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Abstract. Computing reachable sets is an essential step in most anal-
ysis and synthesis techniques for hybrid systems. The representation of
these sets has a deciding impact on the computational complexity and
thus the applicability of these techniques. This paper presents a new ap-
proach for approximating reachable sets using oriented rectangular hulls
(ORHs), the orientations of which are determined by singular value de-
compositions of sample covariance matrices for sets of reachable states.
The orientations keep the over-approximation of the reachable sets small
in most cases with a complexity of low polynomial order with respect
to the dimension of the continuous state space. We show how the use
of ORHs can improve the efficiency of reachable set computation signif-
icantly for hybrid systems with nonlinear continuous dynamics.
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1 Introduction

Research on hybrid systems (HSs) has led to a variety of methods for verification
of properties, such as safety or liveness (e.g., [1–4]) and controller synthesis (e.g.,
[5–9]). For the vast majority of these methods, a common step is to compute
approximations for the set of reachable states in the continuous state space.
Typically, the state space is either partitioned into a finite number of subsets and
an (approximate) evaluation of the continuous dynamics reveals which elements
of the partition are reachable, or the continuous dynamics are used to propagate
the reachable set iteratively from the set of initial states. In both cases the
reachable sets are used to determine which discrete transitions are possible and
to check if the given property is fulfilled or violated (possibly for specific control
inputs).

The geometry chosen to represent reachable sets has a crucial effect on the
efficiency of the whole procedure. Usually, the more complex the geometry of
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the representation is: (i) the more costly is the storage of the sets, (ii) the more
difficult it is to perform operations like union and intersection, and (iii) the
more elaborate is the computation of new reachable sets, but (iv) the better the
approximation of the actual set of reachable states for the HS. Choosing the
geometry has to be a compromise between these impacts.

Several approaches have been proposed in the literature to over-approximate
reachable sets by unions of convex objects of simple geometry such as hyper-
rectangles [10–12], polyhedra obtained from convex hull computations [3, 13],
and ellipsoids [14, 15]. Each of these representations has strengths and weak-
nesses. Hyperrectangles have the advantage that they are easy to represent and
the number of faces grows only linearly with the dimension, but a large num-
ber of boxes (i.e., a small grid) must be used to assure the approximations are
not overly conservative. Polyhedra can give arbitrarily close approximations to
convex sets, but the number of faces and vertices can grow prohibitively large
and, as shown in [16, 17], the computation of polyhedra by convex hull routines
becomes intractable for large sets of points in higher dimensions. Ellipsoids are
attractive because the representation grows quadratically with the dimension
of the continuous space. However, many ellipsoids may be needed to represent
reachable sets with sufficient accuracy, and intersections and unions of ellipsoids
are not ellipsoids.

This paper proposes an alternative that combines the geometrical simplicity
of hyperrectangles with an orientation derived from the true reachable set rather
than being fixed to the state-space axes. For a given number of points obtained
from the evaluation of the dynamics, a preferred orientation is determined by
the singular value decomposition (SVD) of the corresponding covariance ma-
trix. Using this orientation, the smallest hyperrectangle that encloses all points
is computed, giving as oriented hyperrectangular hull (ORH). When these ge-
ometrical objects are used as building blocks for the reachable set, a suitable
compromise between computational complexity, approximation accuracy, and
the ability to compute intersections and unions is often obtained.

In the following sections, we first identify the steps of reachability algorithms
for hybrid systems for which the set representation has a crucial impact. We
also explain in more detail in which cases previously proposed approaches have
disadvantages with respect to efficiency. Then the concept of the ORH is intro-
duced, and the complexity of ORH computations is discussed. Finally we show
for one specific instance of reachability algorithms that the use of ORHs can re-
duce the computational costs drastically while retaining sufficient approximation
accuracy.
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2 Set Representation in Reachability Analysis
of Hybrid Systems

2.1 Reachable Sets of Hybrid Systems

Throughout the paper we refer to the following definition of hybrid systems. The
discussion of reachable set representation applies as well to other variations of
this model that appear in literature.

Definition 1. Syntax of a Hybrid Automaton HA
The hybrid automaton HA = (Z, z0, X,X0, inv, T, g, j, f) contains:

– the finite set of locations Z with an initial location z0 ∈ Z,
– the continuous state space X ⊆ Rn, and an initial continuous set X0 ⊆ X;
– the invariant function inv : Z → 2X that assigns an invariant inv(z) ⊆ X

to each location z ∈ Z; for convenience we require that X0 ⊆ inv(z0);
– the set of discrete transitions T ⊆ Z × Z;
– the guard function g : T → 2X that assigns a guard set g(t) ⊆ X to each

transition t = (z1, z2) ∈ T ;
– the jump function j : T × X → 2X that assigns a jump set j(t, x) ⊆ X to

each pair t ∈ T and x ∈ g(t);
– and the flow function f : Z → (X → Rn) assigns a continuous vector field

f(z) to each location z ∈ Z. The continuous evolution in z is determined by
the ODE χ̇(t) = f(z, χ(t)) for which we assume that a unique solution exists
for each χ(0) ∈ inv(z). ¦

Definition 2. Runs and the Reachable Set of HA
Let S =

⋃
z∈Z

⋃
x∈inv(z)(z, x) denote the set of hybrid states (z, x) of a hybrid

automaton HA. Then, each possible run of HA is a sequence σ = {s0, s1, s2, . . .},
iff:

– the initial hybrid state is s0 = (z0, x0), with x0 ∈ X0,
– and each pair of consecutive states (si, si+1) ∈ σ with si = (zi, xi) and

si+1 = (zi+1, xi+1) satisfies:

• either (discrete transition) (zi, zi+1) ∈ T , xi ∈ g((zi, zi+1)), and xi+1 ∈
j((zi, zi+1), xi);

• or (continuous evolution) zi = zi+1 and there exists χ : [0, τ ] → X,
τ ∈ R>0 such that xi = χ(0), χ̇(t) = f(zi, χ(t)), χ(t) ∈ inv(zi) for
t ∈ [0, τ ], and xi+1 = χ(τ).

If Σ is the set of all possible runs of HA, the reachable set is defined by
R = {s | ∃σ ∈ Σ : s ∈ σ} ⊆ S, i.e., R contains all hybrid states that are
elements of at least one run σ. ¦
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2.2 Computation of Reachable Sets

In order to point out where the set representation plays a role in computing the
reachable set R of HA, we consider the general reachability procedure shown
in Fig. 1. Starting from the initial set S0, R is computed iteratively.1 In each
step k those hybrid states D are added to R that are reached in the current
step but were not reached before. We leave open at this point what exactly
defines a step – it could be a specified time increment, space increment, or, e.g.,
a consecutive pair of continuous evolution and discrete transition. The operator
Reach computes the set of states that are reachable in one step according to the
semantics given in Def. 2. While the structure of this algorithm appears to be

given: S0 = {z0} ×X0

k = 0, D = S0, R = ∅
WHILE D 6= ∅

k = k + 1
R = R ∪D
Sk = Reach(D)
D = Sk \R

END

Fig. 1. High-level algorithm for computing R iteratively (S0: initial set, Sk: set of states
reachable within one step k, D: set of states that is reached the first time in step k).

very simple, a concrete implementation leads to the following issues:

(a) In the general case when D is an infinite set of hybrid states, the operator
Reach(D) requires the evaluation of an infinite number of behaviors of HA.
If the ODEs cannot be solved analytically, one has to fall back to numerical
(yet conservative) approximations of Reach(D).

(b) The sets Sk are in general non-convex (even if analytical solutions of the
ODEs exist). In order to store the reachable sets efficiently, they have to be
approximated by objects of simple geometry (usually convex sets).

(c) Computing R, Sk, and D requires efficient implementations of operations
like set intersection, set union, and set subtraction. Note in this context
that computing Reach(D) involves checking whether transition guards are
enabled and applying the jump function.

In order to cope with problems (a) and (b), most of the existing algorithms
compute a series of convex objects that over-approximate Sk. These algorithms
include the computation of convex hulls for finite sets of points (e.g., see [13,
12]). The resulting polyhedra represent either an intermediate or the final result
for approximating Sk. The choice of the geometry for the objects that establish
1 The well known decidability results for hybrid automata (see, e.g., [18, 19]) imply

this procedure might not terminate.



Lecture Notes in Computer Science 5

Sk has a crucial impact on the accuracy of the approximation as well as on
the storage requirements. As an example, Fig. 2 illustrates three alternatives
for hulls of a given set of points determined to be reachable from the set D.
The differences in accuracy and the effort to store the objects (hyperrectangle:
a matrix in Rn×2; hyperellipsoid: a matrix in Rn×(n+1); convex hull: a matrix in
Rq×(n+1) where q is the number of faces) are apparent.

Fig. 2. Different types of hulls for a set of points encountered while computing Sk =
Reach(D): 1 - hyperrectangle (axes-parallel), 2 - hyperellipsoid, 3 - convex hull.

With respect to problem (c), the efficient applicability of the set operations
is another important criterion in choosing suitable objects for the set represen-
tation. For convex polyhedra, the result of intersection, union and subtraction is
itself a set of of convex polyhedra and standard routines exist. If hyperellipsoids
are chosen to represent R, D, and Sk, these operations do not yield hyperellip-
soids and an additional approximation step is required to obtain an ellipsoidal
approximation.

The effort to compute the hull also plays a dominant role when making the
decision for a specific geometric object. In particular, if Sk has a complex shape,
the approximation accuracy usually requires that Sk be the union of several
small convex sets. The number of hull computations then becomes very large
and it can be observed that the time spent on this step is a substantial portion
of the overall computation time. This calls for an efficient procedure to compute
the hull. Since existing reachability algorithms are limited to low-dimensional
systems due to their complexity, the hull computation should especially scale
well with the dimension n of the state space and the number of points in each
step.

A last important criterion is the numerical stability. We have found that
convex hull algorithms encounter difficulties if the set of points to be enclosed
lies in a lower-dimensional subspace. Usually they return a convex hull that is
’bloated’ to full dimension (i.e. some points are perturbed) or a lower-dimensional
set that comprises a higher number of faces than necessary. With respect to an
efficient set representation, it is certainly desirable to have a procedure that
generates a hull of minimal dimension and a minimal number of faces.
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3 Set Representation by Oriented Rectangular Hulls

This section first introduces the ORH as an alternative to the types of sets
discussed in the previous section. We then describe the advantages of the ORH
with respect to the criteria listed above.

3.1 Definition of the ORH

We begin with some basic definitions and notation. Let x be vector of continuous
variables defined in the Euclidean space Rn×1. A half-space is given by S := {x |
c · x ≤ d, c ∈ R1×n, d ∈ R}. For a given half-space S, let B = {x | c · x = d}
denote the corresponding bounding hyperplane. If the intersection of a finite set
S = {S1, . . . , Sq} of half-spaces with pairwise different normal vectors c is non-
empty and bounded in Rn, it determines a convex polyhedron P := {x | ∃S : x ∈
Sj ∀ Sj ∈ S}. The corresponding set of bounding hyperplanes is denoted by B.

Let X = {x1, x2, . . . , xp} be a finite set of vectors in Rn×1. A polyhedron P
is called a polyhedral hull of X , denoted by PH(X ), iff xi ∈ P for all xi ∈ X ,
i ∈ {1, . . . , p}.

Given a polyhedral hull PH(X ), the set of vertices of PH is denoted by
V = {v1, . . . , vr}, where each vertex v := {x | ∃ B′ ⊆ B, |B′| ≥ n, x ∈ Rn :
x ∈ Bj ∀ Bj ∈ B′} is determined by the intersection of at least n bounding
hyperplanes.

The polyhedral hull PH is called a convex hull, denoted by CH(X ), iff V ⊆ X
applies. A convex hull CH is called a rectangular hull, denoted by RH(X ), iff S
is the intersection of q = 2 ·n half-spaces such that for each Sj = {x | cj ·x ≤ dj}:
(i) there exists an Sk 6=j = {x | ck · x ≤ dk} with cj = −ck, and (ii) for each
Si 6=j,i 6=k ∈ S, 〈cj , c

T
i 〉 = 0. Let E = {e1, . . . , en} be the set of directions of the axes

of Rn, i.e., ei = (01×i−1, 1, 01×n−i), i ∈ {1, . . . , n}. In the special case that for the
normal vector c of each half-space of S there exists an ei ∈ E with 〈±ei, c

T 〉 = 0,
we call RH(X ) an axes-parallel rectangular hull, denoted by ARH(X ).

The attractive feature of a rectangular hull RH(X ) is that the number of
bounding hyperplanes increases only linearly with n and is independent of p,
the number of points it encloses. The definition of RH(X ) does not, however,
specify an orientation of the hull (i.e, of the choice of the normal vectors), except
of the special case of ARH(X ). For the latter, it is easy to imagine a set of
points for which the axes-parallel orientation is not suitable in the sense of a
tight enclosure of X (see Fig. 2). To overcome this problem, we now introduce
an efficient procedure for choosing the parameters c and d of the halfspaces
defining RH(X ).

The principle is to derive the orientation from the distribution of the points
within the space Rn. The elements of X are interpreted as p sampled evaluations
of the dynamics of HA. The arithmetic mean of the samples xm = 1

p

∑p
i=1 xi

is chosen as the origin of a set of translated samples: X = {x1, . . . , xp}, xi =
xi − xm. To characterize the distribution of X we define the sample covariance
matrix as follows.



Lecture Notes in Computer Science 7

Given the set X of p translated samples of the vector of n continuous variables
x, the sampling matrix is denoted by:

X =




x1,1 · · · x1,p

...
. . .

...
xn,1 · · · xn,p


 (1)

where xi,j = xj
i −xm

i is the j-th sample of the i-th variable. For two components
of the translated state vector, xi = xi − xm

i and xk = xk − xm
k , the sample

covariance is defined as:

Cov(xi, xk) =
1

p− 1

p∑

j=1

xi,j · xk,j . (2)

In the context of reachable set computations for hybrid systems, the correlation
of two variables xi, xk (resulting in Cov(xi, xk) 6= 0) follows from the fact that
X is obtained from the evaluation of coupled ODEs to generate xi, xk.

The sample covariance matrix, which represents the distribution of X in Rn,
is then written as:

Cov(x) =




Cov(x1, x1) · · · Cov(x1, xn)
...

. . .
...

Cov(xn, x1) · · · Cov(xn, xn)


 =

1
p− 1

·X ·XT
. (3)

To obtain a suitable orientation for a rectangular hall RH(X ) from Cov(x),
we use the technique known as principal component analysis (PCA) in literature.
As described in the early publications [20–22], PCA usually aims at finding the
dominating correlations between large sets of variables for given large sets of
data. By considering the dominating correlations only, the original data can be
represented by a small yet meaningful set of variables (the principal components).
In our setting however, we use PCA to derive an orientation to define a particular
RH(X ) for X . The orientation is obtained from the singular value decomposition
of Cov(x), given by

Cov(x) = U ·Σ · V T , (4)

where U ∈ Rn×n and V ∈ Rn×n are unitary matrices. If r = rank(Cov(x)), the
matrix of singular values is

Σ =
(

Σr 0r×n−r

0n−r×r 0n−r×n−r

)
, with Σr = diag(σ1, . . . , σr) ∈ Rr×r, (5)

and the singular values σ are ordered such that σ1 ≥ . . . ≥ σr > 0.2

Since Cov(x) is symmetric, U = V . If we write U = [Ur, Un−r] with Ur ∈
Rn×r and Un−r ∈ Rn×n−r, the columns of Ur define an orthonormal basis of
the r-dimensional subspace that contains all points in X . We use the directions
defined by this basis to determine the orientation of RH(X ):
2 It can be shown that the singular values are given by σi =

√
λi, where λi, i = 1, . . . , r,

are the nonzero eigenvalues of Cov(x) ·Cov(x)T , which are all real and non-negative.
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Definition 3. Oriented Rectangular Hull
Let X = {x1, x2, . . . , xp} be a given set of samples, X the set of translated samples
with a covariance matrix Cov(x) = U ·Σ · V T . We write U•,i to denote the i-th
column of U . The oriented rectangular hull, denoted ORH(X ), is the rectangular
hull RH(X ) defined by the set S = {S1, S2, . . . , S2·n} of halfspaces such that for
a ε ∈ R≥0 and ∀ i ∈ {1, . . . , n}:
– ∃ Sj ∈ S : Sj = {x | UT

•,i · x ≤ max
x∈X

{UT
•,i · x}+ UT

•,i · xm + ε}, and:

– ∃ Sk ∈ S : Sk = {x | − UT
•,i · x ≤ −min

x∈X
{UT

•,i · x} − UT
•,i · xm + ε}

¦
Note that for a rank deficiency (i > r), the two halfspaces Sj and Sk lead to a
hull ORH that is ‘flat’ in the direction of U•,i (if ε = 0). If a full dimensional
hull is deemed to be numerically more stable within the computation of Sk =
Reach(D), a small tolerance ε > 0 can be chosen.
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3.2 Assessment of ORH

The criteria for assessing hulls, as listed at the end of Sec. 2, are now applied to
ORHs. Figure 3 shows four distributions of points in R2 and the corresponding
ORHs. It is apparent that, if the distribution of points has a preferred orientation
(upper row of figures), one of the axes of ORH represents the corresponding
direction (determined by U•,1). If all points lie in a lower-dimensional subspace
(as in Fig. 3.b), the expansion in the null space is just given by 2 · ε. If the
distribution of points is completely symmetric with respect to xm (i.e., two or
more singular values are identical), the orthonormal basis Ur is not uniquely
defined, and an additional criterion should be employed. For the points shown
in Fig. 3.c, both rectangles correspond to a valid singular value decomposition
of Cov(x). To obtain the solution marked by the solid line, which is clearly the
better solution (and equivalent to the convex hull), the additional requirement
is that the vertices of ORH coincide with the given points. The point set in
Fig. 3.c does not have a visible preferred orientation either, but has a random
distribution. It is not obvious, however, that a rectangular hull with a more
suitable orientation exists.

In order to assess the accuracy of representing X by an ORH, we com-
pare its volume V ol(ORH(X )) to that of other types of polyhedral hulls. The
volume may seem to be a questionable measure for accuracy since polyhedral
hulls of completely different shape can have the same volume. However, relat-
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Fig. 3. Oriented rectangular hulls for different example sets of points.
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Table 1. Volumes of different polyhedral hulls for the example sets in Fig. 3 (with
ε = 0 for Fig. 3.b)

Fig. 3: (a) (b) (c) (d)

ORH(X ) 152.99 0 3.13 3.20

CH(X ) 134.99 0 3.13 2.41

ARH(X ) 400.00 17.64 6.25 3.28

ing V ol(ORH(X )) to the volume of the convex hull V ol(CH(X )) gives some
estimation for the degree by which ORH(X ) overapproximates the set X . This
is true since CH(X ) is by definition the exact polyhedral hull that contains X .
Table 1 shows the volumes of ORH(X ), CH(X ), and ARH(X ) for the four cases
chosen in Fig. 3. In the two cases with non-symmetrical distribution of points (a,
d), V ol(ORH(X )) exceeds V ol(CH(X )) by 13.3%, and 32.8% respectively. Of
course, the restriction to a rectangular hull with 2 ·n faces leads in most cases to
a less accurate representation of X than is given by CH(X ). This disadvantage
has to be related, however, to the computational effort required to obtain the
hull, as discussed below. If the volume of a polyhedral hull is taken as a mean-
ingful measure, one can pose the question whether computing the rectangular
hull that encloses all points in X with a minimum volume RHminV ol(X ) can
be suitable alternative to ORH(X ). Algorithms to compute RHminV ol(X ) exist
(see, e.g., [23]). While RHminV ol(X ) is by definition a better approximation (in
terms of the volume) than ORH(X ), the difference vanishes in most cases if
X has a preferred direction. (Such a preferred orientation is usually obtained
if the continuous dynamics of HA is evaluated for a suitable time increment).
The reason for not proposing the computation of RHminV ol(X ) within a reach-
ability algorithm is the computational costs: Existing techniques to determine
RHminV ol(X ) involve the computation of convex hulls or a nonlinear optimiza-
tion with non-differentiable cost function. Both approaches seem in general not
to be competitive to the ORH computation with respect to complexity.

For the ORH, only the evaluation of Eq. 3 and the determination of the halfs-
paces according to Def. 3 depends on |X |. The computation of the SVD depends
on the dimension of the state space as O(n3) [24]. Table 2 lists the times to com-
pute ORHs for a set of randomly distributed points, where n and |X | vary. The
times for computing CH(X ) for the same sets using a Quickhull-algorithm [25]
are included for comparison. These computations could not be finished within
one hour for the configurations in the last column. The numbers show that the
complexity barrier applies for ORH at much higher dimensions than for convex
hulls, and that the number of points affects the ORH computation much less
than they effect the computation of CH(X ). Although not included in the ta-
ble, it should be noted that the computation of ellipsoid containing a given set
of points involves the solution of optimization problems [26].

In order to asses the storage requirements, we note that an ORH is deter-
mined by C ·x ≤ d, with matrices C ∈ R2·n×n and d ∈ R2·n. (In the case of rank
deficiency, 2 · (n− r) inequalities can be replaced by n− r equalities.) Therefore,
the amount of data to be stored grows quadratically with the dimension n and is
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Table 2. Computation times. The shown values are the mean CPU-times in seconds
of 5 experiments each. (Implementation: Matlab; Machine: Pentium III, 700MHz).

|X | = 20, n : 2 4 6 8 10 12

ORH(X ) 0.05 0.06 0.08 0.17 1.81 77.4

CH(X ) 0.05 0.62 8.80 93.61 > 103 –

n = 5, |X | : 20 40 60 80 100 1000

ORH(X ) 0.06 0.06 0.06 0.06 0.07 0.53

CH(X ) 2.42 9.20 28.41 51.09 87.55 –

independent of |X |. In comparison, the number of inequalities required to define
CH(X ) depends on the number of vertices determining the convex hull, and
can be significantly higher even for low dimensions (e.g., for the points in the
right lower example in Fig. 3). As mentioned in Sec. 2.2, hyperellipsoids can be
represented by (x − b)T · C · (x − b) ≤ d, C ∈ Rn×n, d ∈ Rn, b ∈ Rn, i.e., the
required memory also grows quadratically with n.

As for the suitability of a particular type of hull for operations like intersec-
tion, union, and set subtraction, the complexity of all these operations crucially
depends on the number of faces of a polyhedral hull, or the dimensions of C and
c specifying ellipsoids respectively. Hence, the discussion above for the required
memory applies when assessing the complexity of set operations. Note that union
and set subtraction can lead to non-convex results, and thus an approximating
step is required to yield a set that is of the same type as the original sets.

Finally, the issue of handling lower-dimensional sets deserves a comment.
When applying convex hull algorithms, we have observed that existing ap-
proaches lead to difficulties if all points in X are in a lower-dimensional subspace.
Most algorithms perturb the points slightly to compute a full dimensional convex
hull first, and then the result is projected onto the original lower-dimensional
space. The consequence is a hull that contains identical rows in the C- and d-
matrix, and extra vertices. These identical rows can cause numerical problems
in many operations. A remedy for this problems is to first transform X into the
lower-dimensional space, compute a convex-hull in this space, and to transform
the vertices back into full dimension. The ORH computation does not require
the projection into a lower-dimensional space. As given in Def. 3, the concept of
transforming into a space of appropriate dimension is implicit, and the tolerance
ε can be chosen to control the effects of numerical errors.

4 Oriented Rectangles in Reach Set Computations

4.1 Reachability Computation based on ORH

This section describes for one specific instance of reachable set algorithms what
the impact of the set representation is, and shows that the use of ORH can be
favorable. Referring to the algorithm in Fig. 1, we now assume that a step (de-
noted by k) is given by a continuous evolution followed by a discrete transition.
The operator Sk = Reach(D) first determines the set of hybrid states which are
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reachable from states in D by continuous evolution until a transition is enabled
and then applies applies the transition. The first step must conservatively com-
pute all possible evolutions starting from D. We here employ the algorithm used
in the tool CheckMate, as described in [28]. This algorithm can be written as
follows:

given: D, 4T ∈ R
Sk = ∅
ZD = {z | z ∈ Z : s = (z, x) ∈ D}
FOR ALL z ∈ ZD

Q = {x | ∃ s = (z, x) ∈ D}
G = Q
WHILE G ∩ inv(z) 6= ∅

V = evolve vertices(z, G,4T )
H = determine hull(G,V )
G = bloat hull(z, H)
Q = Q ∪ (G ∩ inv(z))

END

SQ = {s | ∃x ∈ Q : s = (z, x) ∈ S)
Strans = execute transition(SQ)
Sk = Sk ∪ SQ ∪ Strans

END

Fig. 4. A high-level algorithm to compute the set Sk = Reach(D).

The set ZD denotes the locations that correspond to D. Q is the set of con-
tinuous states x that form a subset of D together with a particular z ∈ ZD, and
it is given as convex polyhedral set.3 Starting from Q, the part of the invari-
ant inv(z) is computed which is reachable by continuous evolution. Let G be a
set of continuous states that is initialized to Q. The computation then involves
three phases that are applied stepwise until the current location invariant is com-
pletely left. The function evolve vertices first simulates the vertices of G for a
given timestep4T . The result is the set V of vertices. A function determine hull
then computes a polyhedral hull H containing V and all vertices of G. This is
the point where the choice between convex hull, ORH, or another polyhedral
hull has to be made. The third step, denoted by a function bloat hull, expands
H such that all trajectories emerging from G are completely contained in the
bloated hull. This is achieved by pushing the faces of H outwards by solving the
following optimization problem: Let B again be the set of bounding hyperplanes
of the hull H. Then, the solution of:

max
χ(0) ∈ G

τ ∈ [0,4T ]

{c · χ(t)} s.t. χ(t) = χ(0) +

τ∫

0

f(z, χ(τ)) · dτ (6)

3 Here we assume for simplicity that Q is one polyhedral object. In general it can be
a list of polyhedral sets and the WHILE-loop has to be applied to each of these.
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for every bounding hyperplane B = {x | c · x = d} ∈ B leads to a bloated hull
that entirely contains the set of points reachable from G within the timestep4T .
It is important to note that one optimization is carried out for each bounding
hyperplane of the hull, and that the orientations of B (determined by the vectors
c) are obtained from the hull computation. It is thus obvious that the chosen type
of hull plays a key role in determining the computation required to construct
the approximation for the reachable set.

The result of the bloating operation(the part which is inside of inv(z)) is
added to Q. By repeating this three-phase procedure until G ∩ inv(z) = ∅ ap-
plies, the subset of inv(z) that is reachable from the initial Q is conservatively
approximated.4 The function execute transition determines which outgoing
transitions of z are enabled. This step includes computing the intersection of
Q with the corresponding transition guards. Applying the jump function (see
Def. 1) to these intersections leads then to the hybrid state set Strans. SQ is
the set of hybrid states that are formed by z ∈ ZD and Q. The sets Strans and
SQ are added to Sk at the end of each cycle of the FOR-loop. When this loop
terminates, Sk is the returned.

4.2 Example: Van der Pole System

We illustrate the algorithm by the example of Van der Pole equations with an
additional clock variable:

Z = {z1, z2, z3}, z0 = z1, X = R3, X0 = [0.6, 0.9]× [0.6, 0.9]× 0, (7)
inv(z1) = [−2, 2]× [−2, 2]× [0, 9], inv(z2) = [2, 5]× [−2, 2]× [0, 12],
inv(z3) = [−2, 2]× [−2, 2]× [9, 12]
T = {(z1, z2), (z1, z3)},
g((z1, z2)) = 2× [−2, 2]× [0, 9], g((z1, z3)) = [−2, 2]× [−2, 2]× 9,

j((z1, z2), x) = x, j((z1, z3), x) = x,

f(z1) = (x2,
x2

5
· (x2

1 − 1)− x1, 1)T , f(z2) = f(z3) = (0, 0, 0)T

For this system we have posed the verification problem whether the location z2

is reachable from the initial hybrid set specified by z0 and X0. The reachable set
is shown in Fig. 5 for two different choices of hulls (i.e., two different functions
determine hull). The set of grey-shaded polyhedra in the left figure is the re-
sult obtained with convex hull approximation, while the right figure shows the
result using ORH. The plane at x3 = 9 (vertical axis) corresponds to the guard
g((z1, z3)). The figures reveal that the reachable set approximation is slightly
larger when the ORH is used, but the result is not significantly different from
the result using the convex hull. It is also apparent that the number of bounding
hyperplanes for each set G is large if convex hulls are used, while six bounding
4 Conservativeness is achieved under the assumptions for Eq. 6 that the optimiza-

tion leads to the global optimum and that the continuous trajectory χ(t) is exactly
computable. In practice, both are achieved within a specified tolerance.
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Fig. 5. Reachable set for the 3-dim. Van der Pole system (4T = 1): left – convex hulls,
right – oriented rectangular hulls.

hyperplanes suffice in each step in the ORH case. Hence, the number of opti-
mizations according to Eq. 6 carried out in each step is considerably lower using
ORHs.

Table 3 shows computation times for the two alternatives in comparison for
different timesteps 4T . In order to evaluate the computational complexity for
varying dimensions of this example, we have introduced further clock variables.
This means that continuous variables x4 and x5 with dynamics as for x3 are
defined (and the sets X and X0, as well as the invariants and guards are extended
accordingly). The results in Table 3 show that for a fixed dimension a reduction
of the timestep increases the CPU-times roughly linearly (a constant overhead
is required for model compilation etc.). For a constant 4t, the CPU-time for the
use of convex hulls leads to a quick increase with the dimension and prohibits
the verification for dimension much larger than n = 5 for this example. An
increase is also observed for the use of ORH, but for the same configurations the
computation time is considerably smaller.

Table 3. Computation times in seconds for the Van der Pole system for varying dimen-
sions n and timesteps 4T . (Implementation: Matlab; Machine: Pentium IV, 1.5GHz).

n : 3 3 3 4 4 4 5 5 5

4T : 1 0.6 0.2 1 0.6 0.2 1 0.6 0.2

ORH(X ) 82.7 116.8 335.1 119.9 183.7 561.84 198.4 297.6 855.4

CH(X ) 214.4 434.0 1051.4 559.9 1140.5 2689.5 1483.8 3257.8 > 5 · 104
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5 Conclusions

Set representation is a crucial component of reachable set algorithms for hybrid
systems. Among the different options for defining hulls of point sets X , the ori-
ented rectangular hulls have been identified as a choice that (a) is efficiently
computable, (b) can be stored with small memory requirements, (c) is suitable
for operations like set intersection, union, and subtraction, (d) can represent X
with sufficient accuracy in many cases, (e) scales favorably (over convex hulls)
with the dimension and the cardinality of X , and (f) can lead to considerable
computational savings due to the relatively small number of bounding hyper-
planes when used in reachability algorithms. Although the latter point has been
demonstrated only for one specific algorithm, the advantages should be similar
for other procedures in which the geometry of the hulls determines the compu-
tational effort.

The ORH represents a good approximation of point sets X particularly when
X has a preferred orientation. Since X is obtained from simulating the hybrid
systems over a time span 4T , a straightforward approach is to choose 4T such
that X has a preferred orientation (if at all possible for the given dynamics).
Our current work aims at addressing this issue. One approach is to simulate
until the decomposition of the covariance matrix leads to singular values that
differ to a specified extent. The value of 4T ∈ R would then be adjusted to the
evolution of the hybrid system. In addition, this modification would avoid the
cases in which a missing preferred orientation of X leads to poor accuracy of the
ORH(X ) (in comparison to CH(X )).
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