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Abstract

We describe an infrastructure for distributed autho-
rization based on the ideas of proof-carrying autho-
rization (PCA). PCA is more general and more flexi-
ble than traditional distributed authorization systems.
We extend PCA with the notion of goals and sessions,
and add a module system to the proof language. Our
framework makes it possible to locate and use pieces
of the security policy that have been distributed across
arbitrary hosts. We provide a mechanism which al-
lows pieces of the security policy to be hidden from
unauthorized clients. As a prototype application we
have developed modules that extend a standard web
server and a standard web browser to use proof-
carrying authorization to control access to web pages.
The web browser generates proofs mechanically by it-
eratively fetching proof components until a proof can
be constructed. We provide for iterative authoriza-
tion, by which a server can require a browser to prove
a series of challenges. Our prototype implementation
includes a series of optimizations, such as speculative
proving and modularizing and caching proofs, which
allows proof-carrying authorization to be used with
minimal performance and bandwidth overheads.

1 Introduction

Distributed authentication is important in systems
that cannot have their access policy determined by a

single trustworthy set of administrators. In these sys-
tems, different portions of the access policy may be
controlled by different parties. The relationships be-
tween these parties and their respective areas of con-
trol can be quite complex.

Distributed authentication systems [7, 8, 12] can
provide a framework under which it is possible to im-
plement these complex policies. One example of such
a policy uses a delegation. Suppose a user Alice has
access to a file foo, which she has been assigned by a
system administrator. Alice wants another user, Bob,
to have access to the file as well. Rather than requiring
the administrator to make policy changes for foo, the
distributed authentication system could allow Alice to
issue Bob a (perhaps temporary or restricted) delega-
tion, “Bob speaks for Alice, signed Alice”. Bob could
then use this delegation to access foo.

Authentication frameworks have sometimes been
described using formal logic [6, 10, 1]. In some cases
frameworks were developed by first designing an ap-
propriate logic and then building around it a system
that supports it [5]. An example of this approach is
the Taos operating system [2, 3].

Appel and Felten have recently introduced the idea
of proof-carrying authorization1 (PCA) [4], an autho-
rization framework that is based on a higher-order
logic (henceforth referred to as the AF logic). Their

1The concept was originally introduced as “proof-carrying au-
thentication,” but since it deals with authorizing access rather than
authenticating identity, we have with the permission of the origi-
nal authors renamed it to “proof-carrying authorization.”



higher-order logic consists of a standard higher-order
logic extended by a very few rules that they deem nec-
essary for defining operators and lemmas suitable for
a security logic.

Appel and Felten propose that an authorization
framework should be composed of the AF logic and a
set of operators and rules that comprise a particular se-
curity logic. The operators and rules are expressed in
the AF logic; operators as definitions and rules as lem-
mas that can be proven from these definitions. Since
each rule or operator can be expressed directly in the
AF logic, systems based on the AF logic can commu-
nicate with each other even if they use different oper-
ators or inference rules. This allows adding complex
security-policy rules that might not have been imag-
ined when the system was designed.

A higher-order logic like the AF logic, however, is
not decidable, which means that no decision proce-
dure will always be able to determine the truth of a
true statement, even given the axioms that imply it.
This makes the AF logic unsuitable for use in tradi-
tional distributed authentication frameworks in which
the server is given a set of credentials and must decide
whether they imply some statement. This problem can
be avoided in the server by making it the client’s re-
sponsibility to generate proofs. The server must now
only check that the proof is valid; this is not difficult
even in an undecidable logic. Each client can gener-
ate proofs using a decidable subset of inference rules
specific to its application. The server, using only the
common underlying AF logic, can check proofs from
all clients, regardless of the inference rules they use.

Building an actual distributed authorization frame-
work based on an AF-style logic raises a number of is-
sues that remain untouched or are not fully addressed
by previous work. What set of defined operators can
be used to make a practical security logic? Appel and
Felten propose several sets, each with its own advan-
tages and disadvantages. What is the minimal set of
rules the AF logic needs for these operators to be de-
finable? How does a proof goal correspond to a re-
quest to access a resource? If a proof gives its bearer
access to a protected resource, how do we ensure that
a proof isn’t stolen or copied? Can proof-generation
be completely automated? – after all, a proof-carrying
authorization system is hardly useful if it requires a
user to manually construct proofs, in higher order

logic, to be authorized to access a web page. Can the
security policy – the set of facts necessary to make a
proof – be distributed in a way that makes it acces-
sible to legitimate users but not to attackers? If all
these questions can be answered constructively, is it
possible to build a system that is general enough to be
a significant improvement over existing ones and yet
also efficient enough to be of practical use?

We present an implementation of a distributed au-
thorization system that answers these questions and
demonstrates the feasibility of using proof-carrying
authorization in real systems. Our application con-
sists of a web server that allows access to pages only
if the web browser can demonstrate that it is autho-
rized to view them. The browser accomplishes this
by mechanically constructing a proof of a challenge
sent to it by the server. Our system supports arbitrar-
ily complex delegation, the definition of local name
spaces, and expiration. We develop a framework that
lets the web browser locate and use pieces of the se-
curity policy (e.g., delegation statements) that have
been distributed across arbitrary hosts, and a system
for providing selective access to these pieces.

The infrastructure we implemented is independent
of the particular application we chose to build on top
of it. The application is only an illustration of how the
infrastructure can be used.

2 Example

Let us consider the following scenario. Bob is a
professor who teaches CS101. He has put up a web
page that has the answers to a midterm exam his class
just took. He wants access to the web page to be re-
stricted to students in his class, and he doesn’t want
the web page to be accessible before 8 P.M.

Alice is a student in Bob’s class. It’s 9 P.M.,
and she wants to access the web page (http://
server/midterm.html) that Bob has put up.
Her web browser contacts the server and requests the
page /midterm.html. The server, seeing that the
page is PCA-protected, responds with a request that
Alice use an encrypted (HTTPS) connection. Al-
ice’s browser switches to HTTPS and again requests
/midterm.html (figure 1, step 1).

Upon receiving this request, the server constructs
a challenge (a statement in the logic) which must be
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Figure 1. Alice wants to read midterm.html.

proven before the requested URL will be returned.
The server returns an “Authorization Required” mes-
sage (figure 1, step 2) which includes the challenge,
“You must prove: The server says that it’s OK to read
/midterm.html.”

When Alice receives the response, she examines
the challenge and attempts to construct a proof. Un-
fortunately, the attempt fails: Alice has no idea how
to go about proving that it’s OK to read /midterm.
html. She sends another request to the server:
“Please tell me who can read /midterm.html.”
(step 3)

The server’s reply (step 4) tells her that all the stu-
dents taking CS101 (the Registrar has a list of them)
may access the page, as long as it’s after 8 P.M. Still,
that does not give her enough information to construct
the proof. She contacts the Registrar (step 5), and
from him gets a certificate asserting, “until the end of
the semester, Alice is taking CS101.” (step 6) Alice
has now collected the following facts:

• The server says, “After 8 P.M., everyone taking
CS101 may access /midterm.html.”

• The Registrar says, “Until the end of the
semester, Alice is taking CS101.”

• The server believes, “The time now after 8:55

P.M.” (Alice guesses this, since her own clock
shows it is 9:00 P.M.)

• Alice says, “It’s OK to read /midterm.html.”
(This is relevant because the server will grant ac-
cess only to those clients who assert that it’s OK
to read the requested URL.)

Finally, there is enough information to prove that
Alice should be allowed to access the file. Once a
proof is generated, Alice sends another request for
/midterm.html to the prover (step 7). This time
she includes in the request the challenge and its proof.
The server checks that the proof is valid, and that Al-
ice proved the correct challenge. If both checks suc-
ceed, the server returns the requested page (step 8).

3 Logic Design

A proof-carrying authorization system has a core
logic (such as the AF logic) with an application-
specific logic defined on top of it. The core logic
must be sufficiently general to encode a wide range
of application-specific logics – that is its primary pur-
pose. On the other hand, it must also contain rules
that make it possible to define interesting and useful
application-specific logics. For instance, any security
logic is likely to need an inference rule that transforms
a digital signature into a statement in the logic. There
is no convenient way to define such a rule as a prov-
able lemma or definition – so an appropriate axiom
should be made part of the core logic.

A standard higher-order logic comprises the ma-
jority of the core logic. The choice of the few non-
standard rules that we wish to add depends on the
functionality we wish the application-specific logics
to have. We start the description of our system, there-
fore, with a discussion of requirements we had for our
application-specific logic.

3.1 Application-Specific Operators and Rules

The application-specific security logic consists of
operators (e.g., the speaksfor operator) and rules that
allow us to reason about them (e.g., a transitivity rule
for speaksfor). In a typical security logic the rules
would represent the formal definitions of the opera-
tors; in a PCA system, however, both the rules and
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A speaksfor B A says F
B says F

A speaksfor B B speaksfor C
A speaksfor C

A says (A.s says F)
A.s says F

Figure 2. We want our application-specific op-
erators to be defined so that they interact ac-
cording to these rules. A.s is shorthand for
localname(A,s). s is a string in A’s local
name space from which A creates the principal
localname(A,s).

the operators are expressed in terms of the core logic.
Since the rules have to be proven as lemmas, the op-
erators must be defined in such a way that the lemmas
are provable. Moreover, the operators must in some
cases be defined so that rules other than the intended
ones cannot be proven. In a system with delegation,
for example, we must make sure that rights can be
delegated only in strictly allowed ways. Naively de-
fined operators could result in an attacker discovering
an unintended way to delegate authority and use this
discovery to break the security of a system.

The desirada for our application-specific logic
were fairly straightforward: principals should be able
to make statements, delegate authority, and create
groups or roles (we call them local name spaces). Fig-
ure 2 lists these requirements as inference rules. In ad-
dition, we wanted principals to be able to draw conclu-
sions based on the things they believe, and we wanted
individuals (that is, principals with keys) to be able to
draw stronger conclusions than principals that repre-
sent roles or groups.

We define the required operators with the goal of
being able to prove these rules based on the operators’
definitions. A complicated definition may make it eas-
ier to prove a particular lemma, but may also make it
impossible to prove lemmas that involve several dif-
ferent operators. Too simple a definition, on the other
hand, might be insufficient to prove any interesting

lemmas about the operator.

A says F In addition to the rules in figure 2 it should
be true that a principal A says any statement that
is true. Also, if A says the formula X , and the
formula Y is true, and X and Y imply formula Z,
then A also says Z – this allows the principal A to
draw conclusions based on its beliefs.

A says F ≡ ∃G . A(G)∧ (G→ F)

A speaksfor B This operator is used for delegation.
If principal A speaks for principal B, then any-
thing that A says is spoken with principal B’s au-
thority.

A speaksfor B ≡ ∀F . (A says F)→ (B says F)

A.s The principal A.s (or localname(A,s)) is a new
principal created in A’s local name space from
the string s. Principal A controls what A.s says.
In our example, the principal registrar creates
the principal registrar.cs101, and signs a formula
like ‘key(“alice”) speaksfor (registrar.“cs101”)’
for each student in the class.

A.s(F) ≡ ∀L . lnlike(L)→ L(A)(S)(F)

The lnlike operator is used to break the recur-
sion in the definition of localname. The defini-
tion of lnlike looks complicated, but is such that
lnlike(L) is true for every function L that behaves
as a local name should; that is, for every function
that generates a principal whose authority A can
delegate. localname is one of the operators ex-
plicitly defined so that it obeys only the set of
rules that we require of it; this makes its defini-
tion somewhat more complicated and adds com-
plexity to the proofs of lemmas about it.

lnlike(L) ≡ ∀A,S,F,G .
((A says G) and (G→ (L(A)(S) says F)))
→ L(A)(S)(F)

In addition to the rules from figure 2, we can prove
as lemmas other inference rules that might be helpful
for generating proofs. For example,

A says F F→ G
A says G

says imp

can be trivially proven from the definition of says.
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signature(pubkey, fmla,sig)
Key(pubkey) says fmla

signed

Key(A) says (F imp G) Key(A) says F
Key(A) says G

key imp e

before(S)(T1) T2 > T1

before(S)(T2)
before gt

Key(localhost) says before(X)(T )
before(X)(T )

timecontrols

Figure 3. These inference rules are in addition
to the standard rules of higher-order logic. Note
that the Key(localhost) in the timecontrols
rule is not universally quantified.

3.2 Core Logic

The base types in our logic are formulas, strings,
and integers. Strings are used for representing digi-
tal signatures, public keys, and goals, as well as other
constructs that we define from the basic ones. Integers
are used for describing time.

Our logic has several constructors. (1) The key
constructor turns a string into a principal. In our sys-
tem, a principal is just a predicate on formulas. (2)
The goal constructor takes as an argument a list of
strings and returns a formula. Principals in our system
prove that they are authorized to perform some ac-
tion by demonstrating that they can derive a particular
goal formula stated in the server’s challenge. Goals
are described at greater length in section 3.3. (3) The
before constructor generates a term that is meant to
describe the temporal state of a host system, usually
the server that will be verifying the proof and grant-
ing or denying access. before(S)(T) means that the
time at host S (which is described by a string) has not
yet reached T .

Figure 3 shows the inference rules we add to a stan-
dard higher-order logic to make it suitable for use as
a core logic for a PCA system. We add a signed rule
that takes as a premise the tuple (pubkey, fmla, sig),
where sig is the digital signature produced by sign-
ing fmla with the private key corresponding to pub-

key, and generates the formula P says fmla, where
P is the principal that corresponds to the public key.2

An instance of this rule exists for each tuple in which
sig is a valid signature. Its intuitive meaning is that
if a principal’s private key has signed a formula, then
the principal says that formula.

Unlike the AF logic, our core logic contains no sep-
arate inference rule for the introduction of principals;
they are introduced only through the statements they
sign (i.e., the signed rule).

The key imp e rule ensures that a principal can
draw conclusions based on the statements it believes –
it allows us to have modus ponens inside says. That is,
if A says F and A says G and F and G together imply
H then A says H . This rule might look out of place in
the core logic, since a more complicated definition of
says – one that we tried in an earlier iteration of our
logic was structured similarly to the definition of lo-
calname, for example – could achieve the same goal.
Such a definition, however, would interact badly with
the definition of localname, making it impossible to
prove lemmas that make localname useful.

The other rules we add are used for describing time
and implementing expiration. Each host introduces
a single before axiom that describes the current time
on the local machine. To allow reasoning about rela-
tionships between earlier and later times, we add the
rule before gt, which tells us that if the time at host
S has not yet reached T1, then it also has not reached
any point T2 after T1. The timecontrols rule allows the
host that is checking the proof to make true the before
axioms that it says. That is, if the host says the axiom,
then the axiom is true on that system. Rules similar
to these two are necessary in any system that has a
notion of time.

2The reader will note that says is not part of the core logic;
it is one of the definitions specific to our application. The ac-
tual signed axiom uses the defining formula, not the abbreviation.
This may seem to tie the core logic to the application-specific
logic. However, that is not really the case. The connection be-
tween the two is merely that the core logic should make it possible
to define different and useful application-specific logics. To that
end, it is helpful to study possible application-specific logics, as
we have done, before settling on a core logic.
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3.3 Goals and Sessions

In proof-carrying authorization a client that tries
to access a resource is issued a challenge – an arti-
ficial logical formula – by the server that owns that re-
source. The challenge is the goal that the client must
prove before it will be granted access to the resource.

Obviously there needs to be a relationship between
a resource and the goal statement that represents it.
The formula goal(foo) can be used to represent the
right to access file foo. But if a proof of goal(foo)
gives its bearer the right to access foo, how do we
prevent Oscar from stealing a proof that Alice once
made and using it as his own? The server will merely
check that the proof is correct (i.e., that it is a true
statement). It has no mechanism for checking who
constructed a proof – such a mechanism, in fact,
would be contrary to the idea of proof-carrying au-
thorization.

To prevent clients from using stolen proofs, a server
includes in its challenge to each client an identifier
(a cryptographically pseudorandom string) that serves
to make that client’s proof goal unique. This means
that clients now prove statements like “I have the au-
thority to read the file foo with the unique identifier
sid” (goal(foo)(sid)) instead of just “I have the au-
thority to read the file foo” (goal(foo)). The iden-
tifier prevents clients from using stolen proofs, but it
doesn’t preclude them from being allowed to reuse an
old proof.

If the identifier is a secret shared only by the
server and a particular client, the server may elect to
reuse the identifier in future challenges; in this case,
the client can respond with a previously constructed
proof. The period of time during which a server
chooses to reuse an identifier we call a session; and
the identifier, accordingly, the session identifier.

We discuss the secure transmission of the session
identifier, and proofs which might contain it, in sec-
tion 4.2.

It is important to note that the length of a session
may be longer or shorter than a particular exchange
between a client and a server. A session is valid un-
til either the server or the client decide to expire the
session identifier, which they may do at will.

It is common in security logics to have a controls
rule to indicate that a client is allowed to control a

particular resource. We find that the key imp e rule,
combined with unique goals, gives our system enough
power to reason about what principals say that the
controls rule is no longer needed. To gain access to
a resource, a client in our system, instead of showing
that it controls a resource, proves that the server says
that the client should have access to the resource.

4 The System Explained: A Narrative

The system we describe can be naturally divided
into a client part and a server part (figure 4). The
bulk of the client part is a web browser. The rest—the
proxy server and the prover—are components that en-
able the web browser to use the PCA protocol. The
browser itself remains unmodified, and our system
does not use any features that are unique to a particu-
lar browser version.

The server part of our PCA system is built around
an unmodified (Apache) web server. The web server is
PCA-enabled through the use of a servlet which inter-
cepts and handles all PCA-related requests. The two
basic tasks that take place on the server’s side during
a PCA transaction are generating the proposition that
needs to be proved and verifying that the proof pro-
vided by the client is correct. Each is performed by
a separate component, the proposition generator and
the checker, respectively.

Throughout the rest of this section, we will be de-
scribing various parts of the system as they are en-
countered during a transaction like one described in
figure 4. As a running example we will use the sce-
nario introduced in section 2. The text of the example
will be indented and in italics to offset it from the de-
scription of the system.

4.1 Client: Proxy Server

The job of the proxy server is to be the interme-
diary between a web browser that has no knowledge
of the PCA protocol and a web server that is PCA-
enabled. An attempt by the browser to access a web
page results in a dialogue between the proxy and the
server that houses the page. The dialogue is con-
ducted through PCA-enhanced HTTP—HTTP aug-
mented with headers that allow it to convey informa-
tion needed for authorization using the PCA protocol.
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Figure 4. The components of the system.

The browser is completely unaware of this dialogue;
it sees only the web page returned at the end.

The proxy is meant to be a substitute for a browser
plugin. We decided to use a proxy instead of a plugin
because this lets our system be completely browser in-
dependent. A production implementation would prob-
ably replace the proxy with a plugin. Like a plugin,
our proxy is meant to be tightly coupled with the web
browser. Unlike traditional web proxies, it is meant to
serve a single client, not a set of them. This is because
the proxy needs to speak on behalf of a client, per-
haps signing statements with the client’s private key
or identifying itself with the client’s public key. If a
shared proxy were to be used for this purpose, its abil-
ity to access the private information of several clients
would be a concern. Also, it would have to authen-
ticate client-side connections so that it would know
which client’s data, or identity, to use for PCA transac-
tions. Such authentication would be at cross purposes
with one of the goals of our system—authorization
uncoupled from authentication.

When Alice requests to see the page http://
server/midterm.html, her browser forms the
request and sends it to the proxy server (figure 4, step
1). The proxy server forwards the request without
modifying it.

4.2 Secure Transmission and Session Identifiers

The session identifier is a shared secret between the
client and server. The identifier is used in challenges
and proofs (including in digitally signed formulas

within the proofs) to make them specific to a single
session. This is important because the server caches
previously proven challenges and allows clients to
present the session identifier as a token that demon-
strates that they have already provided the server with
a proof.

The session identifier is a string generated by the
server using a cryptographic pseudorandom number
generator. Our implementation uses an 144-bit value
which is then stored using a base-64 encoding. (144
bits was chosen because the value converts evenly into
the base-64 encoding.)

Since the session identifier may be sufficient to gain
access to a resource, stealing a session identifier, akin
to stealing a proof in a system where goals are not
unique, compromises the security of the system. In
order to keep the session identifier secret, communi-
cation between the client and server uses the secure
protocol HTTPS instead of normal HTTP in all cases
where a session identifier is sent. If the client attempts
to make a standard HTTP request for a PCA-protected
page, the client is sent a special “Authorization Re-
quired” message which directs the client to switch to
HTTPS and retry the request.

As an efficiency measure, the client caches loca-
tions of PCA-protected pages and automatically uses
HTTPS instead of HTTP, shortening the transaction
by two messages – the HTTP message that would
fail and the reply that directs the client to switch to
HTTPS. we assume that if a particular URL is PCA-
protected, then any other URL which has the first
as a prefix is also PCA-protected. Thus this cache
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typically would require one entry per PCA-protected
server, rather than one entry per PCA-protected page.

Alice’s proxy contacts the server, asking for
midterm.html. Since that page is PCA-protected
and the proxy used HTTP, the server rejects the re-
quest. The proxy switches to HTTPS and sends the
same request again.

Make request

challenge

in reply?

Done

same

challenge?

purge assumptions

assum's.

purged?

try to prove

fetch facts
new


facts?

Fail

proved?

N

Y
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Y

Y

Y

N

N

N
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Figure 5. Client flowchart.

4.3 Server: Proposition Generator and Iterative
Authorization

When a client attempts to access a PCA-protected
web page, the server replies with a statement of the
theorem that it wants the client to prove before grant-
ing it access. This statement, or proposition, can be
generated autonomously; it depends only on the path-
name of the file that the client is trying to access and
on the syntax of the logic in which it is to be encoded.

Proof

supplied? check proof

proof

OK?

more

challenges?

add to cache

get next challenge

proof

cached?

Return

requested


page

Return

challenge

Y

N

Y

Y

Y

N

N

N

generate challenges

Figure 6. Server flowchart.

The server’s proposition generator provides the
server with a list of propositions. The server returns
the first unproven proposition. If the client success-
fully proves that proposition in a subsequent request,
then the server will reply with the next unproven
proposition as the challenge. This process of prov-
ing and then receiving the next challenge from a list
of unproven propositions is called iterative authoriza-
tion. The processes for the client and server are shown
in the flowcharts of figure 5 and figure 6.

This process terminates when either the client gives
up (e.g. cannot prove one of the propositions) or has
successfully proven all of the propositions, in which
case access is allowed. If the client presents a proof
which fails when the server checks it, it is simply dis-
carded. In this case, the same challenge will be re-
turned twice to the client.
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If the client receives the same challenge twice, it
knows that although it “successfully” constructed a
proof for that challenge, it was rejected by the server.
This means that one of the client’s assumptions must
have been incorrect. The client may choose to discard
some assumptions and retry the proof process.

Our prototype application generates a proposition
for each directory level of the URL specified in the
client’s request. Since the server returns identical
challenges regardless of whether the requested object
exists, returning a challenge reveals no information
about the existence of objects on the server.

Isolating the proposition generator from the rest of
the server makes it easy to adapt the server for other
applications of PCA; using it for another application
may require nothing more than changing the proposi-
tion generator.

After receiving the second, encrypted request, the
server first generates the session ID, “sid”. It then
passes the request and the ID to the proposition gener-
ator. The proposition generator returns a list of propo-
sitions that Alice must prove before she is allowed to
see /midterm.html:

says @ (key @ "server")
@ (goal @ "http://server/" @ "sid")

says @ (key @ "server")
@ (goal @ "http://server/midterm.html"

@ "sid")

The syntax of the example closely follows the actual
LF syntax in which the proofs are written: all terms
are in prefix notation and application is explicit and
denoted by @.

says @ (key @ "server") @ (goal @ X @ Y)

is therefore equivalent to “Key(server) says
goal(X, Y).”

For the purposes of this example, we will deal only
with the second challenge. In reality, Alice would
first have to prove that she is allowed to access
http://server/, and only then could she try
to prove that she is also allowed to access http:
//server/midterm.html.

A benefit of iterative authorization is that it allows
parts of the security policy to be hidden from unautho-
rized clients. Only when a challenge has been proven
will the client be able to access the facts that it needs

to prove the next challenge. In the context of our ap-
plication this means, for example, that a client must
prove that it is allowed to access a directory before it
can even find out what goal it must prove (and there-
fore what facts it must gather) to gain access to a par-
ticular file in that directory.

4.4 Server: Challenges; Client: Proofs

For each authorization request, the server’s propo-
sition generator generates a list of propositions which
must be proven before access is granted. Each propo-
sition contains a URL path and a session identifier.
The server checks to see if each proposition has been
previously proven by the client by checking a cache
of previously proven challenges. If all of the propo-
sitions have been proven, access is allowed imme-
diately. Otherwise, the first unproven proposition is
returned to the client as a challenge. Any other un-
proven propositions are discarded.

The server constructs a reply with a status code
of “Unauthorized”. This is a standard HTTP re-
sponse code (401) [9]. The response includes the re-
quired HTTP header field “WWW-Authenticate” with
an authentication scheme of “PCA” and the unproven
proposition as its single parameter.

Once the client has constructed a proof of the chal-
lenge, the client makes another HTTPS request (this
can be done with the same TCP connection if al-
lowed by keep-alive) containing the challenge and
proof. The challenge is included in an “Authoriza-
tion” request-header field, and the proof is included in
a series of “X-PCA-Proof” request-header fields. The
server checks that the proof proves the supplied chal-
lenge, adds the challenge to its cache of proven propo-
sitions, and then begins the checking process again.

It is sometimes possible for a client to guess what
the challenge will be. In that case, it can try to prove
the challenge even before the server makes it (we call
this prove-ahead or speculative proving). The proof
can then be sent to the server as part of the original
request. If the client guessed correctly, the server will
accept the proof without first sending a challenge to
the client.

The first proposition in the example is the one stat-
ing that the server says that it’s OK to read http://
server/. The server checks whether it has already
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been proven and moves on to the next one. (Remem-
ber that for the purposes of the example we’re concen-
trating only on the second proposition; the authoriza-
tion process for each is identical.) The next proposi-
tion states that the server says it’s OK to read http:
//server/midterm.html. This one hasn’t been
proven yet, so the server constructs an HTTP response
that includes this proposition as a challenge and sends
it to Alice. This is step 5 of figure 4.

4.5 Client: Prover

In the course of a PCA conversation with a server,
the proxy needs to generate proofs that will demon-
strate to the server that the client should be allowed
access to a particular file. This task is independent
enough from the rest of the authorization process that
it is convenient to abstract it into a separate compo-
nent. During a PCA conversation the client may need
to prove multiple statements; the process of proving
each is left to the prover.

The core of the prover in our system is the Twelf
logical framework [14]. Proofs are generated by a
logic program that uses tactics. The goal that must
be proven is encoded as the statement of a theorem.
Axioms that are likely to be helpful in proving the
theorem are added as assumptions. The logic pro-
gram generates a derivation of the theorem; this is the
“proof” that the proxy sends to the server.

The tactics that define the prover roughly corre-
spond to the inference rules of the application-specific
logic. Together with the algorithm that uses them, the
tactics comprise a decision procedure that generates
proofs – for our system to always find proofs of true
statements, this decision procedure must be decidable.

A tactic for proving A speaksfor C would be to find
proofs of A speaksfor B and B speaksfor C and then
use the transitivity lemma for speaksfor. Other tac-
tics might be used to guide the search for these sub-
goals. The order in which tactics are applied affects
their effectiveness. Care must also be taken to avoid
situations in which tactics might guide the prover into
infinite (or finite but time-consuming) branches that
don’t necessarily lead to a proof. The prover in our
system is able to automatically generate proofs when-
ever they exist.

If this were a production-strength implementation
of a PCA system, we would likely have implemented

the theorem prover in Java. The capabilities of Twelf
are far greater than what we need; a custom-made
theorem prover that had only the required function-
ality would be more lightweight. It could also be en-
gineered so that a failed attempt to prove a theorem
would explain to the user in the user’s own terms why
access could not be granted. The advantage of Twelf,
on the other hand, is that the encoding of the tactics is
concise. Since the tactics are closely tied to the logic,
Twelf made it much easier to experiment with changes
to the logic without having to spend much effort in
adapting the theorem prover to it.

In addition to generating the proof of a goal given
to it by the proxy, the prover’s job is to find all the
assumptions that are required by the proof. Assump-
tions needed to generate a proof might include state-
ments made by the server about who is allowed to
access a particular file, statements about clock skew,
statements by which principals delegate authority to
other principals, or statements of goal. While some of
these might be known to the proxy, and would there-
fore have been provided to the prover, others might
need to be obtained from web pages.

Since fetching assumptions from the web is a rela-
tively time-consuming process (hundreds of millisec-
onds is a long time for a single step of an interactive
authorization that should be transparent to the user),
the prover caches the assumptions for future use. The
prover also periodically discards assumptions which
have not been recently used in successful proofs.

4.6 Client: Iterative Proving

The client is responsible for proof generation. The
client may not always be able to generate a proof of
the challenge on the first try. It may need to obtain
additional information, such as signed delegations or
other facts, before the proof can be completed. The
process of fetching additional information and then
retrying the proof process is called iterative proving.
The process does not affect the server, and terminates
when a proof is successfully generated.

Proof generation can be divided into two phases. In
the first phase, facts are gathered. In the second phase,
straightforward prover rules are used to test if these
facts are sufficient to prove the challenge. If so, the
proof is returned. Otherwise, the phases are repeated,
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first gathering additional facts and then reproving, un-
til either a proof is successfully generated, or until no
new facts can be found.

The fact-gathering phase involves the client gather-
ing four basic types of facts.

Self-signed Assumptions The first type of facts
comes from the client itself. The client can sign state-
ments with its own private key, and these may be use-
ful in constructing proofs. Often, for example, it is
necessary for the client to sign part of the challenge
itself and use this as an assumption in the proof.

Alice will sign the statement

goal @ "http://server/midterm.html" @ "sid"

Applying the signature axiom to this statement will
yield

says @ (key @ "alice")
@ (goal @ "http://server/midterm.html"

@ "sid")

Armed with this assumption (and no others, so far),
Alice tries to prove the challenge. The attempt fails in
the client (i.e., no proof is constructed, so nothing is
sent to the server); Alice realizes that this assumption
by itself isn’t sufficient to generate a proof so she tries
to collect more facts. (Steps 6 and 8 of figure 4.)

Goal-oriented facts The second type of facts is typ-
ically (though not necessarily) provided by the server.
While generating propositions and checking proofs
are conceptually the two main parts of the server-side
PCA infrastructure, a PCA-enabled server may want
to carry out a number of other tasks. One of these
is managing pieces of the security policy. To gener-
ate a proof that it is authorized to access a particular
web page, a client will have to know which princi-
pals have access to it. Such information, since it de-
scribes which principals have direct access to a partic-
ular goal, we call goal-oriented facts.

In our implementation, the server keeps this infor-
mation in access-control lists. Entries from these lists,
encoded in a manner that makes them suitable for use
as assumptions, are provided to the client on demand.
They are not given out indiscriminately, however. Be-
fore providing a goal-oriented fact, the server uses an

additional PCA exchange to check that the client is
authorized to access the fact.

In our system the client queries the server for
goal-oriented facts for each challenge it needs to
prove. Goals are described by URLs, so the server
requires PCA authorization for a directory before it
will return the goal-oriented facts that describe ac-
cess to files/directories inside that directory. The goal-
oriented fact that describes access to the root directory
is freely returned to any client. In this way, a client is
forced to iteratively prove authorization to each direc-
tory level on the server.

Since her first attempt at generating a proof didn’t
succeed, Alice sends a message to the server request-
ing goal-oriented facts about http://server/
midterm.html. Upon receiving the request, the
server first checks whether Alice has demonstrated
that she has access to http://server/. It does
this by generating a list of assumptions (there will be
only a single assumption in the list) and then check-
ing whether Alice has proven it. After determining
that Alice is allowed access to the root directory, the
server gives to Alice a signed version of the statement

not (before @ "server" @ (8 P.M.))
imp (says @ (localname @ (key @ "registrar")

@ "cs101")
@ (goal @ "http://server/midterm.html"

@ "sig"))
imp (goal @ "http://server/midterm.html" @ "sig")

Alice translates it into, “Server says: ‘If it is not be-
fore 8 P.M., and a CS101 student says it’s OK to read
midterm.html, then it’s OK to read midterm.
html.’ ”

Fetching the ACL entry from the server is also de-
scribed by steps 2 through 5 of figure 4.

Server Time In order to generate proofs which in-
clude expiring statements, the client must make a
guess about the server’s clock. The third type of
facts is the client’s guess about the time which will
be showing on the server’s clock at the instant of
proof checking. If the client makes an incorrect guess,
it might successfully generate a proof which is re-
jected by the server. (An incorrect guess about the
server’s clock is the only reason for rejecting a prop-
erly formed, since it is the only “fact” the the server
might not accept.) In this case, the client adjusts its
guess about the server’s clock and begins the proof
generation process again.
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In order to use the goal-oriented assumption it re-
ceived from the server, Alice must also know some-
thing about the current time. Since it’s 9 P.M. by
her clock, she guesses that the server believes that the
time is before 9:05 P.M. and after 8:55 P.M. This cor-
responds to the assumption

before @ "server" @ (9:05 P.M.) and
not (before @ "server" @ (8:55 P.M.))

Armed with the self-signed assumption, the goal-
oriented assumption, and the assumption about
time, Alice again tries proving that she can access
midterm.html. Again, she discovers that she
doesn’t have enough facts to construct a proof. She
knows that Registrar.CS101 can access the file, but
she doesn’t know how to extend the access privilege
to herself.

Key-oriented facts The fourth type of facts come
from hints that are embedded in keys and that enable
facts to be stored on a separate (perhaps centralized or
distributed) server. Concatenated with each public key
is a list of URLs which contain facts relevant to that
key (perhaps maintained by the key-holder). These
facts might be signed delegations, for example.

At each fact-fetching step, the client examines all
of the keys referenced in all of the facts already
fetched. Each key is examined for embedded hints.
Then the client fetches new facts from all of these
hint URLs. (The client maintains a cache so that
hint URLs are not accessed more than once.) In the
next iteration (if another iteration is required), these
new facts will be examined for additional hint URLs,
which will then be fetched. In this way, the client
does a breadth-first search for new facts, alternating
between searching one additional depth level and at-
tempting to construct a proof with the current set of
facts.

Although the proof didn’t succeed, Alice can now
use the hints from her facts to try to find addi-
tional facts that might help the proof. Bob’s server’s
key and the Registrar’s key are embedded in the
facts Alice has collected. In each key is encoded a
URL that describes a location (it can be any loca-
tion) at which the owner of that key publishes ad-
ditional facts. Bob’s server’s key, heretofore given
as key @ "server" actually has the form key @
"server;http://server/hints/".

Before giving up, Alice’s prover follows these URLs
to see if it can find any new facts that might help.
This is shown as step 7 of figure 4. Following the
hint in the Registrar’s key, Alice downloads a signed
statement which she translates into the assumption

says @ (key @ "registrar") @
(before @ "registrar" @ (end of semester)
imp (speaksfor @ (key @ "alice")

@ (localname @ (key @ "registrar")
@ "cs101")))

This fact delegates to Alice the right to speak on be-
half of Registrar.CS101: “The Registrar says that un-
til the end of the semester, whatever Alice says has
the same weight as if Registrar.CS101 said it.”

Following the hint in Bob’s server’s key, Alice obtains
a new fact that tells her the clock skew between Bob’s
server and the Registrar.

Alice now finally has enough facts to generate a
proof that demonstrates that she is authorized to
read http://server/midterm.html. Alice
makes a final request to access http://server/
midterm.html, this time including in it the full
proof.

4.7 Server: Proof Checking

The Theory. After it learns which proposition it
must prove, the client generates a proof and sends it
to the server. If the proof is correct, the server allows
the client to access the requested web page. Proofs
are checked using Twelf. The proof provided by the
client is encoded as an LF term [11]. The type (in
the programming languages sense) of the term is the
statement of the proof; the body of the term is the
proof’s derivation. Checking that the derivation is cor-
rect amounts to type checking the term that represents
the proof. If the term is well typed, the client has suc-
ceeded in proving the proposition.

As is the case for the client, using Twelf for proof
checking is overkill, since only the type-checking al-
gorithm is used. The proof checker is part of the
trusted computing base of the system. To minimize
the likelihood that it contains bugs that could com-
promise security, it should be as small and simple as
possible. Several minimal LF type checkers have al-
ready been or will shortly be implemented[13]; one of
these could serve as the proof checker for our system.
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LF terms can either have explicit type ascriptions
or be implicitly typed. An implicitly typed version of
the and introduction lemma in our logic has this form:

and_i : pf A -> pf B -> pf (A and B)
= [p1][p2] forall_i ...

One with explicitly ascribed types:

and_i : {A:tm form} {B:tm form} pf A
-> pf B
-> pf (and A B)

= [A:tm form] [B:tm form]
[P1:pf A] [P2:pf B] forall_i ...

Note that the explicitly-typed version may need to
introduce more that one type annotation per variable.
This can lead to exponential increase in the size of the
proofs. The implicitly-typed version is much more
concise, but suffers from a different problem. The
type inference algorithm that the server would need to
run is undecidable, which could cause correct proofs
not to be accepted or the server to the tied up by a
complicated proof.

The LF community is currently developing a type
checker for semi-explicitly typed LF terms that would
solve both problems. Its type-inference algorithm will
be decidable, and the level of type ascription it will
require will not cause exponential code blowup. Until
it becomes available, our system will require proofs to
be explicitly typed.

The Practice. Checking the proof provided by the
client, however, is not quite as simple as just passing
it through an LF type checker. The body of an LF term
is the proof of the proposition represented by its type.
If the term has only a type ascription but no body, it
represents an axiom. That the axiom may type check
does not mean that we want to allow it as part of the
proof. If we were to do so, the client could respond
to a challenge by sending an axiom that asserted the
proposition it needed to prove; obviously we wouldn’t
want to accept this statement as proof of the challenge.
In addition, the server must verify that the signature
axioms used by the proof actually hold; that is, that
any digital signatures are valid and sign well-formed
statements.

To solve these problems, the server preprocesses
the client’s proof before passing it to a type checker.
The preprocessor first makes sure that all of the terms

that make up the proof have both a type and a body. A
proof that contains illegal axioms is rejected.

Next, two special types of axioms are inserted into
the proof as necessary. The first type is used to make
propositions about digital signatures, and the second
type is used to make propositions regarding time.
These are required since the proof checker cannot
check digital signatures or time statements directly.
The client inserts into the proof placeholders for the
two types of axioms it can use. The server makes sure
that each axiom holds, generates an LF declaration
that represents it, and then replaces the placeholder
with a reference to the declaration.

For digital signatures, the client inserts into the
proof a proposition of the special form “#signature
key, formula, sig”. (Each of the fields is encoded in
base 64 for transmission.) The server checks that sig is
a valid signature made by the key key for the formula
formula. If so, the #signature statement is replaced by
an axiom asserting that key signed formula.

To make statements about time, the client inserts a
proposition of the special form “#now”. The prepro-
cessing stage replaces the #now with an axiom assert-
ing the current time (in seconds since 1970). Axioms
of this form are necessary when signed propositions
include an expiration date, for example.

Once the proof has been parsed to make sure it con-
tains no axioms and special axioms of these two forms
have been reintroduced, the proof is checked to make
sure it actually proves the challenge. (The proof might
be a perfectly valid proof of some other challenge!)
If this final check succeeds, then the whole proof is
passed to an LF type checker; in our case, this is again
Twelf.

If all of these checks succeed, then the challenge is
inserted into the server’s cache of proven propositions.
The server will either allow access to the page (if this
was the last challenge in the server’s list) or return the
next challenge to the client.

To avoid re-checking proofs, all correctly proven
propositions are cached. Some of them may use
time-dependent or otherwise expirable premises–they
could be correct when first checked but false later.
If such proofs, instead of being retransmitted and
rechecked, are found in the cache, their premises must
still be checked before authorization is accepted.
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The server receives Alice’s request for midterm.
html and generates a list of propositions that need
to be proven before access is granted. Only the last
proposition is unproven, and its proof is included
in Alice’s request. The server expands the #signa-
ture and #now propositions, and sends the proof to
the type-checker. The proof checks successfully, so
the server inserts it in its cache; Alice won’t have
to prove this proposition again. Finally, the server
checks whether Alice proved the correct challenge,
which she has. There are no more propositions left to
be proven, Alice has successfully proven that she is
authorized to read http://server/midterm.
html. The server sends the requested page to Alice.

5 Module system

Since proofs are meant to be both generated and
checked completely automatically, many of the tra-
ditional software-engineering reasons for needing a
module system are absent, since they are often mo-
tivated by making code easier for a human program-
mer to read. Still, there remain good reasons to allow
proofs to be modular. For one, since the trusted com-
puting base of the checker is composed of the smallest
possible number of axioms, most of the rules used in
constructing the proofs will be lemmas proven from
the axioms. Many clients will use these same lem-
mas in their proofs; most proofs, in fact, are likely
to include the same basic set of lemmas. We have
added to the proof language a simple module system
that allows us to abstract these lemmas from individ-
ual proofs. Instead of having to include all the lem-
mas in each proof, the module system allows them
to be imported with a statement like basiclem =
#include http://server/lemmas.elf. If
the lemma speaksfor trans, for example, re-
sides in the basiclem module, it can now
be referenced from the body of the proof as
basiclem.speaksfor trans. Instead individu-
ally by each client, abstracting the lemmas into mod-
ules allows them to be maintained and published by a
third party. A company, for instance, can maintain a
single set of lemmas that all its employees can import
when trying to prove that they are allowed to access
their payroll records.

To make the examples in the previous section more
understandable, we have omitted from them refer-

ences to modules. In reality, each proof sent by a
client to a server would be prefixed by a #include
statement for a module that contained the definitions
of, for example, says, speaksfor, localname
and the lemmas that manipulate them, as well as more
basic lemmas.

Aside from the administrative advantages, an im-
portant practical benefit of abstracting lemmas into
modules is increased efficiency, both in bandwith con-
sumed during proof transmission and in resources ex-
pended for proof checking. Instead of transmitting
with each proof several thousands of lines of lem-
mas, a client merely inserts a #include declara-
tion which tells the checker the URL (we currently
support only modules that are accessible via HTTP)
at which the module containing the lemmas can be
found. Before the proof is transmitted from the client
to the server, the label under which the module is im-
ported is modified so that it contains the hash of the
semantic content (that is, a hash that is somewhat in-
dependent of variable names and formatting) of the
imported module. This way the checker knows not
only where to find the module, but can also verify that
the prover and the checker agree on its contents.

When the checker is processing a proof and en-
counters a #include statement, it first checks
whether a module with that URL has already been
imported. If it has been, and the hash of the previ-
ously imported module matches the hash in the proof,
then proof checking continues normally and the proof
can readily reference lemmas declared in the imported
module. If the hashes do not match or the module
hasn’t been imported, the checker accesses the URL
and fetches the module. A module being imported
is validated by the checker in the same way that a
proof would be. Since they’re identified with content
hashes, multiple versions of a module with the same
URL can coexist in the checker’s cache.

Since importing a module is something that is
done actively by the server, it raises the possibility of
denial-of-service attacks. In designing the checker we
have assumed that it is the client’s responsibility to
make sure that any modules it includes in its proofs
are readily accessible. The checker takes appropri-
ate precautions to guard itself against proofs that may
contain modules that endlessly import other modules,
cyclical import statements, and other similar attacks.
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6 Conclusion

In this paper we describe an authorization system
for web browsers and web servers that we have built
using a proof-carrying authorization framework. Our
application is implemented as add-on modules to stan-
dard web browsers and web servers and demonstrates
that it is feasible to use a proof-carrying authoriza-
tion framework as a basis for building real systems.
We show that such systems, in which the burden of
proof is placed on the client, can reap the benefits of
using a higher-order security logic (flexibility and ex-
tensibility) without being hampered by its traditional
weaknesses (undecidability).

We improve upon previous work on proof-carrying
authorization by adding to the framework a notion
of state and enhancing the PCA logic with goal con-
structs and and a module system. The additions of
state (through what we call sessions) and goals are in-
strumental in making PCA practical. We also intro-
duce mechanisms that allow servers to provide only
selective access to security policies, which was a con-
cept wholly absent from the original work. In addi-
tion, we refine the core logic to make it more useful
for expressing interesting application-specific logics,
and we define a particular application-specific logic
that is capable of serving as a security logic for a real
distributed authorization system.

Our application allows pieces of the security pol-
icy to be distributed across arbitrary hosts. Through
the process of iterative proving the client repeatedly
fetches proof components until it is able to construct
a proof. This mechanism allows the server policy to
be arbitrarily complex, controlled by a large number
of principals, and spread over an arbitrary network of
machines in a secure way. Since proof components
can themselves be protected, our system avoids releas-
ing the entire security policy to unauthorized clients.
Iterative authorization, or allowing the server to re-
peatedly challenge the client with new challenges dur-
ing a single authorization transaction, provides a great
deal of flexibility in designing security policies.

Although our system has a great deal of flexibil-
ity, we have been successful in reducing the inher-
ent overhead to a minimum, demonstrating that it is
possible to use proof-carrying authorization to build
an efficient authorization system. To this end, our

system uses speculative proving—clients attempt to
guess server challenges and generate proofs ahead of
time, drastically reducing the exchange between the
client and the server. The client also caches proofs
and proof components to avoid the expense of fetch-
ing them and regenerating the proofs. The server also
caches proofs, which avoids the need for a client to
produce the same proof each time it tries to access a
particular object. A module system in the proof lan-
guage allows shared lemmas, which comprise the bulk
of the proofs, to be transmitted only if the server has
not processed them, saving both bandwidth and proof-
checking overhead.

Ongoing work includes further development of our
prototype application. We will investigate the use
of oblivious transfer and other protocols for fetching
proof components without revealing unnecessary in-
formation and further refine our security logic to re-
duce its trusted base and increase its generality. In
addition to allowing clients to import lemmas from a
third party, we would like to devise a method from
allowing them to import actual proof rules as well.
We are also exploring the idea of using a higher-order
logic as a bridge between security logics in a way that
would enable authentication frameworks based on dif-
ferent logics to interact and share resources.
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A Axioms of the Core Logic

Axioms of the higher-order core logic of our PCA
system. Except for the last four, they are standard in-
ference rules for higher-order logic.

A B
A∧B

and i
A∧B

A
and e1

A∧B
B

and e2

A
A∨B

or i1
B

A∨B
or i2

A∨B [A]
C

[B]
C

C
or e

[A]
B

A→ B
imp i

A→ B A
B

imp e

A(Y ) Y not occurring in ∀x.A(x)
∀x.A(x)

forall i

∀x.A(x)
A(T )

forall e
X = X

refl

X = Z H(Z)
H(X)

congr

signature(pubkey, fmla,sig)
Key(pubkey) says fmla

signed

Key(A) says (F imp G) Key(A) says F
Key(A) says G

key imp e

before(S)(T1) T2 > T1

before(S)(T2)
before gt

Key(localhost) says before(X)(T )
before(X)(T )

timecontrols
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