
Time Domain Verification of Oscillator Circuit

Properties

Goran Frehse, Bruce H. Krogh, Rob A. Rutenbar1

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA

Oded Maler2

VERIMAG
Centre Euation, 2 av de Vignate

38610 Gières, France

Abstract

The application of formal methods to analog and mixed signal circuits requires efficient methods
for constructing abstractions of circuit behaviors. This paper concerns the verification of properties
of oscillator circuits. Generic monitor automata are proposed to facilitate the application of hybrid
system reachability computations to characterize time domain features of oscillatory behavior, such
as bounds on the signal amplitude and jitter. The approach is illustrated for a nonlinear tunnel-
diode circuit model using PHAVer, a hybrid system analysis tool that provides sound verification
results based on linear hybrid automata approximations and infinite precision computations.

Keywords: verification, oscillators, analog circuits, hybrid systems, hybrid automata

1 Introduction

Formal methods are widely and successfully used to verify the correctness of
digital circuits. So far, no sufficiently powerful verification techniques exist
in the domain of analog and mixed-signal circuits. The complexity of the
verification problem for such circuits is immense for several reasons. Analog

1 Email: {gfrehse|krogh|rutenbar}@ece.cmu.edu
2 Email: Oded.Maler@imag.fr

Electronic Notes in Theoretical Computer Science 153 (2006) 9–22

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.02.019

mailto:gfrehse@ece.cmu.edu
mailto:Oded.Maler@imag.fr
http://www.elsevier.com/locate/entcs

designs have high-dimensional nonlinear dynamics. It is difficult to formally
define the desired behavior of such circuits. Their sensitivity to a variety
of physical effects makes it difficult to isolate their behavior and abstract
from their interactions. Given this complexity, the initial focus for formal
methods should be in the early, block-level design steps. In this paper, we
discuss methods to verify design properties of oscillator circuits, which play
a fundamental role as a basic design block in many practical applications, by
using methods and tools for reachability analysis.

Oscillator circuits are designed to produce a periodic signal with small
variations in amplitude and phase even when subject to parameter variations
and disturbances. We can guarantee conservative bounds on these variations
by applying formal verification techniques that are particularly suited to han-
dle nondeterminism and uncertainties. Our models, so-called hybrid automata
[1], capture continuous as well as discrete state behavior, and can be used to
model nonlinear dynamics. Verification tools exist that guarantee correctness
of the results by using exact arithmetic and overapproximations and recently,
progress has been made in the efficient computation of reachable states for
hybrid systems. We present a set of generic models for measuring and ver-
ifying bounds on amplitude variation and (phase) jitter. We provide some
experimental results with PHAVer, a hybrid systems tool that compute a
guaranteed conservative overapproximations of sets of reachable states [7]. As
a benchmark we use a tunnel diode oscillator circuit, as it appears in [10,9].

Model checking of nonlinear analog circuits was first proposed in [10],
where the continuous state space is discretized, and an abstract transition
relation is computed for the finite, discrete model. Conventional model check-
ing can be applied to this abstraction, but due to the overapproximation only
safety properties are preserved. Similarly to the approach in PHAVer, the
partitioning of the state space is adapted to the dynamics of the system. The
overapproximation of the transition relation in this approach is much larger
than the continuous-valued overapproximation of PHAVer. It is not guaran-
teed to be conservative, and striving for conservativeness in a discretization
based approach can quickly lead to an excessive loss of accuracy. In [9], ana-
log circuits were verified using the tool CheckMate [5], which computes an
abstract transition relation between user-defined regions of the state space.
Optimization is used to guarantee, as much as possible, the conservative-
ness of polyhedral enclosures of the reachable states, but it is not guaranteed
that the global optimum is found. The tool d/dt [2] computes the reachable
states for hybrid systems with affine dynamics by discrete time integration,
and guarantees conservativeness using an approach that maximizes the nor-
mal derivative of the vector field over the faces of the polyhedron. Sets of

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2210

states are efficiently represented with orthogonal polyhedra. The approach is
algorithmically sound because an under- as well as overapproximation is used.
Linear analog circuits have been analyzed with d/dt in [6]. All the above tools
are not numerically exact, and consequently not formally sound in their over-
approximations. While in PHAVer the integration error accumulates, both
CheckMate and d/dt have the advantage that the overapproximation error
does not accumulate over time. The formal background for the overapproxi-
mations of hybrid automata with nonlinear and affine dynamics originates in
the work of Henzinger et al. [11].

In the following section, we define oscillations and derive properties of os-
cillations that can be checked using reachability, such as amplitude and phaser
jitter. We show hybrid automaton models for monitoring such properties us-
ing reachability tools. In Sect. 3, we illustrate how PHAVer can be applied
to verify these properties, and provide some experimental results for a tunnel
diode circuit in Sect. 4. Finally, we draw some conclusions in Sect. 5.

2 Defining and Verifying Oscillations

Our goal is to take a model of the oscillator of the form ẋ = f(x, p, u), where
p represents parameters and u stands for external disturbances, and check
whether it exhibits oscillating behavior that is robust under variations in p and
all admissible values of u. As a first step we define oscillations, exactly and
approximately. The specification may vary from one application to another.
The point of the discussion is to study oscillatory behavior in the vicinity of
some periodic limit cycle, so we neglect transient behavior and assume a phase
error close to zero.

For the sake of simplicity, we assume that our requirements describe the
desired properties of a scalar signal ξ obtained as a projection of our system
onto one variable x of interest. This simplifies the representation of threshold
crossings and other behaviors. On scalar domains we will use x ≈ y to indicate
that |x − y| < ε without being specific about ε.

2.1 Reference Signal

The most rigid specification is given by a reference oscillatory behavior, say

ξ̄(t) = Asin(ωt + φ), (1)

to which ξ should be close in some metric d:

d(ξ, ξ̄) < ε.

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–22 11

Using the pointwise maximum distance

d(ξ, ξ̄) = max
t∈R+

|ξ(t) − ξ̄(t)|

is equivalent to the property

∀t ∈ R+ : ξ(t) ≈ ξ̄(t). (2)

This is a reachability property, as it is satisfied if the states of ξ over time
remain inside an ε-envelope around ξ̄, and can be computed in the augmented
state space of ξ, ξ̄ and t. Since the linear oscillator is only marginally stable,
it will be numerically difficult to simulate. Alternatively, one could use an
explicit, analytically computed, representation of the envelope. In practise,
the verification of this property is rather difficult. The infinite time interval
would have to be mapped onto a bounded interval [0, T], e.g., by resetting
the reference time for ξ̄ at t = T , which requires the explicit knowledge of T .
A conservative reachability analysis usually depends on some type of overap-
proximation, which would for many circuits result in period that can vary in
some interval unless the circuit is designed to be asymptotically stable with
respect to the period T . Since the quantification in (2) ranges over all time,
any deviation in the period would result in a prohibitively large distance be-
tween the two signals. In the following, we will therefore consider properties
that are more amenable to practical purposes.

2.2 Arbitrary T-Periodic Behaviors

A less specific property to consider is the periodic time T of ξ. Suppose we
know that all signals in question, clean and noisy alike, stay inside a range
for which the set X̄ is a good under-approximation. 3 Since x can occur more
than once in a period, we consider signals for which x occurs only once per
period in some combination with the signs of the higher derivatives, and for
which, to avoid pathological cases, at any time for some k > 0 the derivative
dk/dtkx(t) is nonzero. For simplicity, we denote x in the following as a state-
like tuple (x′, ��1, . . . , ��m) where x′ ∈ X, ��i∈ {≤,≥} and m + 1 is the order
of a system producing the signal. Furthermore, we write ξ(t) = x if ξ(t) = x′

and di/dtiξ(t) ��i 0 at time t. This will allow us to express properties of ξ
in terms of the time points at which values in X̄ occur. The classical way to
express periodicity is

∀t ∈ R+, n ∈ N : ξ(t) ≈ ξ(t + nT). (3)

3 One could define it as the largest set that all signals of interest visit infinitely often.

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2212

An alternative and almost equivalent definition (they are equivalent when
strict equality is used) can be made by counting the nth occurrence of a value
x of ξ. Let τ(x, n) = t iff the nth occurence of x in ξ is at time t. We will later
use this formulation to build monitor automata. Equipped with this function
we can say:

∀x ∈ X̄, n, m ∈ N : τ(x, n) ≈ τ(x, m) − (m − n)T. (4)

The difference between (3) and (4) is that we quantify in (3) over all positive
values of t, while in (4) we do so only for values in X̄, i.e., only for the values
of x that appear in every ξ.

Both (3) and (4) are not reachability properties on the original state-space
of the system, because they require infinite (bounded but dense) memory. Let
us first reduce them to their “one step” equivalents:

∀t ∈ R+ : ξ(t) ≈ ξ(t + T), (5)

∀x ∈ X̄, n ∈ N : τ(x, n) ≈ τ(x, n + 1) − T. (6)

The properties above are equivalent to (3) and (4) only if we use strict equality,
because approximate equality is not transitive. In the case of (5), the memory
consists of a function z : [0, T) �→ X such that at any instant t, z(t′) =
ξ(t − t′). For (6), the memory is a function w : X̄ × {≤, ≥}m �→ R+ with
w(x) = τ(x, nx), with nx being the number of times x already occured in ξ.

2.3 Reduction to Finite Memory

We now introduce approximations with finite memory to characterize these
properties. The idea is very simple: just replace the quantification over all t
or x by finitely many values for each period. Without loss of generality, let us
pick zero for both t and x, and some fixed tuple of signs �� for the derivatives.
The two formulae simplify to:

∀n ∈ N : ξ(nT) ≈ ξ((n + 1)T), (7)

∀n ∈ N : τ(0, n) ≈ τ(0, n + 1) − T. (8)

In (7) we say that we roughly get the same value every T time units. In
(8) we say that zero crossings are roughly T spaced. Mechanically speaking,
these properties can be checked by adding a clock to the system as well as
a memory variable which can remember either time or value. For the first
property, also called cycle-to-cycle amplitude variation, we remember the last
value of x at ξ(nT) and when the clock reaches T we compare the current value
of ξ with the previous one, reset the clock and update the memory. For the

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–22 13

(a) Single cycle (b) Absolute (c) Cycle-to-cycle

Fig. 1. Monitor automata for the amplitude variation

second property, called period jitter, we compare the value of the clock with
the memory every time we encounter ξ(t) = 0 and then reset the clock and
update the memory. In order for x to be encountered only once per period, we
take into account the derivatives (or other state variables), which are encoded
with discrete states.

2.4 Monitor Automata

Figures 1 and 2 show monitor automata for verifying bounds on the amplitude
variation and the phase jitter using reachability analysis. They contain a
special error location, and the properties are fulfilled if this error location is
not reachable. The simplest form of amplitude variation, the variation over
a single cycle, is checked by the monitor in Fig. 1(a). It has a clock that
measures the elapse of the cycle period T . If at the end of the cycle x can
be too far away from zero, an error location is reachable and the property
is violated. The monitor in Fig. 1(b) checks whether for all multiples of the
period T the state is in the vicinity of the zero crossing, i.e., whether

∀n ∈ N : ξ(nT) ≈ 0. (9)

The monitor is initially in the state cycling. A clock t measures the period,
and at t = T two transitions are possible: If x is close to zero, the clock is reset
and the monitoring continues. If x is outside of the ε-region around zero, the
monitor enters the error location and the property is violated. As discussed at
the end of Sect. 2.1, the absolute variation with respect to an explicit period
T is practical only in special cases. By contrast, the cycle-to-cycle variation
of the amplitude, i.e., property (7), is of practical usefulness since it allows
for some deviation from the period T . A corresponding monitor is shown in

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2214

Fig. 1(c). The value of x at t = T is compared against the value x̂ memorized
at the last period.

Monitoring the jitter is slightly more complicated, because we have to
uniquely identify one zero crossing per cycle. We demonstrate this for a second
order system, which has at most two zero crossings that can be distinguished
by the sign of the derivative ẋ. The monitor in Fig. 2(a) verifies the period
jitter, i.e., property (8). It has a clock t and features three locations, one
for positive values and one for negative values of x, and one error location.
The automaton is initially in the location cycling pos and assumes a positive
derivative for x. The first half of the cycle takes place in this location, until
the zero crossing is hit with a negative derivative ẋ, which triggers a transition
to the location cycling neg. There the second half of the cycle occurs, until the
zero crossing is hit with a positive derivative. At this point two transitions are
possible: If the clock t is within ε units of the period T , the clock is reset and
the cycle recommences in location cycling pos. Otherwise the monitor enters
the error state.

The monitor in Fig. 2(b) verifies the cycle-to-cycle jitter, i.e., the property

∀n ∈ N : τ(0, n + 1) − τ(0, n) ≈ τ(0, n) − τ(0, n − 1). (10)

It operates similarly to the monitor in Fig. 2(a), except that the previous cycle
time is stored in a variable t̂, and after each new cycle the time is compaired
against t̂ instead of T . We finally turn to the problem of obtaining bounds on
the amplitude variation and phase jitter instead of verifying a priori known
bounds. The monitor automata from Figs. 1 and 2 are easily adapted by
removing the error location. The bounds on the amplitude variation can then
be obtained from the states in the intersection of the set of reachable states
with the constraint t = T . For the bounds on the phase jitter, we regard the
reachable states in the location cycling neg, intersected with the constraint
x = 0.

3 Implementation in PHAVer

We provide experimental results for some of the monitor automata in the pre-
vious section. For computing the set of reachable states we use the verification
tool PHAVer [7], which can compute exact reachability for linear hybrid au-
tomata 4 (LHA) [1]. In linear hybrid automata, the invariants and transitions

4 The term linear hybrid automata is ambiguously used in literature, sometimes also refer-
ring to what we call affine dynamics.

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–22 15

(a) Period (b) Cycle-to-cycle

Fig. 2. Monitor automata for the phase jitter

given by linear predicates, and the dynamics by conjuncts of linear constraints

aT
i ẋ ��i bi, ai ∈ Z

n, bi ∈ Z, ��i∈ {<,≤, =}, i = 1, . . . , m. (11)

For this class of hybrid systems, the computation is exact algorithmically and,
being purely state-based, ranges over infinite time. PHAVer uses polyhedra to
represent sets of states, and exact arithmetic based on the Parma Polyhedra
Library [3] with robust unbounded integer representations. Because of the
exact arithmetic, the complexity of the linear predicates representing states
typically increases prohibitively through the course of the analysis. The size
of coefficients in the predicates can increase exponentially, and the number of
constraints in a predicate polynomially with each iteration of the fixpoint com-
putation. This complexity is managed by fully user-controllable limits on the
number of bits used in coefficients and the number of constraints. Predicates
that exceeded these limits are overapproximation conservatively with a sim-
pler predicate. In addition to reachability analysis, PHAVer supports compo-
sitional and assume-guarantee reasoning with a separate engine for computing
simulation relations, which can also be used to verify abstractions [8].

PHAVer can analyze systems with affine dynamics of the form ẋ = Ax + b
by overapproximating them with LHA. The overapproximation is guaranteed
to be conservative and algorithmically as well as numerically sound [11]. Affine

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2216

dynamics are specified in a relaxed form as a conjunction of constraints

aT
i ẋ + âT

i x ��i bi, âi ∈ Z
n. (12)

The relaxed form allows us to model uncertainties in the approximation or in
the parameters. E.g., for dynamics ẋ = ax, a parameter range of a ∈ [al, au]
yields a differential inclusion alx ≤ ẋ ≤ aux for positive values of x, and
aux ≤ ẋ ≤ alx otherwise. The two cases are modeled by introducing a separate
location for each case, thus “hybridizing” the model.

For the analysis, affine dynamics from (12) are overapproximated with
LHA dynamics from (11) by linear programming as follows. Let equalities be
modeled by the conjunction of two inequalities. If the invariant Inv(loc) of
a location loc is bounded, the set of ẋ that fulfill (12) is bounded by aT

i ẋ ��i

bi − p/q, where p/q is a rational

p/q = inf
x∈Inv(loc)

âT
i x, p, q ∈ Z.

This overapproximation introduces a loss of accuracy that depends on the size
of the location and the angular spread of the derivative vectors in the location,
i.e., the spatial angle of the widening of the vector field. To improve the
accuracy, locations are recursively split into two along a suitable hyperplane,
effectively partitioning the state space with a grid whose shape depends on
the choice of the splitting hyperplanes. They are prioritized according to a
set of criteria that aims at minimizing the number of partitions, i.e., locations
introduced by the splitting. Let Ẋ be the set of derivatives in a location. We
define the spread of the derivatives as

�(Ẋ) = arccos min
x,y∈Ẋ

xT y/|x||y|.

The partitioning can be adapted to the dynamics by choosing the hyperplane
that minimizes the spread of the derivatives, and stopping the splitting once
a lower threshold of the spread is reached. To restrict the partitioning to
the reachable set of locations, the splitting is recursively triggered for each
location when it is taken from the waiting list of the reachability algorithm,
but before the actual computation of the reachable states in the location.
Once a reachable location is split down to the lower thresholds of size and
spread, it remains fixed for the remainder of the analysis.

Figure 3 shows an example of the partitioning during the analysis. Starting
from a set of initial states at IL = 0.6mA the region is split until the initial
states are partitioned such that each location has a spread �(Ẋ) = arccos 0.85.
Then the set of reachable states is computed inside each location by applying

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–22 17

0.45 0.46 0.47 0.48 0.49 0.50
0.50

0.52

0.54

0.56

0.58

0.60

V_d [V]

I_
L

[m
A

]

0.45 0.46 0.47 0.48 0.49 0.50
0.50

0.52

0.54

0.56

0.58

0.60

V_d [V]

I_
L

[m
A

]

(a) Snapshot during compu-
tation

0.45 0.46 0.47 0.48 0.49 0.50
0.50

0.52

0.54

0.56

0.58

0.60

V_d [V]

I_
L

[m
A

]

0.45 0.46 0.47 0.48 0.49 0.50
0.50

0.52

0.54

0.56

0.58

0.60

V_d [V]

I_
L

[m
A

]

(b) Final result

Fig. 3. Reachable states and partitioning of the invariants

the time elapse operator. The result is shown in Fig. 3(a). The transitions
between the locations yield successor states that are put onto a waiting list.
The locations on the waiting list are partitioned, and the time elapse operator
is applied. The procedure is repeated until the fixpoint in Fig. 3(b) is obtained.

We model nonlinear circuit equations with piecewise affine differential in-
clusions in the form of (12). Partitioning the one-dimensional characteristics
of nonlinear components, e.g., diodes, into convex or concave sections allow
us to easily construct a linear envelope for each interval. This is achieved
by separating at the minima, maxima and inflexion points. Inaccuracies in
finding these points can be compensated by overlapping the sections (more
precisely, the invariants of the resulting abstraction), see [11] for more details.
Equations that don’t have nonlinear elements are modeled directly. The affine
model can then be analyzed in PHAVer, which during the analysis overapprox-
imates it with a LHA. The on-the-fly approach decisively improves the speed
and memory requirements of the analysis.

The monitor automata from the previous two sections are linear hybrid
automata, and are readily modeled in PHAVer’s textual input language. For
the automata with an error state, the reachability computation can be stopped
as soon as this state is reachable, which greatly improves the speed of trial-
and-error experiments.

4 Experimental Results

In this section, we present results from experiments with the tunnel-diode
oscillator circuit from [9]. We model the current IL through the inductor and
the voltage drop Vd of a tunnel diode in parallel with the capacitor of a serial
RLC circuit, which are in stable oscillation for the given parameters. The

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2218

Fig. 4. Reachable states of the tunnel diode circuit

state equations are given by

V̇d =1/C(−Id(Vd) + IL), (13)

İL =1/L(−Vd − 1/G · IL + Vin), (14)

where C = 1 pF , L = 1 μH , G = 5 mΩ−1, Vin = 0.3 V , and the diode current

Id =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6.01V 3
d − 0.992V 2

d + 0.0545Vd if Vd ≤ 0.055,

0.0692V 3
d − 0.0421V 2

d + 0.004Vd + 8.96 · 10−4 if 0.055 ≤ Vd ≤ 0.35,

0.263V 3
d − 0.277V 2

d + 0.0968Vd − 0.0112 if 0.35 ≤ Vd.

Following the procedure outlined in the previous section, a piecewise affine en-
velope was constructed for the tunnel diode characteristic Id(V). We choose
64 intervals for the range Vd ∈ [−0.1, 0.6] to yield sufficient accuracy and so
obtain a piecewise affine model for (13). It is modeled as a hybrid automa-
ton with Vd as an output- and IL as an input-variable, and consists of 64
locations, one for each interval. Equation (14) is affine, and is modeled as a
hybrid automaton with Vd as an input and a single location. Both models
are composed and analyzed in PHAVer. Figure 4 shows the states reachable
from a set of initial states given by Vd ∈ [0.42V, 0.52V], IL = 0.6mA. It also
shows the invariants (grey), of which the vertical lines correspond to the 64
intervals of the affine diode characteristic, and the rest of the partitioning

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–22 19

Fig. 5. Reachable states of the circuit and the amplitude monitor of Fig.1(a)

was generated during the analysis. The parameters of the algorithm were the
direction of the splitting planes, a minimum and maximum size for the loca-
tions, here 1/256th and 1/16th of the visible region, and a minimum spread
of the derivatives in each location of �min = arccos(0.999). To manage the
complexity, the coefficients of polyhedra are limited to 24 bit, and the poly-
hedra to 32 constraints. On an Intel Xeon processor with 2.8GHz and 4GB
RAM running a 32-bit Linux kernel the reachability analysis takes 72.8 s and
requires 126.7 MB RAM. The partitioning results in 2998 locations, of which
1892 are reachable.

We now apply reachability analysis to measure the single cycle amplitude
variation and the period jitter of IL(t). As described in Sect. 2.4, we use the
monitor automata of Fig. 1(a), respectively Fig. 2(a), with the error locations
removed to detect the period and zero crossing. We use an affine approxima-
tion of the diode characteristic with 128 partitions. The analysis was carried
out with parameters as before, except for a minimum location size of 1/512th
and a derivative spread of �min = arccos(0.99999). For measuring the am-
plitude variation, we assume a cycle time of T = 13.75 μs. The reachability
analysis takes 1880 s (1325 MB). The obtained set of reachable states IL(t) and
Vd(t), shown in Fig. 5, guarantees an amplitude variation between 0.532 mA
and 0.636 mA. For measuring the phase jitter, the zero crossing was assumed
to be at IL = 0.6 mA. There are two crossings per period, which we distin-
guish according to whether Vd > 0.25 V or Vd < 0.25 V. The reachable states,
shown in Fig. 6, guarantee the period to be between 13.52 μs and 13.86 μs.
The computation takes 1997 s (1463 MB).

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2220

Fig. 6. Reachable states of the circuit and the phase jitter monitor of Fig.2(a)

5 Conclusions

This paper presents a method for constructing monitor automata for oscillator
circuits based on the analysis of scalar signal properties related to the spec-
ifications of interest. Here we consider the amplitude and phase jitter. The
objective is to construct hybrid system models that are amenable to finite-time
reachability analysis. Typically reachability computations for hybrid systems
focus on the transient system behavior starting from a set of initial condi-
tions. The present work aims to verify properties of the asymptotic, “steady
state” behavior of a circuit. We are interested in extending this approach to
verify other properties that are commonly analyzed using frequency domain
techniques.

References

[1] Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis and S. Yovine, The algorithmic analysis of hybrid systems, Theoretical Computer
Science 138 (1995), pp. 3–34, a preliminary version appeared in Proc. 11th Int. Conf. Analysis
and Optimization of Systems: Discrete-Event Systems (ICAOS), LNCIS 199, Springer, 1994,
pp. 331-351.

[2] Asarin, E., T. Dang and O. Maler, The d/dt tool for verification of hybrid systems, in: Brinksma
and Larsen [4], pp. 365–370.

[3] Bagnara, R., E. Ricci, E. Zaffanella and P. M. Hill, Possibly not closed convex polyhedra and
the Parma Polyhedra Library, in: M. V. Hermenegildo and G. Puebla, editors, Static Analysis:
Proc. Int. Symp., LNCS 2477 (2002), pp. 213–229.

[4] Brinksma, E. and K. G. Larsen, editors, “Computer Aided Verification, 14th International
Conference, CAV 2002, Copenhagen, Denmark, July 27-31, 2002, Proceedings,” LNCS 2404,
Springer, 2002.

[5] Chutinan, A. and B. H. Krogh, Computational techniques for hybrid system verification, IEEE
Trans. on Automatic Control 48 (2003), pp. 64–75.

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–22 21

[6] Dang, T., A. Donze and O. Maler, Verification of analog and mixed-signal circuits using hybrid
system techniques, in: Formal Methods in Computer-Aided Design (FMCAD 2004), Austin,
Texas, November 14-17, 2004, 2004.

[7] Frehse, G., Phaver: Algorithmic verification of hybrid systems past hytech, in: M. Morari and
L. Thiele, editors, Hybrid Systems: Computation and Control (HSCC’05), Mar. 9–11, 2005,
Zürich, CH, 2005, PHAVer is available at http://www.cs.ru.nl/∼goranf/.

[8] Frehse, G., Z. Han and B. H. Krogh, Assume-guarantee reasoning for hybrid i/o-automata
by over-approximation of continuous interaction, in: Proc. IEEE Conf. Decision and Control
(CDC’04), Dec. 14–17, 2004, Atlantis, Bahamas, 2004.

[9] Gupta, S., B. H. Krogh and R. A. Rutenbar, Towards formal verification of analog designs,
in: Proc. IEEE Intl. Conf. on Computer-Aided Design (ICCAD-2004), Nov. 7–11, 2004, San
Jose, CA (USA), 2004.

[10] Hartong, W., L. Hedrich and E. Barke, On discrete modeling and model checking for nonlinear
analog systems., in: Brinksma and Larsen [4], pp. 401–413.

[11] Henzinger, T. A., P.-H. Ho and H. Wong-Toi, Algorithmic analysis of nonlinear hybrid systems,
IEEE Transactions on Automatic Control 43 (1998), pp. 540–554.

G. Frehse et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 9–2222

http://www.cs.ru.nl/~goranf/

	Introduction
	Defining and Verifying Oscillations
	Reference Signal
	Arbitrary T-Periodic Behaviors
	Reduction to Finite Memory
	Monitor Automata

	Implementation in PHAVer
	Experimental Results
	Conclusions
	References

