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Abstract

As the capabilities of smartphones increase, users are be-
ginning to rely on these mobile and ubiquitous platforms to
perform more tasks. In addition to traditional computing
tasks, people are beginning to use smartphones to interact
with people they meet. Often this interaction begins with
an exchange, e.g., of cryptographic keys. Hence, a number
of protocols have been developed to facilitate this exchange.
Unfortunately, those protocols that provide strong security
guarantees often suffer from usability problems, and easy-
to-use protocols may lack the desired security guarantees.

In this work, we highlight the danger of relying on usable-
but-perhaps-not-secure protocols by demonstrating an easy-
to-carry-out man-in-the-middle attack against Bump, the
most popular exchange protocol for smartphones. We then
present Shake on It (Shot), a new exchange protocol that
is both usable and provides strong security properties. In
Shot, the phones use vibrators and accelerometers to ex-
change information in a fashion that demonstratively iden-
tifies to the users that the two phones in physical contact
are communicating. The vibrated information allows the
phones to authenticate subsequent messages, which are ex-
changed using a server. Our implementation of Shot on
DROID smartphones demonstrates that Shot can provide a
secure exchange with a similar level of execution time and
user effort as Bump.

1. INTRODUCTION

As the functionality and computing power of smartphones
increase, users are leveraging these devices to perform more
of their computing tasks. In addition to traditional tasks
such as email, gaming, banking, and maintaining a schedule,
the mobility and ubiquity of smartphones allows people to
use these devices to establish ad hoc associations with people
they meet. For example, people may exchange phone num-
bers, email addresses, and social network identities or even
use their phones to enable the exchange of funds via an on-
line service (e.g., PayPal). During these exchanges, phones
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typically use the wireless channel to perform the majority of
the communication. The wireless channel makes exchanges
easier for users since they do not have to carry cables to
connect the phones. However, users are unable to observe
the endpoints of wireless communication and without a se-
cure protocol a malicious party can insert themselves into
the exchange as part of a man-in-the-middle (MitM) attack.

Exchange protocols for smartphones require varying lev-
els of user involvement and provide different security guar-
antees. The widely deployed Bump [3] and Bluetooth pair-
ing [2] protocols represent distant points in the spectrum of
user involvement and security guarantees. Bump requires
users to perform only a simple gesture, but, as we demon-
strate, is vulnerable to MitM attacks under realistic condi-
tions. Bluetooth pairing [2] is resistant to such attacks, but
requires significant user involvement to correctly compare a
checksum across phones.

In the first part of this paper, we highlight the danger of
relying on usable-but-perhaps-not-secure protocols by demon-
strating a MitM attack against Bump. Bump is the most
popular exchange protocol for smartphones® and claims to
provide an excellent user experience while ensuring secu-
rity [3]. Due to the simplicity of the operation, Bump is
used in a number of applications. For example, PayPal’s
mobile app uses Bump to exchange account information and
send money to nearby friends [20]. Bump’s security is based
on the Bump server’s ability to determine what phones are
physically interacting based on the time, location, and the
force with which the two phones were physically bumped
together. Bump provides a very nice user experience, but
is vulnerable to attack. An attacker may be able to ob-
serve when and where users bump their phones together
and estimate the force of the bump. Without any secret
information to identify the pair of phones to the server, an
attacker can submit similar information about a bump to
the server. When presented with similar information, the
server may transfer data between the wrong phones. We
demonstrate how an attacker under realistic conditions can
use this approach to launch a MitM attack against Bump.
Other works have also suggested using accelerometers or vi-
brators and accelerometers to facilitate an exchange of in-
formation between phones [6,9,10,13,17,23]. However, our
attack on Bump and prior work [8] demonstrate that a phys-

!Popularity is based on data from http://techcrunch.com/
2011/01/19/iphone-ipad-top-app-downloads/ and http:
//www.androidapps.com/ which use download count to de-
termine popularity. According to the Bump blog, over 25
million users have installed Bump.



ically present attacker may be able to violate the secrecy of
this channel, requiring a new approach to ensure security.

In the second part of this work, we demonstrate how
phones can leverage accelerometer readings to assist in the
secure exchange of information while maintaining the lim-
ited user involvement offered by Bump. We propose Shake
on It (Shot), a protocol designed specifically for smartphones
that requires little user interaction. The novel idea is to use
phones’ vibration function and accelerometers as an authen-
tic, but not secret, human-observable communication chan-
nel. The phones leverage data exchanged on this channel to
verify data exchanged over the wireless channel. Only when
the two phones are in physical contact can they communi-
cate via the vibration-to-accelerometer channel, providing
demonstrative identification to the users of the devices ex-
changing information [1]. If a remote party (one not in phys-
ical contact) tries to inject information on the channel, users
will notice the additional vibrations (a potential attack) and
stop the exchange. Since attackers can eavesdrop on this
channel [8] and control the wireless channel, the phones use
data from the vibrated exchange and cryptographic opera-
tions to authenticate subsequent exchanges over the wireless
channel, without users having to compare any information.
When two people run Shot, they have to perform only three
simple tasks: select what data is to be exchanged, hold the
phones together until the phones beep to indicate comple-
tion, and cancel the exchange if they feel vibrations from
devices other than the two phones. We argue that Shot
occupies a new point on the spectrum of exchange proto-
cols, providing greater security than comparably convenient
protocols, and greater convenience than comparably secure
protocols.

We have implemented Shot on a commodity smartphone
and evaluated the performance of the protocol. Our analysis
and evaluation show that Shot provides a secure exchange
while requiring the same level of user effort and execution
time as the popular Bump protocol. When evaluated on the
DROID smartphone, Shot was able to reliably complete an
exchange in 15.8 seconds, on average.

In summary, this paper offers the following contributions:
(1) demonstration of an attack on Bump under realistic con-
ditions; (2) a description of the Shot exchange protocol for
smartphones, which leverages an authentic, but not secret,
vibrator-to-accelerometer channel; and (3) an implementa-
tion of the Shot protocol on a smartphone.

2. PROBLEM DEFINITION

The goal of this work is to provide two people (users A
and B) who meet in person a user-friendly mechanism that
allows the authentic exchange of information (A’s informa-
tion T4 and B’s information Ig) using their phones (Pa and
Pg). After the exchange is complete, P4 will have received
Ip and Pp will have received I4, or P4 and Pp will both
detect with high probability that an error has occurred and
discard the information.

A user-friendly solution should require limited user in-
volvement and should complete execution in a reasonable
amount of time. The exchange should not, e.g., require users
to type several bytes worth of information into either phone
or compare a checksum (e.g., a string of hex digits [2,12,26],
a series of words [7], or a graphical image [14, 21]). User
studies have shown that a redesigned interface [25] or the
comparison of words or images [11] reduce the number of er-

rors, but still require non-negligible user involvement. The
desired level of user involvement is a simple action, such as
a physical gesture, that indicates to one phone which other
phone should be involved in the exchange. Solutions ex-
ist that require the user to take a photograph of the other
phone [18], shake the two phones together [6,10,13,17], or
simply point the phones at each other [1], but each solution
has drawbacks that negatively impact security or operation
(see Section 9 for a discussion of related work). Given the
wide acceptance of Bump, we consider the execution time
of a Bump exchange as a reasonable amount of time. De-
pending on the platform, Bump takes between 9.4 and 37.8
seconds. Section 8 has more details on the execution time
of Bump.

During an exchange, a malicious party M may attempt
to inject its own information (Iar) or other data into the
exchange such that P4 or Pp accept something other than
Ip or 14, respectively. A secure exchange allows P4 and Pp
to exchange I4 and Ip or detect the insertion of any other
information into the exchange with a high probability.

After discussing our assumptions, we give a detailed de-
scription of our attacker model.

2.1 Assumptions

In this work, we assume smartphones are equipped with
the hardware, software, and connectivity needed to execute
a Bump or Shot exchange.

Current smartphones are equipped with a vibrator and
an accelerometer to provide silent notifications to the owner
and to allow correct orientation of an image on a rotatable
screen. Smartphones also allow the installation of generic
software that can access the vibrator and accelerometer func-
tionality, and have Internet connectivity the majority of the
time via the cellular network or WiFi.

2.2 Attacker Model

An attacker’s goal during the smartphone exchange be-
tween phones P4 and Pg is to convince P4 or P to accept
information other than 4 and Ig. We consider an attacker
that may be in the same room as A and B, knows the value
of I4 and Ip, and has bounded computational capabilities.
We also assume any software on P4 and Pp is outside of the
attacker’s control.

We assume the attacker has control over the wireless chan-
nel between the two phones and is able to intercept, modify,
delay, or inject messages. However, the attacker does not
control human-observable channels between the two phones
(i.e., the visual or vibration channel). The attacker can ac-
curately eavesdrop on these channels, but users can detect
the attacker’s attempts to insert information on a human-
observable channel (i.e., insertion of a third phone into the
visual channel or shaking the phones to inject data onto the
vibration channel).

We assume an attacker knows a priori what information
the two users want to exchange. Since most users are ex-
changing contact information (e.g., phone numbers or online
account IDs), this information can often be found online.

It is infeasible for a computationally bounded attacker
to break various properties of different cryptographic prim-
itives of the appropriate strength. Hence, hash functions
with sufficiently long outputs are one-way and second pre-
image resistant (i.e., given a hash function h() and a hash
output y = h(x), an attacker is unable to find x or another



value z’ such that h(z') = y). We also assume digital signa-
tures are secure against selective forgery. This means that
without knowledge of the private key, it is infeasible for the
attacker to create a signature (o) for an attacker-selected
message m such that the corresponding public key verifies
the signature message pair (o, m).

3. Bump EXCHANGE PROTOCOL

In this section, we begin by describing the Bump ex-
change. We then explain why the exchange is vulnerable
and provide an analysis of our attack.

3.1 TheBump Protocol

The Bump exchange is meant to allow two phones (P4 and
Pg) to exchange information. During an exchange, the users
physically bump P4 and Pp together; each phone sends the
time, location, and force of the bump and the information
it wants to exchange to the bump server; the server uses the
information about the bumps to determine which phones
want to exchange information and returns to each phone
the other phone’s ID; and the users decide to complete the
exchange based on the ID. Based on information provided
on Bump Technology’s webpage (http://www.bu.mp) and
analysis of packets sent during a Bump exchange, we were
able to determine approximately how the Bump protocol
works. Figure 1 provides our understanding of the operation
of Bump for a single phone involved in a Bump exchange.

3.2 Vulnerabilitiesin Bump and Their Exploita-

tion

Bump is insecure due to three aspects: inaccuracies in the
measurement of the physical aspects of the bump, the abil-
ity of a sender to control the ID used during confirmation,
and server flexibility in accepting delayed bump requests.
Because of these issues, an attacker is able to successfully
launch a MitM attack.
Sensor Inaccuracies. Given limited sensor accuracy, the
phone is unable to know its exact location or how hard the
phone was bumped. Given inaccuracies in different phones’
clocks, the server is unable to know exactly when a bump
occurred. Without accurate information, the server must
use approximate matching, which can associate bumps that
occurred several meters apart, with different forces, and at
slightly different times. We were able to confirm that the
server will match bumps that differed in each of these three
aspects. This allows an attacker to block Pg’s bump request
and have the server match an attacker’s request with Pa.
However, a full MitM attack is not achieved because both
the confirmation question (“Connect with ID?”) and the
failure of Pg’s request allow users to detect the attack.
Spoofable ID. Circumventing the confirmation question
so that a MitM attack goes undetected in Bump is simple.
Since a participant controls the ID sent to the other phone
during an exchange, the attacker can choose the same ID
as the victim it is impersonating, but send it with different
accompanying data (e.g., the attacker’s email or public key).
Acceptance of Delayed Requests. Different networks
can cause different delays, such that the request from Pa
arrives before the request from Pg, which arrives long after
Pp claims to have bumped. Presumably because of such
potential delays, if no matching database entry exists, the
server will wait some period of time before responding to
Pa’s request, and will consider Pg’s request valid even if

it arrives substantially after its claimed bump time. At the
same time, the server will consider two requests a match even
if they report somewhat different times and bump values. In
short, Bump accepts both stale and approximate requests.

Pa Server

Time E

Figure 2: Timing of packet exchanges during the
attack on Bump (accelerometer and location infor-
mation omitted for clarity).

The Attack. An attacker with the ability to submit similar
bumps to the server, spoof legitimate users’ IDs, and delay
legitimate requests can successfully complete the following
MitM attack against Bump. Figure 2 sketches the attack.
After A and B bump phones, the attacker delays Pg’s re-
quest containing Ip and sends its own request imperson-
ating Pp with information Ins, and similar bump values.
The server associates the attacker’s request with Pa’s re-
quest, since no other similar entries exist in the database.
Next, the attacker forwards Pg’s delayed request and sends
a request impersonating P4 with information I5;, and the
same bump values. In response, the server associates those
two requests. Delay A, the duration by which the attacker
delays the server’s receipt of Pg’s request, is an important
parameter in the attack. If A is too short, the server will
correctly associate the legitimate users’ bumps or claim all
of the bumps were too similar and ask the phones to bump
again. If A is too large (> 3 seconds), the server returns an
error in response to the delayed request.

In the next subsection, we describe how such an attack can
happen in practice and empirically investigate the probabil-
ity of a successful attack based on different values of A.

3.3 Attack Implementation and Analysis

To successfully perform a man-in-the-middle attack against
Bump, an attacker must be able to observe the bump and
delay packets. A maliciously controlled access point (AP)
provides control of packets. In our attack setup, we use
a MacBook Pro with OS X 10.5 and Dummynet [5] as an
AP. The laptop is connected to the Internet via the ether-
net port and can forward packets from the WiFi network
to the Internet. In a real attack, the attacker could trick
users into associating with the attacker’s AP by selecting a
common SSID (e.g., “linksys”). By default, a phone will use
a WiFi network with a known SSID, rather than the cellular
network.

To evaluate the attack, we used real phones with three
different people to bump the two sets of phones. We used



Initialization:

1. Pa : loc <+ findLoc()

2. PAMﬂth : establish TLS

Exchange:

3. Ae\C’C"PA Abump t

4. P45 © Qhump, L, loc, I a

5 S : Imaten = match(apumyp, t, loc)
resp = Imatcn - 1D

6. S EPA :oresp

7. PA"SA If ((resp # 0) and

(resp # “Bump Again”))
“ Connect with resp? Yes/No”

The phone determines its current location via GPS or WiFi information.

The phone establishes a TLS connection with the server.

Bumping the phone induces an accelerometer reading ayum, at t.

The phone sends the acceleration, time, and location of the bump
and the user’s info to the server.

The server checks its database of recent bump requests for similar
bumps, and returns the ID field from the result.
resp = () when no match is found.
resp = “Bump Again” when > 1 match is found.

The server returns the ID of the match (or the error code).

After a successful match, the phone asks the user if they want to

connect with the other user. Otherwise, the user is

presented an error message.

8. The phone sends the user’s selection to the server. If both phones return “yes”, the server returns the other phone’s data.
If either phone returns “no”, the server tells the other phone the exchange was cancelled.

Figure 1: Operations during a Bump exchange where user A uses phone P4 to exchange information /4 using

the server S.

four iPhone? 3G smartphones running iOS version 4.2.1 and
Bump 2.4.0. Two humans bumped phones P4 and Pp to-
gether while another human played the role of the attacker
and tried to bump phones Py, and Py, together at roughly
the same time and with the same force. This was meant to
simulate an attacker observing victims across the room us-
ing Bump to exchange phone numbers at a bar or exchange
money to reimburse one user for the other user’s share of
a tab. Dummynet was configured to delay Pp’s and Par,’s
requests by A as part of the attack (see Figure 2).

To evaluate Bump, we varied the induced delay (A) from
0 to 3 seconds in increments of 0.5 seconds and ran 10 ex-
changes for each setting. During an exchange, a phone can
experience one of three potential outcomes:

SE Successful Exchange: The server returns a potential
match and asks if the user wants to communicate with
that ID.

BA Bump Again: The server finds multiple similar entries
and asks the phone to bump again.

OO Only One: The server is unable to find a similar entry
in the database. During analysis, we found that this
is also returned if the induced delay is large.

Based on the individual phones’ outcomes, we classify the
result of the attack as one of the following:

e Successful Exchange: P4 receives B’s information
(SE) and Pp receives A’s information (SE).

e Successful Attack: Pa receives the impersonation
of B (Inp) and Pp receives the impersonation of A
(Iar,). Both phones have outcome SE, but receive
attacker’s information.

2We used iPhones for our attack because at the time of our
analysis of Bump in February of 2011 iOS supported a more
recent and reliable version of Bump, version 2.4.0, while
phones with Android were limited to version 1.3.2.

e Detectable Attack: P4 receives the impersonation
of B (Imy), but Pp receives bump again or only one,
i.e., SE for A and BA or OO for B, depending on
whether A was too small or too large.

e Other: P4 and Pp receive Bump Again or Only One.
Neither phone experiences outcome SE.
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Figure 3: Attack Results on Bump with Varying
Values of A

Our results are summarized in Figure 3 and show that a
MitM attack against Bump is feasible. We found the optimal
induced delay (A) to be around 2 seconds. With that delay,
70% of the attacks succeeded. With less delay, the server
detects multiple similar requests and returns “Bump Again”.




With more delay, the server detects the long delay for Pp’s
request and instead of associating the request with Ins,,
returns an “Only One” response. For delays longer than
3 seconds, the attack is detectable; the server consistently
pairs 14 and Inr,, but returns “Only One” in response to Ip
and In,.

4. EXCHANGE GUIDELINES

This section discusses some of the lessons learned from
and problems encountered in Bump. Based on these, we
developed the Shake on It (Shot) exchange, described in
Section 5.

Server-based Communication: Smartphones are con-
nected to the Internet the majority of the time via the
cellular network or WiFi. By using a server to exchange
information, Bump circumvents some challenges associated
with trying to establish local communication. For example,
iPhones allow Bluetooth connections only to other iPhones
or computers.> Ad hoc communication over WiFi is another
option, but requires users of Android-based phones to sub-
vert the OS to enable phone-to-phone WiFi broadcast.* A
server allows smartphones from different vendors to com-
municate quickly and easily, without requiring the owner to
modify the operating system.

One drawback to using a server to communicate is that the
server needs to know which phones are trying to exchange
data. With wireless communication, the phones can assume
any broadcast data came from the other phone. Since all
phones using Shot share the same server, the server needs
a way to differentiate each pair of phones. As such, before
the phones communicate via the server, the phones must
agree on a value we call the “pair identifier,” which allows
the server to route traffic from one phone to the other.

Accelerometers as an Authentic Channel: A num-
ber of works use a bump, shake, or gesture to intuitively indi-
cate which phones are to exchange data [3,6,10,13,17]. The
accelerometer provides a way to convert physical interaction
into a label to identify potential endpoints to a server or to
derive a secret used to detect a MitM attack. This human-
observable communication also provides the users demon-
strative identification of the endpoints of the exchange.

Unfortunately, a physically present attacker can observe
the movements and leverage real-time motion tracking [15]
and high speed cameras to quantify the accelerations dur-
ing the bump, shake, or gesture. Once the accelerations are
known, the information the phones share lacks the secrecy
needed to secure communication. Rather than assuming se-
crecy, we need a protocol that can provide security and us-
ability with only authenticity.

Attack Detection on the Phones: Since attackers
may be able to observe any information received by the ac-
celerometer, the phones are unable to present any informa-
tion to the server that allows the server to isolate the correct
endpoints in an exchange. Without such a mechanism, the
phones may receive the wrong information, but are unable
to detect the error. Increasing user involvement by com-
paring the received data would solve the problem, but re-
duces usability. Instead, we want a protocol that allows the

3http://discussions.apple.com/thread.jspa?
threadID=1460770
‘http://code.google.com/p/android/issues/detail?
id=82

phones to detect reception of the wrong information from
the server, while limiting user involvement to something as
simple as putting the phones together.

Based on these observations, we need a protocol that be-
gins by establishing a pair identifier, but also provides an
easy way to verify authenticity. The phones can use the pair
identifier to exchange information using the server, and use
authentic information to verify the correct phones and data
were involved in the exchange, without requiring secrecy or
involving users in the verification.

5. THE Shakeon It (Shot) EXCHANGE

In this section, we describe Shot, a secure exchange proto-
col for smartphones that provides a user experience similar
to Bump. We leverage the smartphones’ vibration function
and accelerometers to transmit an authentic phone-selected
message from one phone to the other. This allows the phones
to bootstrap communicate via an untrusted server and ver-
ify received data without involving the user. In Section 5.1
we explain certain design decisions and provide an overview
of the protocol. Section 5.2 describes Shot in detail, and we
conclude this section with a security analysis.

The version of Shot presented here only ensures the in-
tegrity of the exchanged information. If secrecy is desired,
the two parties can use Shot to authentically exchange pub-
lic keys, and use those keys to establish a shared symmetric
key for encryption of information.

5.1 Shot Overview

Based on the guidelines in Section 4, we want a proto-
col that takes advantage of smartphones’ accelerometers for
demonstrative identification and authentic communication.
For Shot, we take this one step further and leverage the
smartphone’s vibration function to send a phone-selected
message to the other phone’s accelerometer. With this capa-
bility, the naive approach would be to have users hold phones
Pa and Pp together. Once together, P4 would vibrate 4
to Pp and Pp would vibrate Ig to Pa. Unfortunately, the
vibration-to-accelerometer channel is too slow for this naive
approach to be user friendly (see Section 7).

Several works explain how two parties can exchange data
over an insecure medium (e.g., a server) and use an authen-
tic channel (e.g., human comparison or vibration) to verify
the exchange, using a checksum derived from the exchanged
data [2,7,12,21,26]. However, these protocols require the
phones to exchange data before they can calculate the check-
sum. If using a server to communicate, the phones need
a pair identifier to communicate via the server, before the
phones use the vibration channel to exchange the checksum.
A protocol could use two long vibrations (one at the begin-
ning to exchange a pair identifier and another to exchange
the checksum), but vibrating all of that information would
be slow. Users could copy a pair identifier from one phone
to the other, but that is cumbersome.

Shot starts by using the vibration channel to send a mes-
sage that performs two functions: 1) acts as a pair identifier
and 2) acts as a pre-authenticator to verify the authenticity
of data exchanged from one phone to the other. Much like
Talking to Strangers [1] and Seeing-Is-Believing (SiB) [18],
Shot begins with the exchange of a pre-authenticator. How-
ever, Shot provides demonstrative identification and secure
exchange with a single pre-authenticator. After P4 vibrates
the pair identifier, the phones exchange data using the server



and confirm the exchange in the following fashion:

1. Pp uses the pre-authenticator/pair ID to verify that
a public key obtained from the server belongs to the
phone pressed against Pg.

2. Pa digitally signs 14 and a copy of the other phone’s
information, I, which Pa received from the server.

3. Pp verifies the signature from the server is a valid sig-
nature over the other phone’s information and its own
information (I and Ig). If the signature is correct,
Pp vibrates back a positive response to indicate that
the other phone signed a copy of the information Pgr
received and sent.

4. Pa uses the vibrated response to determine whether
the protocol completed successfully.

Shot uses two vibrated messages, since one vibration in each
direction is needed to achieve demonstrative identification
for both phones. The second vibration is a yes/no response
that can be quickly transmitted in order to maintain a short
execution time.

5.2 Shot Exchange

Shot provides a user-friendly way to exchange information
between smartphones by leveraging the authentic nature of
the vibration-to-accelerometer channel, communication via
a server, and the phones’ ample computational capabilities.
To minimize computation and communication over the vi-
bration channel each phone has a role. For the remainder
of this work, rather than P4 and Pgp, we call one phone
the Endorser (Pg) and the other phone the Verifier (Py).
After users select what data to exchange and phones’ roles
are agreed assigned, Shot consists of 4 phases: 1) exchange
of the pair identifier, 2) exchange of data via the server, 3)
signing the data, and 4) confirmation of the data. Figure 4
shows the steps associated with the Shot exchange.

[l Exchange of the Pair Identifier During the initial
phase, the phones exchange a pair identifier which boot-
straps communication through the server and allows Py to
verify Pg’s public key (K;E) later in the protocol. When
the protocol begins, Pr calculates a shortened hash of its
public key (Step 1). We limit the hash to 80 bits to bal-
ance security and time needed to transmit the value over
the vibration channel. After the users physically place their
phones together, Pg vibrates this hash (Step 2). This vi-
bration demonstrates to Py that the other phone in the
exchange has a public key that hashes to this value. Since
this hash is in practice unique, we can also use it as the pair
identifier to establish communication through the server.

0 Exchange via the Server Once the phones know how
to identify the pair to the server, the phones use the server
to exchange the Endorser’s public key and any other infor-
mation to be exchanged (Pg’s info Ir and Py’s info Iv).

During each transmission (Steps 3 & 4) and retrieval (Steps 5

& 6), the phone begins the connection by sending the pair
identifier (h). The server uses h to know how to record and
retrieve the information associated with a pair of phones. If
at any point a phone receives the wrong information from
the server (e.g., Py finds that Iy # Iy’ or h/ # h), the phone
assumes an attack has occurred and aborts the protocol.

[] Signing the Data Once Iz and Iy have been exchanged,
the phones start verifying the authenticity of the data. Pg

O Exchange of the Pair Identifier:
1. Pg : h= Hash(K;E)

2. PRSPy :h

O Exchange Via the Server

3. Pp — S Ih,K;E,IE

4. Py — S : h, Iv

5. S — Py s h, K;E/, Igt, Iyt

6. S— Pg s h, K;E/, Igt, Iyt

[ Signing the Data:

7. Pg 0= Sign(K};E,IEHIV/)
8 P — S : h,o

9. §S— Py 2 hiy ot

[J Confirmation of the Data:

10. Py :if(h == Hash(K;E/) and
11. Verify(or, K;E/7 Ig/||Iv))
result = “yes”
save(Ig!)
else result = “no”
12. Py "5 Pg  : result
13. Pg s if(result == “yes”)
save(Iv/)
14. Py, Py : Sound Tone

Figure 4: Shot exchange between Pr and Py utilizing
the server S. (X/ is used to indicate a potentially
modified value of X that has been transfered over
the attacker control wireless medium.)

uses its private key (Kp_) to sign the data it believes was
exchanged so that Py can detect whether the information
was modified in transit. Specifically, Pg signs the concate-
nation of its own information and the potential copy of the
Verifier’s information (Step 7). Pg then uses the server to
send the signature to Py (Steps 8 & 9).

[J Confirmation of the Data The final phase has three
checks to detect if the exchange was successful:

e Py verifies K}, belongs to the phone Py is pressed against.
e Py verifies that the owner of the authenticated public key
received Iy and sent the information received in Step 5.

e Pp verifies that the phone it is pressed against received a
valid signature, confirming that the data Pg signed in Step 6
is what each phone sent and received during the exchange.

This verification process begins by Py verifying that the
hash of the received public key matches the hash from the
vibration channel (Step 10). This checks whether the pub-
lic key Py received belongs to the phone physically pressed
against Py. After receiving the other phone’s public key,
Py verifies the signature from the server (Step 11). If the
public key and signature are correct, Py knows the data it
received came from the phone it is pressed against and that
that phone received Iy,. Py uses the vibration channel to
send a short confirmation to Pg (Step 12). This vibration
informs Pr whether the phone it is pressed against received
a valid signature (verified using Pg’s public key) over the ex-
changed data. Finally, the phones sound a tone to indicate
that the protocol has completed and users can stop holding
the phones together.

In the next section we describe why Shot is secure pro-



vided some properties of the underlying cryptographic prim-
itives and authenticity of the vibration channel hold.

6. SECURITY ANALY SIS OF Shot

For Shot to securely exchange information the following
four properties are necessary:

e The pre-authenticator received by Py was sent by Pg.

e Py can detect if it received a copy of K}'L'E or the wrong
public key.

e Pp is the only entity that can generate a signature
which K;{E verifies.

e Only Py can indicate to Pg whether the signature it
received verifies the information Py sent and received.

We discuss the properties needed from different cryptographic
primitives to fulfill the second and third properties before
discussing the authenticity of the vibration channel which is
needed to fulfill the first and last properties.

6.1 Cryptographic Primitives

If an attacker is unable to inject information onto the vi-
bration channel (see next subsection), a hash function that
is second-preimage resistant allows Py to verify it received
a copy of Pg’s public key. Given an authentic copy of Pg’s
public key, a signing algorithm that is secure against selec-
tive forgery allows Py to verify Pg received Py ’s information
and sent the information Py received.

If an attacker wants Py to accept a different public key,
the attacker has to find a different public key (K;M) such

that the truncated hashes are the same (i.e., Hash(K;E) =

Hash(K;M)). However, if the hash function is second-pre-
image resistant, it is infeasible for an attacker to find such
a public key, even if the hash is truncated to 80-bits [22].

Without a way to convince Py to accept a different public
key, an attacker needs to produce a signature over incorrect
exchange information that will verify with key K ;;E. If the
authentic public key were to verify an attacker-generated
signature for the message X | |Iv7 Py would believe the other
phone signed that message, indicating Pg sent X instead of
Ir. However, if the signature scheme used is secure against
selective forgery, it is infeasible for an attacker to produce
such a signature. Without a valid signature, Py will reject
the information and thwart the attack.

Provided the hash function and the signature scheme are
secure, the phones will detect any type of active attack
against data exchanged over the wireless channel. Once the
attack is detected, the phones will discard the information.
This fail safe operation does mean an attacker can launch a
Denial-of-Service (DoS) attack. However, DoS attacks are
outside of the scope of this work since the attacker could
also jam the wireless channel to prevent communication.

6.2 Vibration asan Authentic Channel

For Shot to be secure, only Pr and Py should be able to
send information on the vibration-to-accelerometer channel.
However, if an attacker were to send information on the
channel, a user could detect the vibrations and abort the
exchange. Without a way for attackers to send messages on
the channel, only Pg is able to send a pre-authenticator and
only Py is able to send confirmation of a valid signature.

Users can detect when other parties are trying to send
information on the vibration-to-accelerometer channel. The
two users know what phones are exchanging information,
and will detect if another device is vibrating against the
phones. Holding two phones together is an intuitive way
to indicate which phones should exchange information and
should experience a low rate of operator error. Instead, we
have to worry about the attacker remotely inducing vibra-
tions. However, unless the attacker can focus those vibra-
tions precisely on the phones, the user(s) holding the phones
will notice the additional vibrations and stop the exchange.
For example, consider an attacker that produces a loud tone
at a low frequency in an attempt to vibrate the two phones
remotely. The tone needs to be quite loud to induce vibra-
tions which are comparable to the vibrations from another
phone in direct physical contact.’ Even if the frequency of
the tone is below the human audible range, the users’ will
feel the vibrations and abort the exchange.

Without a way to break the security properties provided
by the underlying cryptographic primitives, an attacker must
find a way to inject a message on the vibration-to-accelerom-
eter channel to successfully subvert a Shot exchange. How-
ever, users are likely to detect attempts to remotely induce
vibrations, thwarting the attack.

7. Shot IMPLEMENTATION

In this section, we describe our implementation of Shot
for the Motorola DROID smartphone.

7.1 Shot for Android

Our implementation of Shot was written for and tested
on Motorola DROID smartphones with Android version 2.2.
However, the system can be ported to any mobile phone with
a vibration function and accelerometer. If installed on other
phones, effective bit rates for the vibrator-to-accelerometer
may change with different hardware based on access to vi-
bration functions® or accelerometers. In this section, we
describe how we achieved communication between phones
and between phones and the server, what library and pa-
rameters we used to perform cryptographic operations, and
how users run the protocol.

Communication between phones is implemented with the
android.os.Vibrator class to vibrate a phone, the android.
hardware.SensorManager to access the phone’s accelerom-
eter, and an android.hardware.SensorEventListener to
learn when the accelerometer has new data. With the DROID,
we used a simple on/off keying and tested varying bit lengths
from 60 ms per bit to 100 ms per bit to test the reliability of
the channel (see Section 8.2). For example, with 100 ms/bit,
the phone vibrates for 100 ms to transmit a 1. We use Reed-
Solomon encoding to allow the Verifier to recover from errors
during reception of the pair identifier. We use 8-bit symbols
and include 4 error-correction symbols. This allows the Ver-
ifier to recover from errors in 2 independent bytes. When
sending the confirmation, the Verifier transmits 2 bytes of 1s
to indicate “yes” or sends 0xC003 (2 ones, 12 zeros, 2 ones)
to indicate “no”. Given the redundancy in the message, the

5Audio engineers suggest using accelerometers as “contact
microphones” to reduce pickup from sources that are not in
direct physical contact [19].

SFor example, Apple limits the vibration functionaility ac-
cessible for applications on the App Store.



Verifier simply transmits the two bytes without any error-
correction. The Endorser only considers the confirmation a
“yes” if the confirmation contains a sufficiently long series of
consecutive 1s.

Communication with the server uses TCP sockets. The
phone connects to the server at the beginning of the protocol
and maintains a single TCP connection.

All of the cryptographic operations use the Bouncy Cas-
tle” Java package. We use SHA-1 to create the pre-authent-
icator and to verify the public key. 1024-bit RSA signatures
are used to sign and verify the exchanged information. One
could generate a new RSA key pair for each exchange. In-
stead, we generate a key pair during the first execution and
save the key pair for future executions to keep subsequent
execution times shorter and more consistent.

To run the protocol, all the users have to do is hold the
phones together back-to-back with one phone facing up and
press a button to start the exchange. This orientation pro-
vides good transmission between the phones’ vibrators and
accelerometers and allows the phones to automatically as-
sign Endorser or Verifier roles. Currently, the phone with
the screen facing down becomes the Verifier. The users hold
the phones together until the phones beep to indicate com-
pletion. The phones play a lighter tone to indicate success
and a harsher sound to indicate a failed exchange. These
tones are selected such that they do not alter the confirma-
tion on the vibration channel.

7.2 Java-Based Server

Instead of using local communication (Bluetooth or ad
hoc WiFi), Shot uses a server on the Internet to transfer
the majority of data between phones. Our server is a Java
program running on a desktop machine that listens for in-
coming connections and uses a database to store and look
up information based on the received hash value.

The server does not verify if any of the information is cor-
rect (e.g., hash a potential endorser key to verify it matches
the pair ID). The phones perform all of the verification.

8. EVALUATION

In this section, we evaluate the reliability of the vibration-
to-accelerometer channel used in Shot, and compare the per-
formance of Bump on both iPhone and DROID to Shot on
DROID. We also present some microbenchmarks to help ex-
plain differences in the execution times.

8.1 Microbenchmarks

Table 1 shows the average time required to perform net-
work and cryptographic operations on an iPhone 3G with
iOS 4.2.1 and a DROID with Android 2.2. Each value rep-
resents the average from 20 executions of the operation. We
measured the time needed to connect to the Bump server
over WiFi and send a kilobyte of information using TCP
without TLS, and the time needed to sign a random value
and verify the signature with 1024-bit RSA keys. The phones
exhibit similar network capabilities and require roughly 90
ms to establish a connection and send the data. However,
the DROID appears to have greater processing power. Sign-
ing is almost five times faster on the DROID than on the
iPhone (41.9 ms versus 201.5 ms). Verifying is also faster on
the DROID (7 ms versus 8.4 ms).

"http://www.bouncycastle.org/

Connect & | 1024 RSA | 1024 RSA
Platform | Send 1kB Sign Verify
iPhone 90.0 ms 201.5 ms 8.4 ms
DROID 91.2 ms 41.9 ms 7.0 ms

Table 1: Network and cryptographic performance.

Milliseconds per bit 60 80 100
Rate of successful transmissions | 0.53 | 0.67 | 0.94

Table 2: Impact of data rate on transmission relia-
bility.

8.2 Réliability of the Vibration Channel

To measure the reliability of the vibration channel, we
attempted to exchange the 112-bit message consisting of a
pre-authenticator and error-correcting codes while varying
the time needed to communicate one bit from the vibrating
phone to the other phone’s accelerometer from 60 to 100
ms and recorded how often the receiving phone could suc-
cessfully decode the message. The results of this test are
presented in Table 2. At 60 ms/bit, the receiver was able
to successfully decode the message 53% of the time. At 100
ms/bit, decoding was successful all but one time. The lim-
iting factor for using vibration and accelerometers for com-
munication appears to be the scheduling on the DROID: the
vibrator would not turn on and off promptly for intervals
smaller than 75 ms. Future smartphones with more control
over the vibrator and more sensitive accelerometers will en-
able more reliable delivery with smaller intervals. However,
more accurate accelerometers may increase the accuracy of
smartphone-based attacks that monitor vibrations to detect
keystrokes on the phone [4] or nearby keyboards [16].

8.3 Complete Protocol Execution Times

We measured the execution time of Bump (v2.4.0 on iPhone
and v1.3.2 on Droid) and Shot on Droid over the course of 10
successful exchanges. During our evaluation, all of the wire-
less communication was sent over the WiFi network. For
Bump, we measured execution time from when the applica-
tion was started until the phone received the other phone’s
information. For Shot, we measured the execution time from
when the application was started to the tone at the end of
Shot. Figure 5 summarizes the results of our evaluation.

The performance of Bump is highly platform dependent,
requiring an average of 21.0 seconds on the DROID and
10.4 seconds on the iPhone. The DROID appears to have
faster processing and similar network performance (see Sec-
tion 8.1), but appears to take longer to determine its lo-
cation. Our experiments were performed indoors and the
iPhone appears to quickly switch from trying to use GPS
to using WiFi to estimate its location before connection to
the Bump server. However, the DROID version of Bump
appeared to spend a variable amount of time trying to use
GPS before switching to using WiFi.

With fixed-size pre-authenticators and confirmation vi-
bration, Shot provides different execution times depending
on the encoding used. When compared to Bump on the
iPhone, Shot provides similar execution times when using
the the less reliable, 60 ms/bit encoding (9.9 to 12.8 sec-
onds). However, the more reliable version of Shot with 100
ms/bit encoding (15.1 to 16.9 seconds) is slower than the
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Figure 5: Average execution time for Bump and
Shot (error bar = one standard deviation).

version of Bump for the iPhone, but still faster than the
DROID version Note that our implementation of Shot was
not optimized for efficiency, and the purpose of this eval-
uation was simply to confirm that Shot could be executed
roughly as quickly as Bump.

9. RELATED WORK

Several works have examined the problem of how to ex-
change information or establish a shared secret between two
devices to secure the exchange of information. We dis-
cuss different categories of previous work according to the
mechanism used to provide security and discuss the user-
involvement and security of each.

Human Assisted Comparison A number of prior works
require the user to perform a comparison after the exchange
to detect an attack [2,7,12,21,26]. Since an attacker is un-
able to change the output on the screens or the value the
user enters into a device, this technique can successfully de-
tect MitM attacks. Many works focus on comparing a string
of hexadecimal digits [2,12,26]. However, Uzun et al. [25]
found usability issues with string comparisons (i.e., users
failed to detect attacks or indicated the strings were differ-
ent when they were the same). Other works have proposed
encoding the comparison value into a sentence [7] or im-
age [21] to improve usability. However, these schemes still
require users to perform a comparison and are vulnerable
to attacks when users click “Accept” without comparing the
strings, sentences, or images.

Exchange of Secrets A number of works assume the at-
tacker is unable to observe the users talking in the room
(e.g., sharing a password [2]), motion of the phones [6, 10,
13, 17], communication over the vibration channel [9, 23],
or communication over an electrical connection between the
devices [24]. Our threat model includes a more powerful at-
tacker who may be able to violate the secrecy of all but Sta-
jano and Anderson’s protocol [24]. Nearby parties can eaves-
drop on spoken communication to recover a password. Our
attack on Bump demonstrated how attackers can observe
and imitate simple movements. Mayrhofer and Gellersen
showed that it is possible to tune exchange algorithms to
be resistant to this kind of attack, but at significant cost
to the usability of the system: their system experienced a

10% failure rate of legitimate exchanges, and 16% of par-
ticipants were unable to ever successfully complete the pro-
tocols [17]. Beyond sacrificing usability to provide security
against a simple attacker, these protocols may be vulnerable
to more sophisticated attacks, such as those that use real-
time motion tracking [15] to reconstruct movements than
an unaided human could not. When the phones’ vibration
function is used, user involvement is limited since users only
have to hold the phones together, but it is still possible for
an attacker to eavesdrop on the vibration channel to acquire
the secret [8]. Stajano and Anderson use a wire or other elec-
trical connection between the two devices [24]. In that sce-
nario, the only way an attack will succeed is if the attacker
can control communication on the wire without the users
noticing. The drawback to this approach is that users have
to carry around cables in order to perform the exchange.
Observable Channel Between Devices Much like Shot,
other works have examined the use of a channel between two
devices that allow users to infer which parties are commu-
nicating. Prior works considered using IR [1] or light in the
visual spectrum [18,22] as authentic human-observable chan-
nels. If the hardware exists, these techniques can be used
on smartphones. However, IR is not available on Black-
berry, iPhone, or Android phones, which account for over
75% of all smartphones.® Seeing-is-Believing (SiB) [18] and
Saxena’s follow-up work [22] use the phone’s camera to pho-
tograph barcodes or film a blinking light. However, SiB is
a directional exchange, so users have to execute the pro-
tocol twice. Saxena’s protocol allows a complete exchange
with a single execution of the protocol. However, in addition
to filming on P4, the user has to confirm the exchange by
pressing a button on Pp. Shot allows phones to exchange
authentic information in both directions, without involving
the users to reposition the phones or press a button, if both
phones have vibrators and accelerometers.

10. CONCLUSION

The exchange of information between smartphones allows
users to play games, share contact information, and even
transfer money. In this paper, we presented a man-in-the-
middle (MitM) attack against Bump, the most popular smart-
phone exchange protocol. We analyzed our attack under
real-world settings and found that in some realistic scenarios
a malicious party can launch a MitM attack against Bump
and succeed 70% of the time.

We also presented Shot, a new secure and simple-to-use
smartphone exchange. Shot uses the phones’ accelerome-
ters and vibrators to establish a human-observable channel
between two phones that are held together. Since users can
feel the vibrations, this channel provides demonstrative iden-
tification of the devices participating in the exchange, and
allows users to detect if an attack is occurring (e.g., a remote
party is trying to vibrate the phones). Shot leverages asym-
metric cryptography to bootstrap authentic communication
over the higher-bandwidth wireless channel.

We implemented Shot and compared its execution time
and user experience to Bump. Our evaluation found that
Shot is comparably quick to Bump, while providing greater
security and placing similar demands on the user. As such,

8http ://blog.nielsen.com/nielsenwire/online_
mobile/mobile-snapshot-smartphones-now-28-of-u-
s-cellphone-market/



Shot represents a new point on the spectrum of exchange
protocols, providing improved security or reduced user in-
volvement when compared to existing solutions.
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