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Abstract 

We introduce sampled data hybrid automata (SDHA) as a formal model of hybrid systems that result from clock-driven computer 
control of continuous dynamic sytems. In contrast to standard hybrid automata, the discrete state transitions in the SDHA can 
occur only at valid sampling times when the guard conditions are evaluated. Sequences of valid sampling times are defined by a 
clock structure that specifies bounds on the possible initial phases, period variations and jitter. Approximate quotient transition 
systems are then defined for SDHA as a theoretical framework for performing formal verification. The concepts introduced in 
this paper are illustrated by a numerical example. The paper concludes with a discussion of current research aimed at developing 
a tool for verifying prorperties of real sampled data control systems. 
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1 INTRODUCTION 

This paper concerns the modeling and verification of 
hybrid systems in which the conditions for discrete-
state transitions are evaluated at discrete points in time 
determined by an external clock. This is the typical 
situation in computer-based control systems. 

In standard hybrid automata models, events are 
generated when guards are enabled by the continuous 
state trajectories [1]. Clock-based sampling can be 
modeled using the hybrid automata formalism by 
introducing an integrator to generate the clock events. 
The problem with this approach is that there can be 
many clock events when nothing happens other than 
resetting the clock integrator. Consequently, 
verification procedures are bogged down computing 
and storing information that has no real significance. 

To eliminate the unnecessary details of the clock 
behavior that would have to be introduced in hybrid 
automata models of sampled-data systems, we 
introduce sampled-data hybrid automata (SDHA). 
SDHA are standard hybrid automata extended with a 
clock structure that defines a set of parameters 
specifying the ranges for the initial clock phase, the 
clock period, and the possible variations in the actual 
sampling time with respect to the clock instants, called 
jitter. Jitter captures the variations that occur in 
sample-data systems due to variations in computation 
times or the scheduling of multiple tasks on the control 
computer. 

In the hybrid systems literature, the continuous 
dynamics in sampled-data systems are often modeled 
by discrete-time state-transition equations (e.g., [2], 
[3], [4], [5]). In contrast, the SDHA retains 
continuous-time differential equations for the 

continuous dynamics since an analytical expression for 
the discrete-time state transition function can not be 
obtained for general nonlinear continuous dynamic 
systems. 

We describe an approach to the verification of 
SDHA that avoids the clock event explosion inherent 
in standard hybrid automata models of samped-data 
systems. We achieve this by logging the necessary 
information at clock events only when actual discrete-
state transitions occur. We propose an approach to 
extend existing techniques for verification of hybrid 
automata to deal efficiently with the sampled-data 
behavior.  

The following section describes the clock structure 
used to model the possible sample-time sequences for 
general clock-driven sampled-data systems. We then 
define the SDHA in section 3 and develop the concept 
of transition systems and quotient transition systems 
for SDHA in section 4. Section 5 illustrates the 
concepts developed in this paper with a numerical 
example. Section 6 describes current research on 
enhancing the hybrid system verification tool 
CheckMate for verification of sampled-data control 
systems. Directions for further development of the 
theory of SDHA are also discussed. 

2 CLOCK STRUCTURES FOR SAMPLED-DATA 

SYSTEMS 

Our objective in this paper is to develop a formal 
model of clock-driven computer control systems of the 
type illustrated in Fig. 1. In this system, a continuous-
time dynamic process is being controlled by a 
computer that samples process data through the 
interface labeled sampling device. Control inputs from 
the computer to the process are also delivered through 
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the sampling device. The computational routines are 
represented by the controller block. The data sampling 
and execution of the control program are driven by the 
clock that generates clock events at the clock times c0, 
c1, ... . The sampling times, that is, the actual times at 
which data sampling occurs, are given by the sequence 
τo, τ1, ... . In general, the sampling times are different 
from the clock times because sampling is typically the 
result of commands in the control software. Moreover, 
the sampling process itself can take time. 

We specify the parameters defining the sets of 
admissible clock times and sampling times for a given 
sampled-data system by a clock structure, defined as 
follows. 

 
Definition 1. A clock structureC=( , , )  Θ ∆ Β  is a 

triple where: 
Θ = [θm,θM], range of values for the clock initial 

phase, with 0 ≤ θm ≤ θM; 
 
∆ = [δm, δM], range of values for the clock period, 

with 0 < δm ≤ δM; and  
 
Β =  [βm,βM], range of values for the sampling 

jitter, with 0 ≤ βm ≤ βM. 
 

The first interval in the clock structure for the 
clock initial phase represents the fact that the initial 
clock time can be offset from the initial time assumed 
for the process dynamics by an amount θ ∈ Θ. 
Assuming the initial time for the process is τ = 0,.this 
implies c0=θ.  The second interval specifies the 
uncertainty in the clock period. We assume the clock 
period can vary at each clock event, which implies that 

 
cn-cn-1 ∈ ∆, n = 0,1, ... .                             (1) 

 
Note that (1) implies the uncertainty in the clock 

time due to the clock period variation accumulates 
from sampling time to sampling time. (An alternative 
assumption might be that the clock period is fixed, but 
can be within the range ∆, in which case there would 
be no accumulation of uncertainty in the clock time for 
a given sequence of clock times.) Combining the 
uncertainty in the clock initial phase and the clock 
period uncertainty (1) gives  

cn ∈ n∆ + Θ, n = 0,1, ... .                           (2) 
The final interval in the clock structure represents 

the possible range of differences between the clock 
times and the sampling times, which we refer to as 
sampling jitter. The jitter interval introduces the 
constraint 

τn ∈ cn + Β, n = 0,1, ...,                             (3) 
where + is the standard addition operation for 

interval arithmetic. Combining the jitter constraint 
with the constraint (2) on cn gives 

 

                  τn ∈ n∆ + Θ + Β, n = 0,1, ...,.            (4) 
 
Note that in contrast to the clock period uncertainty 

that propagates throughout the sequence of sampling 
times, the jitter uncertainty does not accumulate. The 
constraint on the inter-sample period is given by 

 
   δm – (βM-βm) ≤  τn+1 - τn  ≤  δM+ (βM-βm).        (5) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Sampled-data hybr id system. 
 
Based on the above definitions and observations, 

given a clock structure C = (Θ, ∆, Β), we call a given 
sequence σ = { τn} a valid sampling sequence if  τn  ∈  
n∆ + Θ + Β, n = 0, 1, ...., and we let Σc denote the set 
of valid sampling  sequences for C. We also use the 
following notation for sequences: given sequences σ, 
σ’ ,  σ-σ’  denotes the sequence constructed by 
removing from σ all elements of the sequence σ’ ,  

and  σ’
�

 σ means  σ’  is a subsequence of σ. 

3 SAMPLE DATA HYBRID AUTOMATA (SDHA) 

As a formal model of sampled-data systems, we 
modify the definition of the standard hybrid automaton 
as follows.  

 
Definition 2. A sampled-data hybrid automaton is a 

pair H=(A,C),  where C=(Θ,∆,Β) is a clock structure 
and A=(X, U, X0, U0, F, E, G) is a hybrid automaton 
where:  

 
X × U is  the set of states where X  = Rn is the 

continuous state space and U is a finite set of discrete 
states; 

X0 × U0 ⊆ X × U is the set of initial states; 
F = { fu : X � X} u∈U are the flows, where x� = fu(x) 

determines the continuous state trajectories for 
discrete state u. 

E ⊆ U x U  is the set of discrete transitions; 
G: E� 2X defines the guards for the discrete 

transitions; 
 
For simplicity, we have defined the SDHA with 

deterministic flows (differential equation rather than 
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differential inclusion) and we assume there is no reset 
of the continuous-state when discrete state transitions 
occur. We also assume discrete state transitions occur 
immediately when a guard condition is satisfied. 
Without loss of generality, we assume that there are no 
self loops in E, i.e., for any u∈U, (u,u) ∉ E.  

 
Definition 3. Given an SDHA H=(A,C), a function 

s:R+→X x U, denoted s(τ)=(sC(τ),sD(τ)), is a run of 
HSD if and only if s(τ) satisfies:  

 
1. sC(0) ∈ X0, sD(0) ∈ U0 
2. Let π = { τi}  be the sequence of discontinuity 

points of sD(τ). Then ∃ σ ∈ ΣC  such that:  

a) π �   σ; 

b) ∀ τI ∈ π, ∃ e= (sD( −
iτ ),sD( +

iτ )) ∈ �  such 

that sC( −
iτ ) ∈ G(e)�  

c) ∀ τ ∉ π , 
DC S ( ) Cs ( ) F (s ( ))ττ = τ

�
; 

d) ∀ τ’  ∈ σ-π and ∀ u ∈ U such that e = 
(sD(τ’ ),u) ∈  E,  sC(τ’ ) ∉ G(e).  

 
In words, 2.a) states that discrete state transitions 

only can occur at valid sampling times; 2.b) says that 
the guards are “ forcing” ; 2.c) is the standard rule that 
the continuous trajectory satisfies the flow constraints 
while the discrete state is constant. 2.d) states that if a 
discrete state transition does not occur at a sampling 
time in σ, no guard can be enabled at this time instant, 
reflecting the assumption that the guards force 
discrete-state transitions.  

  
In the following, we denote the  admissible 

continuous trajectory starting at x0 under the 
differential equation fu, for some u∈U, as 

0(u,x ) (.)ζ , 

where 
0 0(u,x ) u (u,x )( ) f ( ( )), 0ζ τ = ζ τ ∀τ ≥

�
 and 

0(u,x ) 0(0) xζ = . We also denote the set of reachable 

state from a set X’  ⊆ X at time interval Τ=[τ1,τ2], 
under fu by: 

 

0

0

T
(u,x )

T x X

R (u,X) {x X | ( ) x}
τ∈ ∈

= ∈ ζ τ =  

We also define for each u∈ U the following set:  
 

u
u’

X {x | x G((u,u’))}
∈

= ∈ ∈
U

X 	  

4 VERIFICATION OF SDHA 

In this section we show how transition systems and 
quotient transition systems can be defined for SDHA 
so that the concept of transition system simulation can 
be applied to perform formal verification. For standard 
hybrid automata, the discrete-trace transition system 

(DTS) can be defined to abstract away the continuous-
time behaviors of the system [6].  The state space of 
the DTS is the set of continuous entry states for each 
location (discrete state). When the guard conditions 
force discrete state transitions, as we have assumed, 
the entry states are simply the boundaries of the guard 
conditions.  

Similarly, for an SDHA a transition system can be 
defined, called a sampled-trace transition system 
(STTS), which records the possible states of the 
SDHA at times with discrete-state transitions occur. 
The principle difference between the DTS and the 
STTS is that the entry states for the discrete states in 
the SDHA are the states that are reached at the 
sampling times, which are not necessarily on the 
boundaries of the guard conditions. Therefore, the 
entry states for discrete state transitions in SDHA 
models cannot be restricted to these boundaries as 
they are in the DTS. 

The STTS is defined as follows. 
 

Definition 4. (STTS) Given a SDHA H=(A,C), its 
sampled-trace transition system is given by  
TH = (QH, 
 H,Q0) with  Q0 = X0×U0×Θ,  QH = 

0(X U) Q× �  and the transition relation � H is 

defined by following conditions: 
 

1. Initial transitions. 0 0 0 H(x ,u , ) (x,u)θ →  Iff: 

a) 0 0 0 0 0 m M(x ,u , ) X U [ , ];θ ∈ × × θ θ  

b) 0
0 0x R (x ,u )Β+θ∈ ; and  

c) either 0u u= and 0 0x G(u ,u) u u∉ ∀ ≠ , or 

0x G(u ,u)∈ . 

2. Discrete transitions. H(x,u) (x ,u )→ ’ ’  iff:  

a)  e = (u,u’ ) ∈ E, u’ ≠ u; 
b) ∃ (τ1,..., τN) s.t. all next conditions hold: 

i) τn∈n∆+B, 1 ≤ n ≤ N.  
ii) x’ (u,x) N( )= ζ τ  

iii) x’ ∈ G(e); 
iv) ∀ u’ ’ ≠ u, (u,x) n( )ζ τ ∉G((u,u’ ’ ) ),      

1≤  n <N. 
 

The definition of the STTS captures the sampled-
data behaviors for all possible sampling sequences in 
ΣC. The initial transitions record the continuous state 
at the time of the first sample, τo=c0+βo, where 
c0=θ∈Θ, the initial clock phase, and βo∈B, the initial 
variation in the sampling time due to jitter. The 
subsequent discrete transitions from each state lead to 
all states that could be reached for some valid 
sampling sequence starting at that state. A sequence of 
transitions in the STTS starting from some initial state 
corresponds to a valid run in for the hybrid system H 
for a particular valid clock sequence. It is also true 
that for any valid run for H, there will be a 
corresponding sequence of transitions in the STTS 
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that records the values of the states along the run at the 
discrete state transitions in the run. 

Having constructed a transition system for the 
SDHA, formal verification of SDHA can be 
performed by creating a finite partition of the STTS 
state space and constructing a quotient transition 
system (QTS). 

 
Definition 5. Given a transition system T = (Q,
 , 

Q0), and a �  of Q, the quotient transition system of T 
is defined as T/ �  = ( � ,��� , Q0/ � ) where  
1. For all P,P’  ∈ � , P��� P’  iff there exist q ∈ P and 

q’  ∈ P’  such that q� q’  . 
2. Q0/ �  = { P∈ �   | P ⊆ Q0} . 
 

The quotient transition system T/ �  simulates T and 
it can be used for verification of properties of T [7]. 

To create a QTS for an STTS, separate partitions 
of the continuous state space are required for each 
discrete state, u ∈ U. We denote the partition of X for 
discrete state u by � u. Finite partitions are also 
required for the initial state set Xo for each u ∈ Uo, 
denoted by � ο,u, as well as for the interval of possible 
clock initial phases, denoted by � θ. Letting �  denote 
the complete partition, the QTS TH/ �  for an STTS TH 
can be constructed, provided the reachability mapping 
could be computed for the continuous flows of the 
SDHA.  

In general, it is not possible to represent, much less 
compute, the sets of reachable states required to 
construct the QTS for a transition system defined for a 
hybrid system. Nevertheless, if one can compute a 
conservative approximation to the reachable state 
mapping, an approximate QTS (AQTS) can be created 
that simulates the transition system and the AQTS can 
be used for effective verification in many cases [6]. If 
the specification is not satisfied for the AQTS, the 
approximation can be improved by refining the 
partition of the STTS state space.  

Given an SDHA H=(A,C), the procedure in figure 
computes the transition relation ��� for an AQTS TH/ �
for a given partition � = � { � u} ,{ � ο,u} , � θ) of the state 
space for TH. This procedure creates transitions 
between elements (P,u), (P’ ,u’ ) of the state space of 
TH when for some n: 

C1. R[n∆+B](u,P) ∩ G((u,u’ )) ≠ φ; and  
C2. R[n∆+B](u,P) ∩ P’  ≠ φ.  
To show this leads to an AQTS, suppose there are 

continuous states x ∈P and x’  ∈P’  such that 

H(x,u) (x ,u )→ ’ ’ in the STTS TH. From the 

definition of TH, this means that there is a sampling 
sequence (τ1,..., τN) such that τn∈n∆+B, 1 ≤ n ≤ N, and 
x’ (u,x) N( )= ζ τ  ∈ G((u,u’ )). This implies x’  ∈ 

R[n∆+B](u,P) for n=N and hence condition C1 is true for 
n=N. Moreover, since x’  ∈P’ , condition C2 is also 
true. Therefore, whenever there is a discrete transition 
in TH, the procedure above creates the appropriate 

transition to create an AQTS TH/ � . Simliar logic 
applies to the initial state transitions. 

Regarding the stopping condition, this will be 
always satisfied if  we assume that the trajectories 
eventually violate some guard.  

 
Procedure for computing ���

 
BEGIN PROCEDURE   

 � � := φ     % initialize  ���  as an empty set 
FOR each u ∈ U0, P ∈ � ο, Pθ ∈ � θ

FOR each u’  ∈ U  

IF( R (u, ) G(u,u )θ +Β ∩ ≠ φ’P P )& ((u,u’ )∈E))                 

_       OR  ( u((R (u, ) X ) )θ +Β ∩ = φP P    &  (u’ =u)  ) 

FOR  each P’  ∈ � u’   

           IF R (u, )θ +Β ∩ ≠ φP P P’  

    Add ((P,u,Pθ),(P’ ,u’ )) to ���  
           END 

END 
          END 

END 
END 

 
FOR each u ∈ U

FOR each P ∈ � u � � ο,u 
n=1 
REPEAT 

FOR each u’  ∈ U such that (u,u’ ) ∈ E 
      IF (R[n∆+B](u,P) ∩ G(u,u’ )) ≠ φ 

     FOR each P’  ∈ � u’   
                   IF (R[n∆+B](u,P) ∩ P’ ) ≠ φ  
   Add ((P,u),(P’ ,u’ )) to ���  
        END 
    END 
       END 
 END 
     n= n+1  
    UNTIL (R[n∆+B](u,P) ∩ Xu ) = φ   
    % stops when all states satisfy some guard; 
END 

END 
 

END PROCEDURE 

Figure 2.  Procedure for  computing ���! 

5 EXAMPLE  

Consider an two-mode control system modeled by a 
hybrid automaton A as follows:  
 

X = ([0,3],[0,5]), U = { on,off}   
  
X0={ ([1, 1.5],0} , U0= on   
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E ={ e1=(on,off); e2=(off,on)}    
 

on
1 1 0

f x
1 3 10

−   
= +   −   

; off
1 1 0

f x
1 3 0

−   
= +   −   

 

 
G(on) ={ (x1,x2)|x2 ≥ 2.5} , G(off) ={ (x1,x2) | x2 ≤ 2}  
 

 
Figure 3. Simulation for  hybr id automaton A. 

 
Figure 4. Simulation for  SDHA H ( δ=0.2s, θ=0s). 

 
 

 
Figure 5 – System behavior  for  δ=0.2 s , θ=0.05s  

 
For this system we would like to guarantee that the 

continuous state variable x2 never goes beyond 2.8 and 

that eventually, variable x1 = 2. Since the system is 
linear and 2-dimensional, we can characterize the flow 
of all possible behaviors just performing the 
simulation of the extreme point of the initial set. The 
trajectories in figure 3 shows that the finish line region 
is reached before going into the forbidden region. 

Now, suppose we define an SDHA H = (A,C) 
where the clock structure will be C = 
([0,0.05],[0.2,0.2],[0,0]). Thus, the sampling period is 
δm=δM=0.2, there is initial displacement 
(θm=0,θM=0.05) and there is no jitter (βm=βM=0). For 
a simulation with θ=0, the system still satisfies the 
requirement, as shown in figure 4, even though the 
behavior is getting close to the forbidden region.Let us 
now simulate the system for θ = 0.05. Figure 5 shows 
that in this case the system fails to fulfill the 
requirements. Some trajectories cross the alarm line 
before crossing the finish line. It illustrates the 
situation where a hybrid system that satisfies the 
specification for a continuous behavior could fail in a 
verification if taking into account the sampled-data 
behavior.  

6 DISCUSSION  

This paper introduces sampled-data hybrid automata 
(SDHA) as a formal model for hybrid systems in 
which the guard conditions for the discrete-state 
transitions are evaluated at clock-generated sampling 
times. The clock structure includes parameters to 
represent variations in the clock initial phase and the 
clock period. Variations in the difference between the 
clock events and the actual sampling times are also 
represented by a jitter parameter. 

Formal verification of SDHA is possible through 
the construction of approximate quotient transition 
systems (AQTS) for the sampled-trace transition 
system (STTS) that represents the behavior of the 
SDHA at the instants the discrete-state transitions 
occur for all possible valid clock sequences. 

Currenly, we are focusing on the numerical 
implementation of the proposed approach for formal 
verification of sampled-data hybrid systems by 
extending the features of the hybrid system 
verification tool CheckMate [8,9]. Hybrid dynamic 
systems are defined in CheckMate using the 
MATLAB Simulink graphical user interface. For 
example, the CheckMate model for the example in the 
previous section is shown in Figure 5.  

Routines and data structures for computing sets of 
reachable states as required for the AQTS construction 
procedure are already available in CheckMate. The 
principle tasks are to incorporate the clock structure 
parameters in the CheckMate specification and 
automate the procedure for constructing the AQTS for 
the SDHA. Experiments can then be conducted to 
compare the SDHA approach with clock-based 
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approaches to modeling and verifying properties of 
sampled-date control systems. 

 

 
Figure 6. Two-modes SDHS model. 

 
Routines and data structures for computing sets of 

reachable states as required for the AQTS construction 
procedure are already available in CheckMate. The 
principle tasks are to incorporate the clock structure 
parameters in the CheckMate specification and 
automate the procedure for constructing the AQTS for 
the SDHA. Experiments can then be conducted to 
compare the SDHA approach with clock-based 
approaches to modeling and verifying properties of 
sampled-date control systems. 

Directions for further research on the modeling and 
verification of sampled-data hybrid systems include: 
• improving the reachability approximation in the 

AQTS procedure by eliminating states that cannot 
be reached because of guard conditions that were 
satisfied at earlier sampling times; 

• Including special discrete states that once the 
trajectories enter in the location defined by them, 
there is no further discrete transition. These states 
could be used for stopping conditions during the 
verification. 

• methods for evaluating when effects of sampling 
are critical for verification and when the sampling 
rate is fast enough that the traditional models can 
be used; 

• modeling clock-driven discrete-time computations 
(e.g., digital filters); 

• integrating clock-triggered events with events 
generated by continuous state trajectories (the 
types of events captured by traditional hybrid 
automata). 

All of these issues are critical for developing tools that 
address problems arising in sampled-data control 
applications. 
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