used for concurrency and efficient task scheduling</td>
<td>FT-Determinism prohibits multithreading</td>
</tr>
<tr>
<td>Timers</td>
<td>local timeouts and timer-based mechanisms used</td>
<td>FT-Determinism prohibits using local processor time</td>
</tr>
<tr>
<td>Faults</td>
<td>faults include timeouts</td>
<td>fault recovery takes time</td>
</tr>
</tbody>
</table>
RT FT CORBA Issues

- End-to-end predictability (latency, priority)
- Replica consistency (determinism, message guarantees)
- Determinism (RT predictability, FT reproducibility)
- Multithreading (deadlines, nondeterminism)
- Clock synchronization and global time
- Ordering of events (deadlines, nondeterminism)
- Fast fault detection and isolation
- Predictable recovery times
- Application-transparent fault tolerance

- This is not for the application layer or the OS to handle!
What do we need RT FT CORBA to do

- Tolerate common faults
 - crash, communication, timing, partitioning faults
- Order tasks to meet replica consistency and deadlines
- RT FT Scheduler and resource manager
- Policy-driven fault recovery
- Bounded fault detection and recovery times
 - Plan for worst-case fault recovery
- Support proactive dependability, software rejuvenation
We Need Offline Tools Too

- Offline tools complement runtime capabilities
- Advisor takes guesswork out of configuring for reliability
- Hazard oracle to detect and reduce non-determinism
OMG Actions

- Evolve CORBA standard to address system needs
- Establish compliance metrics
- Develop/own compliance tests