Image Biometric Verification in Spatial Frequency Domain

Vijayakumar Bhagavatula

Vijayakumar Bhagavatula

1

Acknowledgments

- Dr. Marios Savvides
- Dr. Chunyan Xie
- Jason Thornton
- Krithika Venkataramani
- Pablo Hennings
- Technology Support Working Group (TSWG)
 CyLab

Outline

- Motivation for Biometrics
- Use of spatial frequency domain --- Correlation filters
- Face recognition including face recognition grand challenge (FRGC)
- Iris recognition including iris challenge evaluation (ICE)
- Fingerprint verification
- Palmprint verification
- Cancelable biometric templates
- Conclusions

Motivation

- Recognizing the identity of a person can improve security of access to physical and virtual spaces
- Most current methods rely on passwords ("what you know"), ID cards ("what you have") that can be easily forgotten or stolen
- Identity recognition based on biometrics (e.g., Fingerprints, face, iris, etc.) focuses on "what you are"
- Biometrics: measurable, physical characteristics or behavioral traits used to identify or verify a person

Biometric Types

Courtesy: Prof. Arun Ross

Biometric Applications

Hajj pilgrims in Saudi Arabia

Fingerprint at checkout counter

Disney World

Ben Gurion Airport

Cell Phone with Fingerprint Sensor

Smart gun

Terminology

Verification (1:1 matching)

- Am I who I say I am?
- Example application: Trusted Traveler Card, ATM smart card
- Identification (1:N matching)
 - Does this face match to one of those in a database?
 - Example application: Looking for suspects in crowds
- Recognition = Verification + Identification

Challenge: Pattern Variability

- Challenge: To tolerate pattern variability (some times called distortions) while maintaining discrimination
- Facial appearance change due to illumination
- Fingerprint image change due to plastic deformation

Eigenfaces

- Each dx d image represented as a point in a d^2 -dimensional space
- Performs principal component analysis (PCA) on training faces to build a subspace. PCA finds principal directions of variance in training data by diagonalizing the covariance matrix.

Ref: M. Turk and A. Pentland, "Eigenfaces for recognition," *Journal of Cognitive Neuroscience*, 3(1):71–86, 1991

Eigenfaces

- Eigenfaces is an image-domain technique; other image-domain techniques exist
- The 2-D Fourier transform is an information-preserving operation
- Spatial frequency-domain approaches (also called correlation filters) work very well for automatic target recognition (ATR); can biometrics benefit by operating in spatial frequency domain?

$$F(u,v) = \int \int f(x,y) e^{-j2\pi(ux+vy)} dx dy$$

Correlation Filters

Vijayakumar Bhagavatula

11

Peak to Sidelobe Ratio (PSR)

PSR invariant to constant illumination changes

 $PSR = \frac{Peak - mean}{mean}$ σ

Match declared when PSR is large, i.e., peak must not only be large, but sidelobes must be small.

CMU PIE Database

Ref: T. Sim, S. Baker, and M. Bsat, "The CMU pose, illumination, and expression (PIE) database," Proc. of the 5th IEEE Intl. Conf. on Automatic Face and Gesture Recognition, May 2002. Electrical & Computer ENGINEERING Vijayakumar Bhagavatula

13

CarnegieMellon

PIE Database, one face under 21 illuminations 65 subjects

Train on 3, 7, 16, -> Test on 10.

Match Quality = 40.95

Electrical & Computer

Occlusion of Eyes

Using the same filter as before, Match Quality = 30.60

Uncentered Images

Match Quality = 22.38

17

Impostor

Using someone else's filter PSR = 4.77

Electrical & Computer

Features of Correlation Filters

- Shift-invariant; no need for centering the test image
- Graceful degradation
- Can handle multiple appearances of the reference image in the test image
- Closed-form solutions based on well-defined metrics

Ref: B.V.K. Vijaya Kumar, A. Mahalanobis and Richard D. Juday, *Correlation Pattern Recognition*, Cambridge University Press, UK, November 2005.

CarnegieMellon

49 Faces from PIE Database with illumination variations

Vijayakumar Bhagavatula

20

Training Images

Three face images (dark left half face, normal face illumination, dark right half face) used to synthesize a correlation filter and an individual eigenspace to perform verification

Equal Error Rate using Individual Eigenfaces

Equal Error Rate using Individual Eigenface Subspace Method on PIE Database with Background Illumination

Peak-to-Sidelobe Ratio using Correlation Filter

Face Recognition Grand Challenge (FRGC)

To facilitate the advancement of face recognition research, FRGC has been organized by NIST

◄ 625 Subjects; 50,000 Recordings; 70 Gbytes

* P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek, "Overview of the Face Recognition Grand Challenge," *In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, 2005

FRGC "Gallery" Images

Controlled (Indoor)

16,028 gallery images of 466 people

FRGC "Probe" Images

Uncontrolled (Indoor)

FRGC "Probe" Images

Outdoor illumination images are very challenging due to harsh cast shadows

Uncontrolled (Outdoor)

FRGC Baseline Results

The verification rate of PCA is about 12% at False Accept Rate 0.1%.

FRGC Expt. 4 Performance

- Eigenfaces (Baseline) results provided by FRGC team
- > Performance measured at 0.1 % FAR (False Acceptance Rate)

Iris Biometric

Pattern source: muscle ligaments (sphincter, dilator), and connective tissue

Biometric Advantages

- Extremely unique pattern.
- Remains stable over an individual's lifetime.

Iris Verification

Source: National Geographic Magazine

Iris Recognition System in UAE

- "Largest national deployment so far of iris recognition ... now in its third year of operation."
- 17 air, land, sea ports; 6500 people/day
- Database of 420,000 iris codes of expellees
- Report zero false matches;
 0.2% false rejections
- Daugman, International Airport Review (2) 2004

Iris Segmentation

Standard iris segmentation: commonly used, proposed by Daugman¹

1 J.G. Daugman, "High Confidence Visual Recognition of Persons by a Test of Statistical Independence," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 15, no. 11, pp. 1148-61, Nov. 1993.

Vijayakumar Bhagavatula

34

Daugman's Iris Code Method

Circular Edge Detector Gabor Wavelet Analysis 2048 bits iris code

2D Gabor Wavelet Transform

 $\int_{r} \int_{\theta} G(r,\theta) I(r,\theta) r dr d\theta$ $G(r,\theta) = e^{-i\omega(\theta-\theta_0)} e^{-(r-r_0)^2/\alpha^2} e^{-(\theta-\theta_0)^2/\beta^2}$

5 parameters in Gabor function $\alpha, \beta, \omega, \theta_0$ and r_0

Hamming distance between iris codes used to decide authentic/impostor

Ref: J. G. Daugman, "High confidence visual recognition of persons by a test of statistical independence," *IEEE Trans. Pattern Anal. Machine Intell.*, Vol.15, pp. 1148-1161, 1993. 35

Iris Recognition: Correlation Filters

We use correlation filters for iris recognition. We design a filter for each iris class using a set of training images.

Determining an iris match with a correlation filter

NOT Independent Evaluation

Source: Jonathon P. Phillips, NIST

38

Iris On the Move (IOM)

Fingerprint Recognition

- 1880 Fingerprint identification in India by Herschel
- Fingerprint identification used in law enforcement
 - Automated Fingerprint Identification Systems (AFIS) FBI Standards
 - Minimum resolution of 500 dpi (inked as well as live scan)
 - ▼ Some companies: Bioscrypt, Sagem, etc.
- Current interest digital live-scan devices
 - Sensors optical, capacitive, electric-field, thermal, ultrasound
- Access control applications
 - cell phone, PDA, computer, bank ATM, buildings,..

Minutiae Extraction

- Minutiae ridge endings/bifurcations
- Minutiae extraction
 - Orientation field estimation
 - Ridge extraction
 - Thinning
 - Minutiae extraction

Minutiae

Ref: A. Jain, L. Hong, R. Bolle, "On-Line Fingerprint Verification," *IEEE Transactions on PAMI*, Vol. 19, pp. 302–314, 1997. **41**

Minutiae matching

- Minutiae Matching
 - Find a reference minutiae pair
 - Alignment of template and test sets
 - Minutiae matching by searching around an elastic bounding box

Ref: D. Maltoni, D. Maio, A.K. Jain and S. Prabhakar, *Handbook* of Fingerprint Recognition, Springer Verlag, New York, 2003.

Template Set

Test Set

NIST 24 Database

- Digital Video of Live-scan Fingerprint Data
- Optical sensor DFR-90 from Identicator technology of 500 dpi resolution
- Chosen data set plastic distortion set
 - **▼** The finger is rolled and twisted
- 10 fingers of 10 people (5 female and 5 male)
- 10 secs of MPEG2 movie per finger
 - ▼ 300 images of size 448x478 pixels (padded to 512x512 pixels)
- Chosen subset 10 thumb prints

Evaluation Protocol

- Training uniformly sampled images from the 300 images of a class
- Test correlate filters of each class against 300 images of all classes
 - ▼ Images of the same class as the filter 300 authentics per filter
 - ▼ Images of a different class from the filter 2700 impostors per filte

CarnegieMellon

K. Venkataramani, B.V.K. Vijaya Kumar, "Fingerprint verification using correlation filters", *Audio-and Video- based Biometric Person Authentication (AVBPA)*, UK, 2003 Vijayakumar Bhagavatula

Palmprints

- Palmprints have a conglomerate of features.
- These include principal lines, smaller creases or wrinkles, fingerprint-like ridges and textures.
- Palmprints can be easily aligned about fiducial points of the hand's geometry or shape.

Palmprint Verification

Experiment Specifications

- *PolyU* Palmprint Database
- **100 palms (classes)**
- Left hands flipped to look as right hands
- **3** images per class for training
- 3 images per class for testing
- 5 different experiments using region sizes with sides of 64, 80, 96, 112, and 128 pixels

Palmprint Verification Results

Results of OTSDF filter classifier using 100 classes.

n	Avg FRRz (M_1)	Avg FARz (M_2)
64	2.6% (8)	0.07% (23)
80	1.0% (3)	0.02% (6)
96	0.3% (1)	0.01% (3)
112	1.0% (3)	0.01% (3)
128	0.3% (1)	0.03% (10)

Avg FRRz: Average FRR at zero FAR. M_1 misses out of 300. Avg FARz: Average FAR at zero FRR. M_2 misses out of 29, 700.

Cancellable Biometric Filters

A biometric filter (stored on a card) can be lost or stolen

- Can we reissue a different one (just as we reissue a different credit card)?
- There are only a limited set of biometric images per person (e.g., only one face)
- We have to figure out a way to encrypt them and 'work' or authenticate in the encrypted domain and NOT directly in the original biometric domain.

Enrollment Stage

Authentication Stage

Test Image

Example of Encrypted Images

Authentic Person

Impostor Person

Correlation from an Authentic using Kernel 1

Correlation without Encryption

Correlation from an Impostor

Output from an Authentic using a Cancelled Kernel

Summary

Correlation filters

- Achieved excellent performance in face recognition grand challenge (FRGC)
- Performed very well in iris challenge evaluation (ICE)
- Also successful in fingerprint recognition and palmprint recognition
- All biometric modalities have their own strengths & weaknesses, suggesting that we may have to use multiple modalities in fielded systems
- Correlation filters provide a single matching engine for a variety of image biometrics --- making multi-biometric approaches feasible.

