Control Software Model Checking Using
Bisimulation Functions for Nonlinear Systems

James Kapinskj Alexandre Donzg Flavio Lerda,
Hitashyam Maké, Silke Wagnet, and Bruce H. Krogh
I Dept. of Electrical and Computer EngineerirtgDept. of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213
1{j pk3| hmaka| kr ogh@ce. cmu. edu} 2{adonzel flerdal sil kwa@s. cnu. edu}

Abstract— This paper extends a method for integrating Using a source-code model checker rather than simulation
source-code model checking with dynamic system analysis to to verify properties of real-time control systems offers a
verify properties of controllers for nonlinear dynamic systems. ,mper of advantages. Software verification applies to the
Source-code model checking verifies the correctness of cooit . .
systems including features that are introduced by the softare actual code that 'mplemems_the controller, rather Fhana}us
implementation, such as concurrency and task interleavingSets model of the control law. This assures that bugs introduced
of reachable continuous states are computed using numerica in the generation of the source code will be detected. It also
simulation and bisimulation functions. The technique as oigi- makes it possible to verify aspects of the system behavior
nally proposed handles stable dynamic systems with affineae introduced by the software implementation, such as con-

equations for which quadratic bisimulation functions can be d task interl . A del check fficientl
computed easily. The extension in this paper handles nonlaar currency and task interieaving. A model checker eiiciently

systems with polynomial state equations for which bisimuldion =~ Manages th? explpration of multiple paths Of execution,
functions can be computed in some cases using sum-of-square whereas a simulation run represents only a single system

(SoS) techniques. The paper presents the convex optimizatis trajectory. Model checkers identify states that have been
s o o, o et ' oo i preiusly St ey f e ysem does o
example of a superviéory control system. have to be execut_ed_.
In a manner similar to the work of [1] and [3], our
. INTRODUCTION approach uses the sublevel sets of bisimulation functions t
Verifying that a control system design satisfies given sped/€'ify the properties of entire sets of continuous-timgetra
ifications requires a representation of the real-time @bl tqnes based.on |nd|V|dua] numerical S|mulat|ons.. Thg exte
gorithm running on a computer interacting with the dynamigion to nonlinear dynamic systems presented in this paper
system being controlled. Usually control system desiges afS critical for verifying properties of supervisory conless
evaluated using numerical simulation. In simulation megdel that must operate correctly beyond the range of conditions
there is typically no explicit representation of the aceall- C0vered by linearized dynamic models. The paper makes the
time control program. Recently, we introduced a method dP!lowing contributions: (a) we formulate the optimizatio
verifying control systems using a source-code model checkBreblems that need to be solved to perform model-checking-
to manage the exploration of the state space of the contfd®Sed Vverification for nonlinear dynamic systems; (b) we
software [4]. In this approach, sets of reachable contisuo$hoW how SoS techniques can be applied to solve these
states are computed using numerical integration and tREoPlems; (c) we discuss and illustrate practical aspetts o
concept of bisimulation functions proposed by Girard angchieving effective computational results in the contéxio
Pappas [3]. The technique described in [4] handles stable dygrification procedure; and (d) we illustrate the approah f
namic systems with affine state equations for which quagirafi €x@mple of a supervisory control system for a nonlinear
bisimulation functions can be computed easily. This papé&ynamic system. The concluding section discusses diretio
presents an extension of our model checking technique f@r further research on the theory of model checking for
nonlinear systems with polynomial state equations for tvhiccontrol system software and on methods for improving the
bisimulation functions can be computed in some cases usiRg'fermance of our model checking tool.

sum-of-squares (SoS) techniques [6], [1]. [l. VERIFICATION OF CONTROL SOFTWARE

This research was sponsored by the Air Force Office of Stienti This section briefly reviews the verification algorithm

Science Foundation (NSF) under grant no. CCR-0411152, tpasGale

Systems Research Center (GSRC), Semiconductor Researglor&@mn (SDCS) comprising a plant described by dynamic state

(SRC), the Naval Research Laboratory (NRL), and the Gendatbrs equations and a controller implemented as software that
Colla}boratNe Research Lab at CMU. The views and conclu;stmntamed periodically updates the commands to the plant. The behav-
in this document are those of the author and should not bepheted as . f th I b d inistic d K
representing the official policies, either expressed orliedp of AFOSR, lor of the controller may be nondeterministic due to tas

NSF, GSRC, SRC, NRL, GM, or the U.S. government. interleaving.

A state s of an SDCS consists of eontrol location L,
which corresponds to a location in the control software, a T
valuation of the controller variables and a valuation of the Vel :

. . . Fail S Fail

plant variables. The pairg = (L, v) is called thecontroller 4
state and x is called theplant state We will denote the Xy {
SDCS state by eithes = (¢,x) or s = ((L,v),x). The :
controller executes periodically at multiples of the sampl v, : X,
time t,. We assume that the time required to execute the s'r/» S3
control program is negligible relative to the sampling pdri X, ? L/ Fail
ts. A controller transitioncorresponds to the execution of an g F
atomic operation in the control program, which takes the con " X,
troller to a new control state. When the controller executes Fail
at a sampling instant, several controller transitions caun X, So'_/_»sl
We assume that every sequence of controller transitions sta V4
at aninitial control location L;y;ti. @and eventually terminates
in a finite number of controller transitions at tfieal control
location Lg,.. No controller transition is allowed from
control location Lg,,. Since we assume that the control
program execution time is negligible, the plant state does
not change while controller transitions occur.

Plant dynamics are described by state equations of ti§afe by using bisimulation functions (presented formatly i

form x = f,(x), where the plant dynamick, (-) depend on the following section) to compute sets of safe plant states
the valuation of the controller variables Let ¢&X : R — around the points in a trace. These sets correspond to traces

R" denote a solution to the initial value problekft) = that are in proximity of the visited trace and are guaranteed
fv(x(1)),x(0) = xo. We assumef,(-) is differentiable and to be safe. When the algorithm reaches a state within a safe

that the solutioreX°(-) to the state equation for givenand Set, the corresponding trace is pruned.

xo always exists and is unique.#lant transitionfor givenv The algorithm computesafe setssurrounding points on
andx, corresponds to the evolution of the dynamical systerifie simulation traces and propagates them backwards from
for the sampling time,, from x, to £X°(t,). Plant transitions the end points. A set of plant states is a safe setfor

are allowed only from control locatiohs,. (i.e., when the controller state; and time bound- if and only if for every
controller's execution has terminated). Controller vialés plant statex € X, every trace of the SDCS starting (@t x)

do not change during plant transitions but the control locat Of duration less than or equal todoes not reach a state in

is reset toLiniia at the end of a plant transition. the Fail set.

A trace of an SDCS is a finite sequence of states= In general, given a dynamical system and two initial states
s0...8x such thats, — sz, corresponds to either a that are in proximity to each other, the trajectories starti
controller transitionor a plant transition The duration of at those states may diverge. Bisimulation functions were
a trace is given by the number of plant transitions multiplie introduced by Girard and Pappas as a way to extend the
by the sampling timet,. Figure 1 illustrates traces of an notion of bisimulation relations from discrete systems to
SDCS. The plant states correspond toth@ndz, axes. The continuous systems [2]. We use bisimulation functions to
vertical axis corresponds to the controller variablesnPla determine safe sets of plant states and then to propagate saf
transitions are represented by continuous arrows; seqaenésets backward in time along plant transitions.
of controller transitions frond.;,;;.1 t0 Lana are represented To characterize the control program behavior for sets of
by dotted arrows. continuous states we define the notionpsbgram equiva-

Bounded-Time Safetytet Fail denote a set ofail lence Let the set of discrete successors of a statex),
statesfor the SDCS. The property we want to verify isdenoted byQ(q,x), be the set of controller states such
bounded-time safety: Given a time boufid (assumed to that (¢,x) — (¢,x) is a controller transition. Given two
be a multiple of the sampling periad) and a set of initial plant statesx’ and x” and a controller statg, we say
states/, we want to prove that no trace of the SDCS thathat x’ and x” are program equivalent at, denoted by
starts at an initial stats, € I and whose duration is less x’ ~, x”, if and only if the set of discrete successors of
than the time boun@ contains a system state that isRail. (¢,x’) is equal to the set of discrete successorgqk’),

Our approach for checking bounded-time safety of ahe., Q(¢,x') = Q(q,x”). The equivalence class &f with
SDCS is based on performing simulations of a subset oéspect tox,, denoted b){x’]%q , is a set of plant states that
its traces while pruning some of the traces by mergingannot be distinguished by the program (i.e., the program
states. Model checking merges only identical states, whilgenerates the same successors for all states in the set). The
our approach performs a merge also when two states arquivalence classes of the program equivalence relatien ar
in proximity to each other, provided the pruned traces angsed to compute a safe set for a given state given the safe
guaranteed to be safe. The pruned traces are shown to dms for the states reachable from it by performing corroll

Fig. 1. An illustration of the traces of an SDCS. Solid arrawepresent
plant transitions. Dotted arrows represent sequencesnifatier transitions.

transitions. A multivariate polynomialp(x) : R” — R, is a sum-of-
The algorithm presented in [4] assumes that plant dysquares (SoS) if there exists polynomiajéx) : R” — R,

namics are provided as stable, affine state equations, fiar i € {1,...,m}, such that
which quadratic bisimulation functions can be computed by m
solving Lyapunov equations. Sublevel sets of the computed p(x) = Z s2(x).

bisimulation functions (defined in the next section) areduse
to approximate the safe sets computed by the algorithm.
The technique requires several optimizations be perform
on the fly. These are needed when propagating the safe s
backward along a trace. The two basic operations requir
are: (i) maximizing the size of a sublevel set subject to
set of constraints; and (i) maximizing the size of a sublleve’
set so that it remains within a given sublevel set. Section \' F . .

or problems where we require that a polynomial be

addresses how these operations can be performed for a C'B&%itive, we instead require that the polynomial be a SoS,

of nonlinear systems. which is an easier problem to solve. For the computation
I, BISIMULATION EUNCTIONS of a bisimulation functiony for a dynamical systenx this

: means that, instead of computing such that (1) and (2)
To perform the algorithm described in Sec. Il, a bisim$old, we computey such that

ulation function must be computed for each possible value (

Jj=1

t S be the set of all SoS. Efficient techniques exist

determining that a polynomial is a SoS [6], [7], [5].
S0, optimization problems involving constraints redudy
H1at polynomials be SoS can be posed as semi-definite
rogramming problems and solved using efficient numerical
chniques.

of the controller variables. The bisimulation functions are ¢ € Sand — Dy £ —
used to produce conservative estimates of the set of relgchab
plant states. This section describes methods for computing
bisimulation functions for nonlinear systems.

We begin with the definition of a bisimulation function for
a dynamical system

2 (xl>+aif<xQ>) es. @

8X1 8xz

Assume that the plant dynamics and the bisimulation
function are polynomial. We select the degree and the form of
the bisimulation function (i.e., the degree and the monbmia
terms that occur in the polynomial bisimulation function)
Yo [x() = f(x(t),x € R"], and then pose a convex feasibility problem. The solution to
whose transition relation- is given by this problem identifies the coefficients in the bisimulation
A function such that the bisimulation function satisfies (Al a
x—x' iff 3¢:[0,¢] — R" such that)
€(0) =x, £(t) =x', andvt e [0,7]: () = f(£(D)) - For a given dynamic state equation, it may not be possible
] o])) _tofind a bisimulation function that satisfies (3) for the emnti
We define a bisimulation function to be a differentiablestate space. If we are only interested in behaviors within a
function ¢ : R" x R" — R that satisfies the following gypset of the state space, as suggested in [6], we can loosen
requirements [3]: the restrictions on the bisimulation functions so that (8)sm
o(x1,%2) >0 and (1) hold only within a subset of the state space. The following
describes how this is accomplished.
Op(X1,X2) We first choose two functiong, andgs such that the set
8X1
for everyx;,x; € R”™,
Given a bisimulation functionp for a dynamical system represents a region of the state space for which we want to
¥, a statex € R” of ¥, and a real value > 0, thesublevel find a bisimulation functiof. The conditions (1) and (2) thus
setaroundx of sizer, denoted byV,, (x,r), is defined as become

Ny (x,7) ={z € R" | p(x,2) <1} . V(x1,%32) such thatg; (x1) > 0 A ga(x2) >0,)
QO(X17X2) > 0 and Dtp(xl,XQ) < 0.

dp(x1,%2)
6xz

f(x1) + flx2) <0 (2

{(x1,%2) € R" X R" | g1(x1) > 0 A ga(x2) >0} (4)

The following proposition ensures that our approximation _ _
of reachable plant states using bisimulation functions i§hen we relax (5) into the following SoS problem

conservative. formulation:
Proposition 1: Let ¢ be a bisimulation functiong;, xs €
n H t
R™ be arbitrary states oE,_t >0,r >0, andx; — x for Find ¢, Dy, ands; for 1 < i < 4 such that:
i € {1,2}. Then the following holds:
Xp € Nop(x1,1) = x5 € Ny (x),7) p(x1,%2) — s1(x1) g1(x1) — s2(x2) g2(x2) €S, (6)
The proof of this proposition is a direct consequence of —Dyp — s3(x1) g1(x1) — s4(x2) ga(x2) €S, 7)

Corollary 1 of [3]. In the following, we present a technique _ .
for computing bisimulation functions for a class of nonlin- si(x) €8 Viefl,...4. (8

ear systems using sum-of-squares (SOS) teChmqueS Idsp”‘elNote that the technique generalizes in a straigthforwarg twaa set
from [1]. defined by an arbitrary number of functions.

It is easy to see that if (6), (7) and (8) are satisfied Let z be a state inR™ and consider the conjunction of
then (5) holds. Efficient numerical techniques can then baear constraints

used to solve the constraints (6), (7), and (8) [6]. The idea /\ 17x < d;,

of introducing the additional unknown polynomiats to ieT

solve this problem is a generalization of the so-calid

procedure[10]. for some setZ = {1,...,imas}, Where each; € R™ and

The form of the bisimulation must be selected before théi € R. To maximize the size of a sublevel setofroundz, -
coefficients can be computed. The bisimulation function thaVe (2), subject to these constraints, we solve the following
is computed can be constrained to have certain desiratfigtimization problem:
properties. Since we are ultimately interested in sublevel
sets of the bisimulation functions, it is essential to know
at least one point that is within each sublevel set. For every Subject to VX : /\[@(Zax) <r=1x<d]
N, (x,r), we callx the centerof N, (x,r). We select the =

form of the bisimulation function such that the center O‘fb\pplying an S-procedure and introducing a new unknown
every sublevel set of the bisimulation function is contdineyariaple \; > 0 for eachi in Z, we can relax the constraint

maximize r (20)

within the sublevel set. - . in (10) to the following:
Property 1: For everyx € R™ the following holds: if a
bisimulation function satisfies(x,x) = 0, then for every VX /\[(p(z,x) —r—=XN(1Tx —d;) > 0]
reR, x e N, (x,r). ieT
We choose the following form for the bisimulation func- . . .
tion: Becauseyp is a polynomial, the constraints can be further
relaxed to yield the following optimization problem with So
o(x1,%) = ZTMZ, (9) constraints:
\/_vhe?le Z is ? '\E/ec';:)r c:f)zlengzt;m vyith sntrieslzj fo_rI maximize . (11)
j €{1,...,m}. Each entryZ; of Z is given by a polynomial .
of the form ! subject to /\ [p(z,x) —r — Ni(1Tx — d;) €9
R _ hj €T
Zj = (w1 = w20)" X > 0 for each i € 7.
for h; € Nt andk € {1,...,n}, wherez; denotes the
k-th entry of the vector;, i = 1,2. In this case we have Sinceyp is a polynomial and the only decision variables are
¢(x,x) = 0 and Property 1 holds. rand);, (11) is an SoS program.

To compute the bisimulation functiop we select the To use sublevel sets of polynomial functions to perform the
polynomials inZ and the size of the matri¥l. The entries model checking technique described above, we must also be

of M are the decision variables. able to compute the maximum sized sublevel'sgt (z2, r2)
If we also have that eacH; is given by of a polynomial function such that it is contained within the
sublevel setV,, (z1,) of a second polynomial. We must
Zj = (215 = @25); solve the following optimization problem:
then the following holds: i.)/¢(:, -) is a pseudo metric (that .
is, one may have/p(x1,x2) = 0 for distinct valuesx; # ma)flmlze 2 (12)
xo) and ii.) the set\,, (x,) is ellipsoidal. subjectto Vx:

IV. OPTIMIZING POLYNOMIAL SUBLEVEL SETS [p2(22,%) <72 = ¢1(21,%) <.

The verification framework that we use requires that we Applying the S-procedure and introducing a new unknown

perform certain convex optimizations involving subleveiss variable A > 0 we can relax the constraint in (12) to the
and constraints imposed by the software. In this section, Wellowing:

describe how to optimize the size of a polynomial sublevel

set subject to constraints. The operations are used by our Vx: [p2(z2,%) — 2 — A(p1(z1,%x) —71) > 0]
verification technique to compute maximally safe sublevel])

sets and to perform the merging operation. We provide 8i"C€ 1 and ¢, are polynomials, the constraints can be

means by which the problems can be solved numericalfylrther relaxed, yi_elding the following optimization priem
using convex optimization techniques. with SoS constraints:

A. Optimizing Sublevel Sets maximize (13)
To compute safe sets, the sizes of a polynomial sublevel subject to @2(z2,x) — 12 — A(¢1(21,X) —71) €S
sets are maximized subject to the linear constraints from A > 0.

the software that characterize program equivalence sets.
The following describes how this optimization problem isSince po; and ¢, are polynomials and the only decision
formulated and solved. variables are, and)\, (13) is an SoS program.

V. EXAMPLE 16

Our verification technique is implemented using tt 1: / \
explicit-state source-code model checker Java PathFjgler . 005
We use the SoS tools built into the YALMIP optimizatiol % :/ % -01
package with the SeDuMi convex optimization packay A 015
to solve the optimization problems that arise during tl
verification [5], [8]. A Runge-Kutta numerical integratior o7
algorithm is used to provide the simulations of the nonline ™ ** ** & 22 2¢ 267 8 5g 22
system over sample periods of duratian (a) (b)

We consider a computer controlled system with two plar&ig. 2. (a) First bisimulation sublevel set computed dunegfication; (b)
state variables. The plant dynamics are derived from a®esult of first merging operation during the verification.
example in a previous paper [6]. The supervisory controller
measures the state of the plant and produces an output

that represents the desired system mode. In this model, theA fourth-degree polynomial bisimulation function was

supervisor represents a high-level controller that sw@h computed for each of the three system modes. Each bisimu-
modes of the lower-level controller (e.g., a PID loop W|thl

; . . . ation function was selected to have the form
a sampling rate that is fast with respect to the sampling ra

0.05

0.6 ~0.2

04 . ~0.25
.

e
of the supervisor). The purpose of the supervisory comroll o(x1,%) = ZTMZ,
is to move the system through a series of waypoints.

The system switches between three modes, beginning witthere
Mode 1. When the controller detects that the plant state is

- T — Y1
within the set To — Yo ,
(1 —y1)(z2 — y2)
it will switch to Mode 2. In Mode 2, when the controller (2 — y2)?

detects that the plant state is within the set)))
The polynomialss;(x) used in the constraints (6), (7), and

GUARDy_,3 ={x|1.5 <z1 <25A-1.5<z9 <—-0.5}, (8)were each selected to be second degree polynomials. The
o .) functionsg; (x) and g2(x) from constraints (6), (7), and (8)
it will switch to Mode 3. The dynamics for each mode ar€yqre chosen to define circular sets of radiusthat represent

as follows: regions of interest for each of the three modes.

Mode 1: For each of the SoS problems used to compute the
B —z1 — 223 bisimulation functions for Modes 1, 2, and 3, there were
fx) = [—Ty — T122 — 273 } ’ 235 parametric variables, 4 independent variables, 4 dinea
matrix inequality constraints, and 34 monomial terms. The
Mode 2: computation times for the SoS optimizations performed to
£(x) [2 — 11+ 2(x2 + 1)2] compute the bisimulation functions for each mode were 9.54,
—3 =3z + a1 + 1122 — 2(1 +22)3 |’ 9.43, and 10.58 seconds for Modes 1, 2, and 3, respecfively.

Mode 3: A time bound ofT;,, = 15.0 seconds with a sample

period oft, = 0.5 seconds was used for the bounded-time
fx) = [4 —2x1 + ;120 — 22 — 2(21 — 2)3 } _ verification. Figures 2 and 3 illustrate the results from the
1 -z +2(z1 — 2)? computations. Figure 2-(a) shows the result of the first-opti
I@&zation that was performed, in which the size of a sublevel
set was maximized such that it is contained witfilhVA L.
Figure 2-(b) shows the result of the first merging operation.
;\n this figure, the size of the sublevel set corresponding to a
point that is being merged is maximized such that it remains
within the sublevel set of the point that it is being merged
é{v‘lith. Figure 3 shows each plant state that was visited and

The system requirement is that once the plant has ente
the setFINAL = {x|1.5 < x; <2.5A0.5 < 29 < 1.5} and
the controller is in Mode 3, the plant should remain withi
FINAL until the time bound is reached. Also, the syste
should satisfy the safety constrain2.0 < z, < 2.0 for
0 <t< Tfinal-

The supervisory controller for this system is implemente o
by two concurrent tasks: one task determines the targ e sublevel set that corresponds to each visited state Not

o) . S at some of the sublevel sets are so small that they are not
pos!t!on based on a given list of waypoints; the other .Senéqslstinguishable from the points they are associated witle T
position commands to the plant. Due to the interleaving in Fia. 3 t SeBUARD GUARD

the two tasks, the plant might receive the updated targ f;ge;]]'\r;AL'g' represent s 1= Lo
position with a sampling period delay, and the system migH")t '

follow S“ghtly different traces every time a new waypoiat | 2All computation times are for a Intel Dual Core Il 2.16 GHz thiae
generated. with 2GB of RAM, running Windows XP.

VI. DISCUSSION

1.5 This paper presents how to use bisimulation functions
1l | for nonlinear dynamic systems to aid in the verification of
control software for sampled-data control systems using a
05l | source-code model checker. This extends previous work that
applied only to affine, stable dynamic systems.
N o .§ “4’ | Although the.theoretical fram_ework present_e.d ir? this pa-
per for performing model-checking-based verification ok
05} | promising, further research is needed to make this approach
d/ valuable for a broad range of control systems. We aim to
1t l expand the type of specifications that can be verified beyond
the simple safety specifications considered thus far. Aeroth
-1.50 ‘ ‘ ‘ | ‘ N direction for research is the use of abstractions that walken
-0.5 0 0.5 11 1.5 2 2.5 it possible to handle longer time horizons.
X

As noted in Sec. V, there are issues to be addressed in
the application of SoS tools to computation of bisimulation
functions for systems with polynomial dynamics. We found
that due to numerical issues, it is difficult to handle system
with more than a few state variables using current SoS

We performed the analysis both with and without stattOOIS' There are also many improvements to be made in

: . . e efficiency of the model checking implementation. Data
merging. The results, presented in Table I, show a significan : . . ; :
S L structures and the iterations in our current implememntatio
reduction in number of visited states and memory usage -
)) . : ~“should be optimized for performance.
Such a reduction was obtained with only six conservative
VIl. ACKNOWLEDGMENTS

state merges: a single merge can lead to a significant re-
The authors would like to thank Edmund M. Clarke for

Fig. 3. Results from verification technique.

duction in visited states since every state reachable fram t
merged state no longer needs to be visited. The approaghyiding useful comments during the preparation of this
as implemented showed a significant overhead in terms per.

running time, however, which could be reduced by further
optimizing the operations involving storing and lookup of
sublevel sets.

REFERENCES

[1] Antoine Girard and George J. Pappas. Approximate Bittmans for

Nonlinear Dynamical Systems. IRroc. of the 44th Conference on

Decision and Contrgl2005.

Antoine Girard and George J. Pappas. Approximation Metfor

Discrete and Continuous Systems. Technical Report MSE@530,

University of Pennsylvania, 2005.

[3] A. Agung Julius, Georgious E. Fainekos, Madhukar Anahtsup
Lee, and George J. Pappas. Robust Test Generation and Gevera

for Hybrid Systems. IrProc. of the 10th International Workshop on

TABLE |
RESULTS FROM BOUNDEDBTIME VERIFICATION WITH Tf;,q; = 15.0sec
WITH AND WITHOUT MERGING OF SAFE STATES

Model-Checking-Guided Model Checking
Simulation without Merging with Safe Sets and Merging

(2]

gﬁgﬁ%;ﬁfg 370‘15116 1561’5031% Hybrid Systems: Computation and Contr@D07.
Memory usagé 24 OMB 15.4MB [4] Flavio Lerda, James Kapinski, Edmund M. Clarke, and Brut.

Krogh. \Verification of Supervisory Control Software Usinga®
Proximity and Merging. InProc. of the 11th International Workshop
on Hybrid Systems: Computation and Contra008.

] J. Lofberg. Yalmip : A toolbox for modeling and optimizan in

We encountered several challenges in computing thé5
bisimulation functions. If a bisimulation function is natfnd
for a selected form o¥ in (9), there is no way to determine [6]
whether it is because no bisimulation function exists or
whether one exists for some other form @f A related [7]
issue is that of determining an appropriate analysis regiorib]
for the S-procedure. Methods for selecting these regiods su
that they contain the area of interest and satisfy (6) and (7?
should be investigated. Also, the behavior of the polyndmia
functions are sensitive to changes in the coefficient terms.
For some of our experiments, truncation of coefficient termig0]
to five decimal places caused the positive definite poly-
nomial bisimulation functions to produce negative values.
Care should be taken in manipulating the coefficients, and
work should be done to develop methods for making the
bisimulation function solutions more robust.

MATLAB. In Proceedings of the CACSD Conferentaipei, Taiwan,
2004.

Pablo A. Parrilo.Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and OptimizatioRhD thesis,
California Institute of Technology, 2000.

S. Prajna, A. Papachristodoulou, P. Seiler, and P. ArilBar SOS-
TOOLS: Sum of squares optimization toolbox for MATL2@&04.

J. F. Sturm. Using SeDuMi 1.02, A MATLAB Toolbox for Opti-
mization over Symmetric ConeQptimization Methods and Software
11/12(1-4):625-653, 1999.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungdoPark,
and Flavio Lerda. Model Checking ProgramAutomated Software
Engineering 10(2):203-232, 2003.

Vladimir A. Yakubovich, G. A. Leonov, and A. Kh. Geligtability of
Stationary Sets in Control Systems With Discontinuous iNeslities
(Series on Stability, Vibration and Control of Systems,i€Sea, Vol.
14). World Scientific Publishing Company, 2004.

