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Abstract

This paper presents a new approach to verifying
properties of computer control systems with periodic
sampling when the control programs include both
continuous-variable computations and discrete-state
transitions (mode switching). We focus on the novel
aspects of the approach, which are (1) a formal model
for hybrid systems with continuous-time and discrete-
time behaviors and (2) a method for computing conser-
vative approximations to the sets of reachable states.
The formal model and computational routines are in-
corporated into CheckMate, a MATLAB-based tool for
veri�cation of properties of hybrid dynamic systems.
This tool is being applied to the veri�cation of embed-
ded controllers in automotive engines.

1 Introduction

A hybrid system is one that contains both continu-
ous and discrete dynamics. For an introduction to
the theory of hybrid systems see van der Schaft and
Schumacher[1]. Recently, there has been considerable
interest in developing and applying tools for hybrid sys-
tem veri�cation to embedded control systems [2, 3]. In
contrast to simulation studies that characterize the sys-
tem behavior for particular initial conditions and pa-
rameter values, veri�cation tools make it possible to an-
alyze the system behavior for full ranges of parameter
values. This is particularly useful when it is not easy to
identify what parameter values will lead to worst-case
behaviors.

Current tools for hybrid system veri�cation apply best
to situations where the sampling rate of the controller
is fast enough so that sampling can be neglected in
the analysis [4]. The plant and controller dynamics
are combined into a single continuous-time system. To
evaluate the e�ects of sampling, a clock variable needs
to be included to model the sampling events explicitly.
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fense Advance Projects Research Agency (DARPA) contract no.
F33615-00-C-1701, US Army Research OÆce (ARO) contract no.
DAAD19-01-1-0485, and the US National Science Foundation
(NSF) contract no. CCR-0121547.

Recently, Silva introduced the concept of sampled-data
hybrid automata to capture the e�ects of periodic sam-
pling more eÆciently, both in the model and the ver-
i�cation computations [5]. In that work the sampled
behavior applies only to conditions for discrete-state
transitions, and the continuous aspects of the controller
must be incorporated into the continuous-time (unsam-
pled) portion of the hybrid model. The objective of the
work reported in this paper is to extend formal veri�ca-
tion techniques to sampled-data systems that include
both continuous-state and discrete-state computations
in the controller.

The following section describes the types of computer
control systems considered in this paper. Section 3
presents the hybrid automaton with continuous-time
and discrete-time dynamics (HACDD), a formal model
for sampled-data systems with mode switching. Sec-
tion 4 describes veri�cation of HACDD's using the tool
CheckMate. Section 5 presents our method for comput-
ing conservative polyhedral approximations to the sets
of reachable states for continuous dynamic systems.
Section 6 describes an automotive example on which
the new method has been applied. The concluding sec-
tion summarizes the contributions of this paper.

2 Computer-Controlled Systems

Figure 1 illustrates the type of systems considered in
this paper. The plant is a continuous-time process with
state x and output y that is sampled periodically. The
control computations are modeled as a set of di�erence
equations that update the continuous-valued controller
state z (herein referred to as the controller state). The
controller state equations are determined by the con-
troller discrete-valued state q (herein called the con-
troller mode), which makes transitions based on spec-
i�ed conditions. The controller output u, a function
of the controller state and the sampled plant output,
is applied to the plant as a piecewise-constant signal
from a zero-order hold.

We assume the controller computations are ordered as
follows: (1) the plant output is sampled; (2) the mode
is updated according to the mode-switching logic; (3)
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if the mode switches, the controller state may also be
reset; (4) the controller state and control output are
computed, based on the updated mode. The computa-
tions of most single-rate sampled-date control systems
can be organized into this sequence with appropriate
de�nitions of the control mode and state variables.

The novel aspect of this model with respect to formal
veri�cation is the inclusion of continuous variables in
the controller. Typically, the controller model in hybrid
automata includes only discrete-state transition logic
(see, e.g., [6]).
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Figure 1: Sampled-Data Computer Controlled System

3 A Formal Model

Formal veri�cation requires a formal model of the sys-
tem dynamics with a well-de�ned semantics. For this
purpose we introduce hybrid automata with continuous-

time and discrete-time dynamics (HACDD), as a mod-
i�cation of standard hybrid automata [7]. The state
of an HACDD is given by the mode, q 2 Q, and the
continuous state variables, (x; z) 2 X � Z. The ini-
tial mode is given by qo 2 Q, and the set of possi-
ble initial continuous states is given by Xo � X and
Zo � Z. Figure 2 illustrates the following components
of an HACDD:

Modes: These discrete states, represented by circles in
�gure 2, correspond to the logical states in the con-
troller. The following are associated with each mode:

- Di�erence Equations: zk+1 = gq(zk; xk), deter-
mining the value of the controller state before the
next sampling time. The plant output, y = fo(x)
in �gure 1, is absorbed into the controller di�er-
ence equation, and xk = x(kT ) is the sampled
value of the process state.

- Di�erential Equations: A set of di�erential equa-
tions that governs the continuous-time dynamics,
denoted as _x = fq(x; zk). The controller output,
shown as u = gqo(zk; xk) in �gure 1, along with
the zero-order-hold operation are absorbed into
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Figure 2: HACDD Example

the plant di�erential equation. The di�erential
equations are mode dependent to reect the de-
pendence of the control output on the mode.

Transitions: The mode-transitions in the controller,
represented by arrows in Figure 2, possess the following
elements:

- Guards: These are regions of the system continu-
ous state space that determine when a transition
is taken. Gab denotes the guard region associated
with the transition from mode q = a to mode
q = b.

- Resets: Rab(x; z) denotes the reset of the con-
troller state when a transition from mode q = a
to mode q = b occurs, where z is the state of the
controller before the transition from mode q = a.

We de�ne the interior region for each mode to be all
points within the state space where no guard region is
present.

The sampling of the plant state and the update of the
controller state are performed at each sampling instant
with a speci�ed sampling period T .

The behaviors of an HACDD are described by the no-
tion of trajectories.

De�nition 1 Given an HACDD H, a trajectory is de-
�ned as a discrete-time sequence (xk ; zk; qk) that satis-
�es the following for all k 2 f0; 1; : : :g:

- x0 2 Xo, z0 2 Zo, q0 = qo

- z1 = gqo(z0; x0)

- q0 is the initial mode

- There exists a function of time x(t) where

x(kT ) = xk, x((k + 1)T ) = xk+1, and

_x = fqk (x; zk) for kT < t < (k + 1)T

- If qk+1 6= qk then:
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- (xk+1; zk+1) 2 Gqkqk+1

- qkqk+1 is a valid transition

- zk+2 =g
qk+1(Rqkqk+1(zk+1); xk+1)

- If qk+1 = qk then:

- (xk+1; zk+1) =2 Gqkq0 8 q0 6= qk

- zk+2 = gqk (zk+1; xk+1)

Notice that de�nition 1 requires that the system re-
main in any mode that it enters for at least one sample
period, even the �rst location. This means that there
can be no mode transition at the �rst instant.

Given an HACDD H , we de�ne the reachable set to be
the set of all states that are reachable by a trajectory
of H .

4 CheckMate: A Tool for Veri�cation

The purpose of veri�cation, in general, is to determine
if all possible behaviors of a system satisfy some prop-
erty, which is often speci�ed in a temporal logic such
as Computation Tree Logic (CTL)[8]. The CheckMate
tool uses the procedure illustrated in �gure 3 to verify
properties of hybrid systems[9]. Basically, the approach
consists of building a �nite state machine (FSM) that
conservatively represents all behaviors of the original
system, and then performing model checking on the
FSM.

CheckMate allows the designer to build a representa-
tion of the system suitable for simulation using MAT-
LAB's Simulink/Stateow front-end. This representa-
tion, corresponds to the Simulation Diagram in �gure
3. In order to analyze the system, the Simulink model
is transformed into an HACDD with convex guard and
interior regions.

The next step involves dividing the interior regions for
each mode of the HACDD into convex, polyhedral re-
gions. The dotted lines in �gure 4 illustrate the parti-
tioning for one mode of the HACDD in �gure 2. This
partitioned version of the system constitutes the Par-

titioned HACDD in �gure 3. These partition elements
will represent states in the FSM that is constructed.

In order to construct the FSM, the relevant connectiv-
ity between the partition elements must be determined.
In other words, the following must be answered: Given
that the system occupies some point inside a region, to
which other modes can the state evolve[10]? This ques-
tion is answered in the next step, the Perform Reach-

ability step in �gure 3, which is by far the most com-
putationally expensive step. Section 5 discusses this
process in detail.
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Figure 3: CheckMate Veri�cation Procedure

Once the connectivity between partitioned elements
has been established, the FSM is be constructed, and
then model checking is performed.

CheckMate performs veri�cation for a restricted class
of CTL expressions called ACTL[11], which allows only
universal quanti�cation, meaning that only properties
that test all possible behavior paths may be expressed.
The model checking process will yield a positive or neg-
ative response for a given ACTL expression. A posi-
tive response indicates that the given ACTL expres-
sion is true. In this case, no further analysis needs to
be performed. If the model checker yields a negative
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Figure 4: Example of an HACDD state-space and DTFA
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response, this means that the ACTL expression does
not hold for the transition system. This does not nec-
essarily mean that the speci�cation does not hold for
the original system, since the partitioning and reach-
ability analysis provide a conservative approximation.
In this case, another attempt can be made by re�ning
the HACDD partition, yielding a less conservative ap-
proximation. Then the reachability, transition system
creation, and model checking steps can be performed
again. This process can continue until either the spec-
i�cation is satis�ed or the process is terminated by the
user.

5 Reachability Analysis for the HACDD

The partition elements for each mode, as described
in section 4, constitute states in the �nite state ma-
chine that is created during the veri�cation procedure.
Reachability analysis is the process of identifying con-
nectivity between these states by overapproximating
the set of reachable states.

Chutinan and Krogh developed a method, called ow
pipe approximation, to overapproximate reachable sets
of states for a class of continuous-time hybrid systems,
given a set of starting states[12]. We propose a method
similar to Chutinan and Krogh's, called discrete-time

ow analysis (DTFA), that considers the discrete-time
behavior of the di�erence equations to overapproximate
the set reachable set.

An example of DTFA is illustrated in �gure 4. Here,
Po = Xo � Zo is one of the partition elements, and
portions of the reachable set are shown as the regions
inside the heavy solid lines. Polyhedra that overap-
proximate the reachable set are shown as the heavy
solid lines themselves. It is the goal of DTFA to per-
form this overapproximation.

Once an approximation of the reachable set for Po has
been calculated, all modes that intersect the reachable
set via guard regions are considered connected to Po.
Each entry region (i.e. regions of the partition where
the mode is entered after a reset into that region) con-
stitutes a state in the transitions system that is created,
and the connectivity identi�ed by the reachability anal-
ysis represents the transitions between the states.

The DTFA method conservatively approximates the
evolution of a polyhedral region due to the dynamical
equations that govern the HACDD. To this end, the set
ReachT (P; q), which is the set of states that are reach-
able over one sample period, is overapproximated.

De�nition 2 Given an HACDD H, a polyhedral re-

gion in its state space P � X � Z, and a location q,

the set ReachT (P; q) is de�ned as:

ReachT (P; q) = f(x�; z�)jx� = �q(T; x0; z0);
z� = gq(z0; x0)where(x0; z0) 2 Pg

where �q(T; x0; z0) denotes the solution to _x = fq(x; z0)
at time t = T with initial condition x0.

The steps taken in approximating ReachT (P; q) are as
follows:

1. Pass each vertex of P , (x0; z0) through the map-
ping (x1; z1) =

�
�q0 (T; x0; z0); g

q0(z0; x0)
�

2. Perform a convex hull operation on the points
found in the previous step. This will result in a
new polyhedral set, PC , which can be described

by the inequality CT

�
x
z

�
� d where C is a

matrix whose columns are the normal vectors of
the faces of PC and d is a column vector.

3. Perform the following optimizations:

d�i = max
(x;z)2P

CT
i

�
�q(T; x; z)
gq(z; x)

�

where CT
i is the ith row of CT .

The approximation to ReachT (P; q) is the polyhedron

CT

�
x
z

�
� d�.

Figures 5 and 6 illustrate the procedure. Portions of
the actual reachable set lie outside the convex hull of
the simulation points, in general. The optimization
step pushes the faces of the convex hull out so that
they contain the entire reachable set.

In order to calculate the entire reachable set, we
must compute the evolution of the set of initial con-
ditions Po over time by iteratively calculating the set
ReachT (P; q). The following gives a brief overview of
the steps involved in accomplishing this task.

1. This is the initialization step. The initial set
Po is transformed by overapproximating the set
ReachT (Po; qo) as described above.

2. For all q0 such that qoq
0 is a valid transition,

if Sq0 = ReachT (Po; qo) \ Gqoq0 6= ;, then the
qoq

0 transition must be taken. In this case,
if Sq0 6= ReachT (Po; qo), then the analysis must
consider both the Sq0 region, which satis�es the
qoq

0 guard, and the ReachT (Po; qo)� Sq0 region,
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Figure 6: Steps 2 and 3 of the procedure to approximate
ReachT (P; q)

which does not. The ReachT (Po; qo)�Sq0 region,
if it does not satisfy any other guards, continues
on to step four and is propagated forward us-
ing the dynamics governing the qo mode. The
Sq0 region continues on to step three. This di-
vision of the reachable set due to transitions ne-
cessitates the use of a queue in order to explore
the reachability of each piece. The queue used
in CheckMate performs a breadth �rst search of
these sets. That is, all mode transitions occur-
ring at one time instant are considered �rst, then
the sample time advances one period to consider
the next set of transitions.

3. The reset function is applied to Sq0 producing

Rqoq0(Sq0) = f(x; z)j(x; z) = Rqoq0(x0; z0);

(x0; z0) 2 Sq0g

For each Pi, where Pi is an element of the q0 par-
tition, if Rqoq0(Sq0) \ Pi 6= ; then Pi becomes a
new region to be propagated by the reachability
(i.e. it is added to the queue) with the dynamics
governing the evolution of Pi being those of the
q0 mode.

4. At this stage in the process, we are ready to cal-
culate the next time step, and so we are in the
same position as we were at the beginning of step
1. The procedure repeats steps 1 through 3, re-
placing qo and Po with the appropriate mode and
point set, for some �nite number of iterations,
which is speci�ed by the user. Again, for cases

where the reachable set splits, each piece must be
propagated separately.

Figures 4 and 7 illustrate the intersection/division
event described in step 2 above. Figure 4 shows the
approximation to the reachable set calculated at k = 3
divided into two pieces Pa and Pb. The Pb region cor-
responds to the portion of the reachable set that inter-
sects the guard region Gab while the Pa region corre-
sponds to the portion of the reachable set at k = 3 that
does not. Figure 7 shows Pb in terms of the b mode (i.e.
the destination mode of the eab transition). The region
labeled Rab(Pb) is the Pb region after the reset asso-
ciated with the ab transition has been applied. Since
Rab(Pb) \ B1 6= ;, the partition region B1 constitutes
an entry region, and a transition is created in the �nite
state machine, which is created by the veri�cation pro-
cess (�gure 3), from the state representing Po to the
state representing B1.

With respect to the example shown in �gures 4 and 7,
the next step in the reachability analysis would be to
propagate the Rab(Pb) region forward in the b mode
and propagate the Pa region forward in the a mode.
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Figure 7: Reachable set after transition

6 Variable Cam Timing System Example

DTFA is being applied to the veri�cation of a vari-
able cam timing (VCT) system. The VCT system, sug-
gested by Stefanopoulou et al.[13] and Butts[14], is an
automotive application in which a computer controlled
hydraulic actuator is used to vary the phase of the cam
shaft of an engine with respect to its crankshaft. The
controller's task is to regulate the position of the actua-
tor to a given setpoint. The controller has three modes:
one in which standard PID control is employed, one in
which the controller output is saturated high, and one
in which it is saturated low. The property to be ver-
i�ed is that no more than one mode transition should
ever be taken.

The dynamics of the VCT system are represented
by the HACDD shown in �gure 8. The di�erence
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equations for each mode are the same. They are as
follows:�

z1k+1

z2k+1

�
=

�
:3 0
0 1

� �
z1k
z2k

�
+

�
�1
�T

�
xk +

�
ref
Tref

�

where z1 and z2 are controller states used to imple-
ment the PID controller, x is the position of the cam
actuator, T = :008 seconds, and ref = 18.

Mode changes are reected in the controller output,
which does not appear explicitly in the HACDD rep-
resentation, but instead is reected in the di�eren-
tial equation governing the continuous dynamics. The
modes dynamics and guard conditions are shown in �g-
ure 8. In the �gure, ufk = �:7xk � :49z1k + :7ref and
ek = ref � xk .

 

PID

SATlow

Figure 8: Variable cam timing system automaton

For all transitions, the resets are identity, i.e. Rab(z) =
z for all ab in the set of transitions.

The VCT system does not satisfy the given property for
all possible initial conditions. Using DTFA, however,
we have been able to identify sets of initial conditions
for which the system does satisfy the given property
and sets of initial conditions for which the system never
satis�es the property.

7 Discussion

This paper presents a new model of sampled data con-
trol systems, the hybrid automaton with continuous-
time and discrete-time dynamics (HACDD), and de-
scribes how the sets of reachable states for this model
can be computed e�ectively to verify properties of the
system behavior. The role of the HACDD model in
the hybrid system veri�cation tool CheckMate is also
described.
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