
Control Software Model Checking Using
Bisimulation Functions for Nonlinear Systems

James Kapinski1, Alexandre Donzé2, Flavio Lerda2,
Hitashyam Maka1, Silke Wagner2, and Bruce H. Krogh1

1 Dept. of Electrical and Computer Engineering,2 Dept. of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213

1{jpk3|hmaka|krogh@ece.cmu.edu} 2{adonze|flerda|silkwa@cs.cmu.edu}

Abstract— This paper extends a method for integrating
source-code model checking with dynamic system analysis to
verify properties of controllers for nonlinear dynamic systems.
Source-code model checking verifies the correctness of control
systems including features that are introduced by the software
implementation, such as concurrency and task interleaving. Sets
of reachable continuous states are computed using numerical
simulation and bisimulation functions. The technique as origi-
nally proposed handles stable dynamic systems with affine state
equations for which quadratic bisimulation functions can be
computed easily. The extension in this paper handles nonlinear
systems with polynomial state equations for which bisimulation
functions can be computed in some cases using sum-of-squares
(SoS) techniques. The paper presents the convex optimizations
required to perform control system verification using a source-
code model checker, and the method is illustrated for an
example of a supervisory control system.

I. I NTRODUCTION

Verifying that a control system design satisfies given spec-
ifications requires a representation of the real-time control al-
gorithm running on a computer interacting with the dynamic
system being controlled. Usually control system designs are
evaluated using numerical simulation. In simulation models,
there is typically no explicit representation of the actualreal-
time control program. Recently, we introduced a method of
verifying control systems using a source-code model checker
to manage the exploration of the state space of the control
software [4]. In this approach, sets of reachable continuous
states are computed using numerical integration and the
concept of bisimulation functions proposed by Girard and
Pappas [3]. The technique described in [4] handles stable dy-
namic systems with affine state equations for which quadratic
bisimulation functions can be computed easily. This paper
presents an extension of our model checking technique to
nonlinear systems with polynomial state equations for which
bisimulation functions can be computed in some cases using
sum-of-squares (SoS) techniques [6], [1].

This research was sponsored by the Air Force Office of Scientific
Research (AFOSR) under contract no. FA9550-06-1-0312, theNational
Science Foundation (NSF) under grant no. CCR-0411152, the Gigascale
Systems Research Center (GSRC), Semiconductor Research Corporation
(SRC), the Naval Research Laboratory (NRL), and the GeneralMotors
Collaborative Research Lab at CMU. The views and conclusions contained
in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of AFOSR,
NSF, GSRC, SRC, NRL, GM, or the U.S. government.

Using a source-code model checker rather than simulation
to verify properties of real-time control systems offers a
number of advantages. Software verification applies to the
actual code that implements the controller, rather than just a
model of the control law. This assures that bugs introduced
in the generation of the source code will be detected. It also
makes it possible to verify aspects of the system behavior
introduced by the software implementation, such as con-
currency and task interleaving. A model checker efficiently
manages the exploration of multiple paths of execution,
whereas a simulation run represents only a single system
trajectory. Model checkers identify states that have been
visited previously so that every run of the system does not
have to be executed.

In a manner similar to the work of [1] and [3], our
approach uses the sublevel sets of bisimulation functions to
verify the properties of entire sets of continuous-time trajec-
tories based on individual numerical simulations. The exten-
sion to nonlinear dynamic systems presented in this paper
is critical for verifying properties of supervisory controllers
that must operate correctly beyond the range of conditions
covered by linearized dynamic models. The paper makes the
following contributions: (a) we formulate the optimization
problems that need to be solved to perform model-checking-
based verification for nonlinear dynamic systems; (b) we
show how SoS techniques can be applied to solve these
problems; (c) we discuss and illustrate practical aspects of
achieving effective computational results in the context of our
verification procedure; and (d) we illustrate the approach for
an example of a supervisory control system for a nonlinear
dynamic system. The concluding section discusses directions
for further research on the theory of model checking for
control system software and on methods for improving the
performance of our model checking tool.

II. V ERIFICATION OF CONTROL SOFTWARE

This section briefly reviews the verification algorithm
presented in [4]. We considersampled-data control systems
(SDCS) comprising a plant described by dynamic state
equations and a controller implemented as software that
periodically updates the commands to the plant. The behav-
ior of the controller may be nondeterministic due to task
interleaving.

A state s of an SDCS consists of acontrol locationL,
which corresponds to a location in the control software, a
valuation of the controller variablesv, and a valuation of the
plant variablesx. The pairq = (L,v) is called thecontroller
state and x is called theplant state. We will denote the
SDCS state by eithers = (q,x) or s = ((L,v),x). The
controller executes periodically at multiples of the sampling
time ts. We assume that the time required to execute the
control program is negligible relative to the sampling period
ts. A controller transitioncorresponds to the execution of an
atomic operation in the control program, which takes the con-
troller to a new control state. When the controller executes
at a sampling instant, several controller transitions can occur.
We assume that every sequence of controller transitions starts
at aninitial control locationLinitial and eventually terminates
in a finite number of controller transitions at thefinal control
location Lfinal. No controller transition is allowed from
control locationLfinal. Since we assume that the control
program execution time is negligible, the plant state does
not change while controller transitions occur.

Plant dynamics are described by state equations of the
form ẋ = fv(x), where the plant dynamicsfv(·) depend on
the valuation of the controller variablesv. Let ξx0

v
: R →

Rn denote a solution to the initial value probleṁx(t) =
fv(x(t)),x(0) = x0. We assumefv(·) is differentiable and
that the solutionξx0

v
(·) to the state equation for givenv and

x0 always exists and is unique. Aplant transitionfor givenv

andx0 corresponds to the evolution of the dynamical system
for the sampling timets from x0 to ξx0

v
(ts). Plant transitions

are allowed only from control locationLfinal (i.e., when the
controller’s execution has terminated). Controller variables
do not change during plant transitions but the control location
is reset toLinitial at the end of a plant transition.

A trace of an SDCS is a finite sequence of statesσ =
s0 . . . sK such thatsk −→ sk+1 corresponds to either a
controller transition or a plant transition. The duration of
a trace is given by the number of plant transitions multiplied
by the sampling timets. Figure 1 illustrates traces of an
SDCS. The plant states correspond to thex1 andx2 axes. The
vertical axis corresponds to the controller variables. Plant
transitions are represented by continuous arrows; sequences
of controller transitions fromLinitial to Lfinal are represented
by dotted arrows.

Bounded-Time Safety:Let Fail denote a set offail
states for the SDCS. The property we want to verify is
bounded-time safety: Given a time boundT (assumed to
be a multiple of the sampling periodts) and a set of initial
statesI, we want to prove that no trace of the SDCS that
starts at an initial states0 ∈ I and whose duration is less
than the time boundT contains a system state that is inFail.

Our approach for checking bounded-time safety of an
SDCS is based on performing simulations of a subset of
its traces while pruning some of the traces by merging
states. Model checking merges only identical states, while
our approach performs a merge also when two states are
in proximity to each other, provided the pruned traces are
guaranteed to be safe. The pruned traces are shown to be

Fig. 1. An illustration of the traces of an SDCS. Solid arrowsrepresent
plant transitions. Dotted arrows represent sequences of controller transitions.

safe by using bisimulation functions (presented formally in
the following section) to compute sets of safe plant states
around the points in a trace. These sets correspond to traces
that are in proximity of the visited trace and are guaranteed
to be safe. When the algorithm reaches a state within a safe
set, the corresponding trace is pruned.

The algorithm computessafe setssurrounding points on
the simulation traces and propagates them backwards from
the end points. A set of plant statesX is a safe setfor
controller stateq and time boundτ if and only if for every
plant statex ∈ X , every trace of the SDCS starting at(q,x)
of duration less than or equal toτ does not reach a state in
the Fail set.

In general, given a dynamical system and two initial states
that are in proximity to each other, the trajectories starting
at those states may diverge. Bisimulation functions were
introduced by Girard and Pappas as a way to extend the
notion of bisimulation relations from discrete systems to
continuous systems [2]. We use bisimulation functions to
determine safe sets of plant states and then to propagate safe
sets backward in time along plant transitions.

To characterize the control program behavior for sets of
continuous states we define the notion ofprogram equiva-
lence. Let the set of discrete successors of a state(q,x),
denoted byQ̂(q,x), be the set of controller stateŝq such
that (q,x) −→ (q̂,x) is a controller transition. Given two
plant statesx′ and x

′′ and a controller stateq, we say
that x

′ and x
′′ are program equivalent atq, denoted by

x
′ ≈q x

′′, if and only if the set of discrete successors of
(q,x′) is equal to the set of discrete successors of(q,x′′),
i.e., Q̂(q,x′) = Q̂(q,x′′). The equivalence class ofx′ with
respect to≈q, denoted by[x′]

≈q
, is a set of plant states that

cannot be distinguished by the program (i.e., the program
generates the same successors for all states in the set). The
equivalence classes of the program equivalence relation are
used to compute a safe set for a given state given the safe
sets for the states reachable from it by performing controller

transitions.
The algorithm presented in [4] assumes that plant dy-

namics are provided as stable, affine state equations, for
which quadratic bisimulation functions can be computed by
solving Lyapunov equations. Sublevel sets of the computed
bisimulation functions (defined in the next section) are used
to approximate the safe sets computed by the algorithm.
The technique requires several optimizations be performed
on the fly. These are needed when propagating the safe sets
backward along a trace. The two basic operations required
are: (i) maximizing the size of a sublevel set subject to a
set of constraints; and (ii) maximizing the size of a sublevel
set so that it remains within a given sublevel set. Section IV
addresses how these operations can be performed for a class
of nonlinear systems.

III. B ISIMULATION FUNCTIONS

To perform the algorithm described in Sec. II, a bisim-
ulation function must be computed for each possible value
of the controller variablesv. The bisimulation functions are
used to produce conservative estimates of the set of reachable
plant states. This section describes methods for computing
bisimulation functions for nonlinear systems.

We begin with the definition of a bisimulation function for
a dynamical system

Σ : [ẋ(t) = f(x(t)),x ∈ R
n] ,

whose transition relation→ is given by

x
t
→ x

′ iff ∃ξ : [0, t] → Rn such that
ξ(0) = x, ξ(t) = x

′, and∀t̄ ∈ [0, t] : ξ̇(t̄) = f(ξ(t̄)) .

We define a bisimulation function to be a differentiable
function ϕ : R

n × R
n → R that satisfies the following

requirements [3]:

ϕ(x1,x2) ≥ 0 and (1)

∂ϕ(x1,x2)

∂x1

f(x1) +
∂ϕ(x1,x2)

∂x2

f(x2) ≤ 0 (2)

for everyx1,x2 ∈ Rn.
Given a bisimulation functionϕ for a dynamical system

Σ, a statex ∈ Rn of Σ, and a real valuer ≥ 0, thesublevel
setaroundx of sizer, denoted byNϕ(x, r), is defined as

Nϕ(x, r) = {z ∈ R
n |ϕ(x, z) ≤ r} .

The following proposition ensures that our approximation
of reachable plant states using bisimulation functions is
conservative.

Proposition 1: Let ϕ be a bisimulation function,x1,x2 ∈

R
n be arbitrary states ofΣ, t ≥ 0, r ≥ 0, andxi

t
→ x

′
i for

i ∈ {1, 2}. Then the following holds:

x2 ∈ Nϕ(x1, r) =⇒ x
′
2 ∈ Nϕ(x′

1, r)
The proof of this proposition is a direct consequence of

Corollary 1 of [3]. In the following, we present a technique
for computing bisimulation functions for a class of nonlin-
ear systems using sum-of-squares (SoS) techniques inspired
from [1].

A multivariate polynomial,p(x) : R
n → R, is a sum-of-

squares (SoS) if there exists polynomialssi(x) : Rn → R,
for i ∈ {1, . . . , m}, such that

p(x) =

m
∑

j=1

s2
i (x).

Let S be the set of all SoS. Efficient techniques exist
for determining that a polynomial is a SoS [6], [7], [5].
Also, optimization problems involving constraints requiring
that polynomials be SoS can be posed as semi-definite
programming problems and solved using efficient numerical
techniques.

For problems where we require that a polynomial be
positive, we instead require that the polynomial be a SoS,
which is an easier problem to solve. For the computation
of a bisimulation functionϕ for a dynamical systemΣ this
means that, instead of computingϕ such that (1) and (2)
hold, we computeϕ such that

ϕ ∈ S and − Dϕ , −

„

∂ϕ

∂x1

f(x1) +
∂ϕ

∂x2

f(x2)

«

∈ S . (3)

Assume that the plant dynamics and the bisimulation
function are polynomial. We select the degree and the form of
the bisimulation function (i.e., the degree and the monomial
terms that occur in the polynomial bisimulation function)
and then pose a convex feasibility problem. The solution to
this problem identifies the coefficients in the bisimulation
function such that the bisimulation function satisfies (1) and
(2)

For a given dynamic state equation, it may not be possible
to find a bisimulation function that satisfies (3) for the entire
state space. If we are only interested in behaviors within a
subset of the state space, as suggested in [6], we can loosen
the restrictions on the bisimulation functions so that (3) must
hold only within a subset of the state space. The following
describes how this is accomplished.

We first choose two functionsg1 andg2 such that the set

{(x1,x2) ∈ R
n × R

n | g1(x1) ≥ 0 ∧ g2(x2) ≥ 0} (4)

represents a region of the state space for which we want to
find a bisimulation function.1 The conditions (1) and (2) thus
become

∀(x1,x2) such thatg1(x1) ≥ 0 ∧ g2(x2) ≥ 0,

ϕ(x1,x2) ≥ 0 andDϕ(x1,x2) ≤ 0.
(5)

Then we relax (5) into the following SoS problem
formulation:

Find ϕ, Dϕ, andsi for 1 ≤ i ≤ 4 such that:

ϕ(x1,x2) − s1(x1) g1(x1) − s2(x2) g2(x2) ∈ S , (6)

−Dϕ − s3(x1) g1(x1) − s4(x2) g2(x2) ∈ S , (7)

si(x) ∈ S ∀i ∈ {1, . . . , 4} . (8)

1Note that the technique generalizes in a straigthforward way to a set
defined by an arbitrary number of functions.

It is easy to see that if (6), (7) and (8) are satisfied
then (5) holds. Efficient numerical techniques can then be
used to solve the constraints (6), (7), and (8) [6]. The idea
of introducing the additional unknown polynomialssi to
solve this problem is a generalization of the so-calledS-
procedure[10].

The form of the bisimulation must be selected before the
coefficients can be computed. The bisimulation function that
is computed can be constrained to have certain desirable
properties. Since we are ultimately interested in sublevel
sets of the bisimulation functions, it is essential to know
at least one point that is within each sublevel set. For every
Nϕ(x, r), we call x the centerof Nϕ(x, r). We select the
form of the bisimulation function such that the center of
every sublevel set of the bisimulation function is contained
within the sublevel set.

Property 1: For everyx ∈ Rn the following holds: if a
bisimulation function satisfiesϕ(x,x) = 0, then for every
r ∈ R, x ∈ Nϕ(x, r).

We choose the following form for the bisimulation func-
tion:

ϕ(x1,x2) = Z
T
MZ, (9)

where Z is a vector of lengthm with entries Zj for
j ∈ {1, . . . , m}. Each entryZj of Z is given by a polynomial
of the form

Zj = (x1,k − x2,k)hj

for hj ∈ N+ and k ∈ {1, . . . , n}, wherexi,k denotes the
k-th entry of the vectorxi, i = 1, 2. In this case we have
ϕ(x,x) = 0 and Property 1 holds.

To compute the bisimulation functionϕ we select the
polynomials inZ and the size of the matrixM. The entries
of M are the decision variables.

If we also have that eachZj is given by

Zj = (x1,j − x2,j),

then the following holds: i.)
√

ϕ(·, ·) is a pseudo metric (that
is, one may have

√

ϕ(x1,x2) = 0 for distinct valuesx1 6=
x2) and ii.) the setNϕ(x, r) is ellipsoidal.

IV. OPTIMIZING POLYNOMIAL SUBLEVEL SETS

The verification framework that we use requires that we
perform certain convex optimizations involving sublevel sets
and constraints imposed by the software. In this section, we
describe how to optimize the size of a polynomial sublevel
set subject to constraints. The operations are used by our
verification technique to compute maximally safe sublevel
sets and to perform the merging operation. We provide a
means by which the problems can be solved numerically
using convex optimization techniques.

A. Optimizing Sublevel Sets

To compute safe sets, the sizes of a polynomial sublevel
sets are maximized subject to the linear constraints from
the software that characterize program equivalence sets.
The following describes how this optimization problem is
formulated and solved.

Let z be a state inRn and consider the conjunction of
linear constraints

∧

i∈I

l
T
i x ≤ di,

for some setI = {1, . . . , imax}, where eachli ∈ R
n and

di ∈ R. To maximize the size of a sublevel set ofϕ aroundz,
Nϕ(z, r), subject to these constraints, we solve the following
optimization problem:

maximize r (10)

subject to ∀x :
∧

i∈I

[ϕ(z,x) ≤ r ⇒ l
T
i x ≤ di].

Applying an S-procedure and introducing a new unknown
variableλi > 0 for eachi in I, we can relax the constraint
in (10) to the following:

∀x :
∧

i∈I

[ϕ(z,x) − r − λi(l
T
i x − di) ≥ 0]

Becauseϕ is a polynomial, the constraints can be further
relaxed to yield the following optimization problem with SoS
constraints:

maximize r (11)

subject to
∧

i∈I

[ϕ(z,x) − r − λi(l
T
i x − di) ∈ S]

λi > 0 for each i ∈ I.

Sinceϕ is a polynomial and the only decision variables are
r andλi, (11) is an SoS program.

To use sublevel sets of polynomial functions to perform the
model checking technique described above, we must also be
able to compute the maximum sized sublevel setNϕ2

(z2, r2)
of a polynomial function such that it is contained within the
sublevel setNϕ1

(z1, r1) of a second polynomial. We must
solve the following optimization problem:

maximize r2 (12)

subject to ∀x :

[ϕ2(z2,x) ≤ r2 ⇒ ϕ1(z1,x) ≤ r1].

Applying the S-procedure and introducing a new unknown
variableλ > 0 we can relax the constraint in (12) to the
following:

∀x : [ϕ2(z2,x) − r2 − λ(ϕ1(z1,x) − r1) ≥ 0]

Since ϕ1 and ϕ2 are polynomials, the constraints can be
further relaxed, yielding the following optimization problem
with SoS constraints:

maximize r2 (13)

subject to ϕ2(z2,x) − r2 − λ(ϕ1(z1,x) − r1) ∈ S

λ > 0.

Since ϕ1 and ϕ2 are polynomials and the only decision
variables arer2 andλ, (13) is an SoS program.

V. EXAMPLE

Our verification technique is implemented using the
explicit-state source-code model checker Java PathFinder[9].
We use the SoS tools built into the YALMIP optimization
package with the SeDuMi convex optimization package
to solve the optimization problems that arise during the
verification [5], [8]. A Runge-Kutta numerical integration
algorithm is used to provide the simulations of the nonlinear
system over sample periods of durationts.

We consider a computer controlled system with two plant
state variables. The plant dynamics are derived from an
example in a previous paper [6]. The supervisory controller
measures the state of the plant and produces an output
that represents the desired system mode. In this model, the
supervisor represents a high-level controller that switches
modes of the lower-level controller (e.g., a PID loop with
a sampling rate that is fast with respect to the sampling rate
of the supervisor). The purpose of the supervisory controller
is to move the system through a series of waypoints.

The system switches between three modes, beginning with
Mode 1. When the controller detects that the plant state is
within the set

GUARD1→2 = {x| − 0.5 ≤ x1 ≤ 0.5∧−0.5 ≤ x2 ≤ 0.5},

it will switch to Mode 2. In Mode 2, when the controller
detects that the plant state is within the set

GUARD2→3 = {x|1.5 ≤ x1 ≤ 2.5 ∧−1.5 ≤ x2 ≤ −0.5},

it will switch to Mode 3. The dynamics for each mode are
as follows:
Mode 1:

f(x) =

[

−x1 − 2x2
2

−x2 − x1x2 − 2x3
2

]

,

Mode 2:

f(x) =

[

2 − x1 + 2(x2 + 1)2

−3 − 3x2 + x1 + x1x2 − 2(1 + x2)
3

]

,

Mode 3:

f(x) =

[

4 − 2x1 + x1x2 − 2x2 − 2(x1 − 2)3

1 − x2 + 2(x1 − 2)2

]

.

The system requirement is that once the plant has entered
the setFINAL = {x|1.5 ≤ x1 ≤ 2.5∧ 0.5 ≤ x2 ≤ 1.5} and
the controller is in Mode 3, the plant should remain within
FINAL until the time bound is reached. Also, the system
should satisfy the safety constraint−2.0 ≤ x2 ≤ 2.0 for
0 ≤ t ≤ Tfinal.

The supervisory controller for this system is implemented
by two concurrent tasks: one task determines the target
position based on a given list of waypoints; the other sends
position commands to the plant. Due to the interleaving of
the two tasks, the plant might receive the updated target
position with a sampling period delay, and the system might
follow slightly different traces every time a new waypoint is
generated.

1.4 1.6 1.8 2 2.2 2.4 2.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x1

x2

1.7 1.8 1.9 2 2.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x1

x2

(a) (b)

Fig. 2. (a) First bisimulation sublevel set computed duringverification; (b)
Result of first merging operation during the verification.

A fourth-degree polynomial bisimulation function was
computed for each of the three system modes. Each bisimu-
lation function was selected to have the form

ϕ(x1,x2) = Z
T
MZ,

where

Z =













x1 − y1

x2 − y2

(x1 − y1)
2

(x1 − y1)(x2 − y2)
(x2 − y2)

2













.

The polynomialssi(x) used in the constraints (6), (7), and
(8) were each selected to be second degree polynomials. The
functionsg1(x) andg2(x) from constraints (6), (7), and (8)
were chosen to define circular sets of radius2.0 that represent
regions of interest for each of the three modes.

For each of the SoS problems used to compute the
bisimulation functions for Modes 1, 2, and 3, there were
235 parametric variables, 4 independent variables, 4 linear
matrix inequality constraints, and 34 monomial terms. The
computation times for the SoS optimizations performed to
compute the bisimulation functions for each mode were 9.54,
9.43, and 10.58 seconds for Modes 1, 2, and 3, respectively.2

A time bound ofTfinal = 15.0 seconds with a sample
period of ts = 0.5 seconds was used for the bounded-time
verification. Figures 2 and 3 illustrate the results from the
computations. Figure 2-(a) shows the result of the first opti-
mization that was performed, in which the size of a sublevel
set was maximized such that it is contained withinFINAL.
Figure 2-(b) shows the result of the first merging operation.
In this figure, the size of the sublevel set corresponding to a
point that is being merged is maximized such that it remains
within the sublevel set of the point that it is being merged
with. Figure 3 shows each plant state that was visited and
the sublevel set that corresponds to each visited state. Note
that some of the sublevel sets are so small that they are not
distinguishable from the points they are associated with. The
boxes in Fig. 3 represent setsGUARD1→2 , GUARD2→3 ,
andFINAL.

2All computation times are for a Intel Dual Core II 2.16 GHz machine
with 2GB of RAM, running Windows XP.

−0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

Fig. 3. Results from verification technique.

We performed the analysis both with and without state
merging. The results, presented in Table I, show a significant
reduction in number of visited states and memory usage.
Such a reduction was obtained with only six conservative
state merges: a single merge can lead to a significant re-
duction in visited states since every state reachable from the
merged state no longer needs to be visited. The approach
as implemented showed a significant overhead in terms of
running time, however, which could be reduced by further
optimizing the operations involving storing and lookup of
sublevel sets.

TABLE I

RESULTS FROM BOUNDED-TIME VERIFICATION WITH Tfinal = 15.0 sec

WITH AND WITHOUT MERGING OF SAFE STATES.

Model-Checking-Guided Model Checking
Simulation without Merging with Safe Sets and Merging

Visited states 17,181 6,537
Running time 9.0 sec 151.0 sec
Memory usage 24.0MB 15.4MB

We encountered several challenges in computing the
bisimulation functions. If a bisimulation function is not found
for a selected form ofZ in (9), there is no way to determine
whether it is because no bisimulation function exists or
whether one exists for some other form ofZ. A related
issue is that of determining an appropriate analysis region
for the S-procedure. Methods for selecting these regions such
that they contain the area of interest and satisfy (6) and (7)
should be investigated. Also, the behavior of the polynomial
functions are sensitive to changes in the coefficient terms.
For some of our experiments, truncation of coefficient terms
to five decimal places caused the positive definite poly-
nomial bisimulation functions to produce negative values.
Care should be taken in manipulating the coefficients, and
work should be done to develop methods for making the
bisimulation function solutions more robust.

VI. D ISCUSSION

This paper presents how to use bisimulation functions
for nonlinear dynamic systems to aid in the verification of
control software for sampled-data control systems using a
source-code model checker. This extends previous work that
applied only to affine, stable dynamic systems.

Although the theoretical framework presented in this pa-
per for performing model-checking-based verification looks
promising, further research is needed to make this approach
valuable for a broad range of control systems. We aim to
expand the type of specifications that can be verified beyond
the simple safety specifications considered thus far. Another
direction for research is the use of abstractions that will make
it possible to handle longer time horizons.

As noted in Sec. V, there are issues to be addressed in
the application of SoS tools to computation of bisimulation
functions for systems with polynomial dynamics. We found
that due to numerical issues, it is difficult to handle systems
with more than a few state variables using current SoS
tools. There are also many improvements to be made in
the efficiency of the model checking implementation. Data
structures and the iterations in our current implementation
should be optimized for performance.

VII. ACKNOWLEDGMENTS

The authors would like to thank Edmund M. Clarke for
providing useful comments during the preparation of this
paper.

REFERENCES

[1] Antoine Girard and George J. Pappas. Approximate Bisimulations for
Nonlinear Dynamical Systems. InProc. of the 44th Conference on
Decision and Control, 2005.

[2] Antoine Girard and George J. Pappas. Approximation Metrics for
Discrete and Continuous Systems. Technical Report MS-CIS-05-10,
University of Pennsylvania, 2005.

[3] A. Agung Julius, Georgious E. Fainekos, Madhukar Anand,Insup
Lee, and George J. Pappas. Robust Test Generation and Coverage
for Hybrid Systems. InProc. of the 10th International Workshop on
Hybrid Systems: Computation and Control, 2007.

[4] Flavio Lerda, James Kapinski, Edmund M. Clarke, and Bruce H.
Krogh. Verification of Supervisory Control Software Using State
Proximity and Merging. InProc. of the 11th International Workshop
on Hybrid Systems: Computation and Control, 2008.

[5] J. Löfberg. Yalmip : A toolbox for modeling and optimization in
MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[6] Pablo A. Parrilo.Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, 2000.

[7] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

[8] J. F. Sturm. Using SeDuMi 1.02, A MATLAB Toolbox for Opti-
mization over Symmetric Cones.Optimization Methods and Software,
11/12(1-4):625–653, 1999.

[9] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model Checking Programs.Automated Software
Engineering, 10(2):203–232, 2003.

[10] Vladimir A. Yakubovich, G. A. Leonov, and A. Kh. Gelig.Stability of
Stationary Sets in Control Systems With Discontinuous Nonlinearities
(Series on Stability, Vibration and Control of Systems, Series a, Vol.
14). World Scientific Publishing Company, 2004.

