
SPECIFICATION-GUIDED ANALYSIS OF
HYBRID SYSTEMS USING A HIERARCHY OF

VALIDATION METHODS

Olaf Stursberg ∗ Ansgar Fehnker ∗∗ Zhi Han ∗∗

Bruce H. Krogh ∗∗

∗ University of Dortmund, Process Control Lab (CT-AST),
44221 Dortmund, Germany.

Email: olaf.stursberg@uni-dortmund.de
∗∗ Carnegie Mellon University, ECE Department

5000 Forbes Ave., Pittsburgh PA 15213-3890, USA.
Email: {ansgar|krogh|zhih}@ece.cmu.edu

Abstract: As the key step in verifying hybrid systems, the computation of reachable
sets largely determines the complexity and thus the applicability of a verification
approach. Most existing methods compute the reachable set without considering
the specification to be verified. This paper presents an approach that identifies
for abstractions of the hybrid model those behaviors that potentially violate
the specification. A tailor-made sequence of validation procedures then checks
the existence of these behaviors for the original model. In many cases, the
proposed iterative algorithm that combines model abstraction, behavior validation,
and model refinement to verify the specification explores a considerably smaller
part of the reachable set than standard techniques. The paper describes an
implementation of the procedure and illustrates the approach for an automotive
cruise control example. Copyright c© 2003 IFAC

Keywords: Abstraction, Counterexample, Hybrid System, Model Refinement,
Reachability Analysis, Verification.

1. INTRODUCTION
Verification, notably model checking, is currently
viewed by the hybrid systems research commu-
nity as a promising technique to prove certain
model properties algorithmically. In the context
of designing logic controllers for continuous or
hybrid systems, model checking can determine if
the controller design meets given specifications.
Examples of approaches to verify logic controllers
for hybrid systems with nonlinear continuous dy-
namics can be found, e. g., in (Puri and Varaiya,
1996; Henzinger and Wong-Toi, 1996; Chutinan
and Krogh, 1999; Stursberg et al., 1998). However,
model checking is not yet a success story for real-
world applications, mainly because the complexity
of computation limits its applicability to rather
small hybrid systems (Silva et al., 2001).

The critical step with respect to complexity in
hybrid system model checkers is the computation
of reachable sets. Most existing approaches com-
pute reachable sets without taking the specifica-
tion into account, i.e. the reachable hybrid set is
incrementally enlarged in all admissible directions
until a state is encountered that violates the spec-
ification. This procedure often explores large sets
of behaviors that are not relevant for the property
to be investigated. In contrast, the approach pre-
sented here aims at first identifying the relevant
behaviors by analyzing a discrete abstraction that
can be constructed quickly. The costly computa-
tion of reachable hybrid states is then restricted
to just those behaviors in the abstract system that
possibly correspond to violations of the specifica-
tion in the original hybrid system. These behav-

iors, called counterexamples, are then validated for
the original model. If a counterexample cannot be
validated for the latter, this result is used to refine
the abstract model. The procedure of applying
abstraction, model checking, and refinement it-
eratively was first introduced as counterexample-
guided verification for finite transitions systems
in (Clarke et al., 2000). While the extension to
general infinite state systems has recently been de-
scribed in (Clarke et al., 2003), this paper presents
the following: a specific formulation for the class
of hybrid automata with guards and invariants
defined by polyhedral sets and nonlinear continu-
ous dynamics; a hierarchy of validation methods
for refuting counterexamples with the least costs
possible; and a Matlab-based implementation of
the procedure. An automotive example is used to
illustrate the approach.

The objective of reducing the computation of
reachable hybrid sets can also be found in (Alur et
al., 2002). However, that approach uses different
abstraction and refinement schemes and not a
hierarchy of validation methods.

2. ANALYSIS OF HYBRID AUTOMATA

This section defines the type of model under con-
sideration and the verification task to be solved.

Definition 1. Hybrid Automaton. A hybrid au-
tomaton HA = (Z, z0,X,X0, inv, T, g, u, f) con-
sists of:

• the finite set of locations Z = {z1, . . . , znz
}

with an initial location z0 ∈ Z.
• the continuous state space X ⊆ Rn and the

set of initial continuous states X0 such that
X0 ⊆ inv(z0).

• the mapping inv : Z → 2X which assigns
an invariant of the form inv(z) ⊆ X to each
location z ∈ Z.

• the set of discrete transitions T ⊆ Z × Z. A
transition from z1 ∈ Z into z2 ∈ Z is denoted
by (z1, z2).

• the function g : T → 2X that associates a
guard g((z1, z2)) ⊆ X with each (z1, z2) ∈ T
such that g((z1, z2)) ∩ inv(z1) �= ∅.

• the jump function u : T × X → X which
assigns an element of X to each (z1, z2) ∈ T
and x ∈ g((z1, z2)).

• the flow function f : Z × X → Rn that
defines a continuous vector field f(z, x) for
each z ∈ Z. The evolution in z is governed by
a differential equation χ̇(t) = f(z, χ(t)), for
which a unique solution for each χ(0) ∈ X0

is assumed to exist.

Let s = (z, x) denote a hybrid state of HA. A
sequence σ = (s0, s1, s2, . . .) is then a feasible
run of HA, iff s0 = (z0, x0) with x0 ∈ X0 and

iff for each pair (si, si+1) ∈ σ the state si+1 =
(zi+1, xi+1) results from si = (zi, xi) by:

(a) a continuous evolution χ : [0, τ] → X, τ ∈
R>0 where: χ(0) = xi, χ̇(t) = f(zi, χ(t)),
χ(t) ∈ inv(zi) for t ∈ [0, τ],

(b) followed by a transition: (zi, zi+1) ∈ T , χ(τ) ∈
g((zi, zi+1)), and xi+1 ∈ u((zi, zi+1), xi) ∩
inv(z2). �

Using arbitrary sets for X0, the guards, and the in-
variants, as well as arbitrary jump functions make
the computation of reachable sets intractable.
Hence, the guards, invariants and the initial set
are assumed to be bounded polyhedra 1 . Further-
more, an additional restriction is that the jump
function u is defined for each transition as an
affine mapping x → Ax + b, with A ∈ Rn×n and
b ∈ Rn. These restrictions are similar to that given
in (Chutinan and Krogh, 1999).

We investigate the following property for HA:

Definition 2. Safety of HA. For HA as in Def. 1,
let zb ∈ Z \{z0} denote an unsafe location. Then,
HA is said to be safe with respect to zb, iff all runs
σ of HA do not contain a state sb = (zb, x), x ∈ X.
If this is true, we write HA |= Spec, otherwise
HA |�= Spec.

3. GUIDED VERIFICATION

The motivation of our approach to verifying safety
of HA is the observation that existing algorithms
do not use the specification to guide the search
for a run that contains the unsafe state, i.e., sb is
solely used as a termination criterion but not to
select runs which are explored first. The principle
of our approach for counterexample guided ver-
ification is illustrated by the program flowchart
in Fig. 1, which also represents the structure of
an implementation in Matlab. The system to be
verified is modeled as HA – it is referred to as
concrete model, denoted by C, from now on. The
user additionally specifies an unsafe location zb. A
finite state transition system, called the abstract
model A, is then derived from C by an abstraction
step. The unsafe location zb is represented by a
state ŝb of A. The abstraction ensures that each
transition of the concrete model C is matched
by a corresponding transition in the abstraction.
Consequently, if a run that ends in location zb

exists for C, then a run that ends in ŝb exists for
A (see Sec. 3.1 for more details).

1 A half-space is defined as the subset of R
n that satisfies

a linear inequality c · x ≤ d, with c ∈ R
1×n, d ∈ R. The

equality c · x = d is the bounding hyperplane of the half-
space. A polyhedron is defined as the intersection of finitely
many distinct half-spaces.

spurious CE

Abstraction: A

SpecificationConcrete model: C

Counterexample
Validation

C Spec

C Spec

no CE

CE exists

valid CE

Modelchecking

Refinement
of A

Fig. 1. Program flowchart.

The next step is then to apply model checking
to A in order to analyze whether ŝb is reachable
in A. If this is not true, C |= Spec can be
concluded since A represents a superset of the
behaviors of C. Otherwise a counterexample (CE)
is obtained as a run of A from the initial state to
ŝb. A validation step checks if the counterexample
for A has a corresponding behavior in C. If so,
the algorithm terminates with C |�= Spec. If
there is no corresponding behavior, information
obtained from the counterexample (respectively a
part of it) is used to refine the model A, such
that this particular counterexample is excluded.
The refined model is then examined for further
existing counterexamples. The main steps of the
approach are now described in detail.

3.1 Abstraction

To represent the abstract model, a transition
system is defined as TS = (Ŝ, Ŝ0, Ê) with a finite
state set Ŝ, an initial set Ŝ0 = {s0} ⊂ Ŝ, and
the transition set Ê ⊆ Ŝ × Ŝ. A run of TS
is a sequence of states σ̂ = (ŝ0, ŝ1, ŝ2, . . .) with
ŝi ∈ Ŝ and (ŝi−1, ŝi) ∈ Ê. A transition system
A = (Ŝ, Ŝ0, Ê) is called an abstract model of C,
if there exists an abstraction function α : Z ×
X → Ŝ, such that (i) Ŝ0 = α({z0}×X0), and (ii) a
transition (ŝ1, ŝ2) ∈ Ê exists with α(s1) = ŝ1 and
α(s2) = ŝ2 if C has a transition from s1 = (z1, x1)
to s2 = (z2, x2). Given a run σ̂ = (ŝ0, . . . , ŝn) of A,
we call σ = (s0, s1, . . . , sb) of C a corresponding
run if for each pair (si, sj) of consecutive states
the following holds: (α(s1), α(s2)) ∈ Ê.

For the procedure depicted in Fig. 1, we obtain an
initial abstract model A from C as follows:

Definition 3. Initial abstract model of C. Given
the concrete model C, the initial abstract model
A = (Ŝ, Ŝ0, Ê) is obtained from an abstraction
function α : Z × X → Ŝ with:

α(z, x) =

ŝ0 if z = z0 ∧ x ∈ X0

ŝ′0 if z = z0 ∧ x ∈ inv(z0) \ X0

ŝb if z = zb ∧ x ∈ inv(zb)
ŝi if zi /∈ {z0, zb} ∧ x ∈ inv(zi)

(1)

and the transition set is given by: Ê = {(ŝi, ŝj)|
(zi, zj) ∈ T} ∪ {(ŝ′0, ŝj)|(z0, zj) ∈ T} ∪ {(ŝi, ŝ

′
0)|

(zi, z0) ∈ T} for i, j ∈ {1, . . . , nz}. �
All locations of C are mapped onto one abstract
state, except for the initial location which is
mapped onto two states: one to represent the
initial set, and one to represent the remainder.
Obviously, for each run σ of C a corresponding
run σ̂ of A exists, since (a) each state s ∈ σ
is represented by a state ŝ ∈ Ŝ and (b) each
transition (si, si+1) with si, si+1 ∈ σ is mapped
into a transition in Ê. The converse is not true,
however, i.e., a run σ̂ of A might not have a
corresponding run σ of C.

3.2 Model Checking

The safety property stated in Def. 2 for HA simply
translates into the task of determining whether
A has a path ρ̂ = (ŝ0, . . . , ŝb), which is called
counterexample of A. The determination of a
counterexample can be accomplished by a simple
explicit-state and breadth-first search through the
transition structure of A. This search can be
carried out very efficiently for those numbers of
states in Ŝ (respectively locations of HA) that are
usually encountered, i.e., the costs for this step are
negligible compared to the costs required for the
validation step.

3.3 Validation Strategy

Assume that model checking led to a counterex-
ample σ̂ = (ŝ0, ŝ1 . . . , ŝp, ŝb). For each ŝj ∈ σ̂, a
corresponding set of hybrid states is defined by
Sj = α−1(ŝj). The validation routine checks by
evaluating the hybrid dynamics of C whether a
corresponding run σ = (s0, s1, . . . , sb) of C exists.
For each pair of consecutive states (ŝi, ŝj) it is
necessary to determine whether there exist states
si ∈ Si and sj ∈ Sj that are connected by a
continuous trajectory and a discrete transition.
Different strategies are conceivable for the order
in which the transitions of σ̂ are validated. One
strategy realized in the implementation is the val-
idation along the counterexample starting with ŝ0,
and S0 respectively.

Since the validation evaluates the dynamic behav-
ior of C, it is by far the most expensive part of
the verification procedure. We introduce a strat-
egy that aims at reducing the effort as much as
possible: Four different validation methods V1, V2,
V3, and V4 are employed (as described in detail in
Sec. 4). The methods check different (necessary
and sufficient) conditions for the non-existence
of transitions between states in Si and Sj . The
computational effort for the application of each
method increases considerably from V1 to V4. The

methods are hence applied from V1 to V4, in order
to refute a transition with the least effort possible.
The implementation offers two distinct options,
the sequential and the alternating application of
the methods. The sequential mode means that:
(1.) V1 is applied from transition (ŝ0, ŝ1) up to
transition (ŝp, ŝb) of σ̂, (2.) V2 is applied to (ŝ0, ŝ1)
up to (ŝp, ŝb), etc. The sequence of the alternating
mode is in contrast: (1.) the transition (ŝ0, ŝ1)
is investigated by the methods V1 up to V4 in
this order, (2.) (ŝ1, ŝ2) is checked by V1 up to V4,
etc. For both modes, the validation sequence is
terminated as soon as a transition, and thus the
counterexample σ̂ is refuted.

However, to show that (ŝ0, . . . , ŝm) is spurious,
it is sufficient to know that one of the tran-
sitions (ŝi, ŝi+1) is spurious. Also, the coun-
terexample is spurious if one of the fragments
(ŝi, ŝi+1, ŝi+2) is spurious, i.e., no corresponding
trajectory (si, si+1, si+2) exists in C. Similarly
fragments of any length n ≤ m can be defined. As
shown for an example in Sec. 5, it can be advanta-
geous to investigate fragments of increasing length
to refute a counterexample as early as possible.

3.4 Refinement

The information obtained from the validation
step is used to refine the abstract model in two
distinct ways, the elimination of transitions and
the splitting of states.

Definition 4. Refinement by Transition Elimina-
tion. For an abstract model A, let (ŝi, ŝj) ∈ Ê be
a refuted transition of a counterexample. Then,
a function ρpurge maps A and α : S → Ŝ onto
a refined abstract model A′ = (Ŝ, ŝ0, Ê

′) with a
new set of transitions Ê′ = Ê \ (ŝi, ŝj). �
The abstract model A is also refined if V4 is
applied during the validation process. In addition
to checking the validity of a transition (ŝi, ŝj) of
σ̂, this method also determines the corresponding
reachable hybrid states in the following sense
(see also Sec. 4): If Si = α−1(ŝi) and Sj =
α−1(ŝj), V4 applies an operator Reach(Si) =
Sr

j which returns Sr
j as the part of Sj that is

reachable in C by trajectories corresponding to
the transition (ŝi, ŝj) of A. Once Sr

j is computed it
is reasonable to use this information to update A
by splitting ŝj into two new abstract states (one of
which represents the reachable part of Sj and the
other one the remainder) and by re-arranging the
transitions according to the reachability result:

Definition 5. Refinement based on Reachability.
For models A and C, and an abstraction function
α : S → Ŝ, let (ŝi, ŝj) ∈ Ê be a transition of σ̂,
and Sr

j = Reach(Si) the result of V4, where Si =
α−1(ŝi), Sj = α−1(ŝj), and Sc

j = Sj \Sr
j . Then, a

function (A′, α′, α′′) = ρsplit(A,α, (ŝi, ŝj)) leads
to a refined abstract model A′ = {Ŝ′, Ŝ′

0, Ê
′}

with: Ŝ′ = (Ŝ \ {ŝj}) ∪ {ŝr
j , ŝ

c
j} (iff Sr

j , Sc
j are

non-empty), Ŝ′
0 = {ŝ′ ∈ Ŝ′|α′′(ŝ′) ∈ Ŝ0}, and

Ê′ = {(ŝ′i, ŝ′j)| ∃ (ŝi, ŝj) ∈ Ê : ŝi = α′′(ŝ′i) ∧
ŝj = α′′(ŝ′j)} \ (ŝi, ŝ

c
j). The refined abstraction

functions α′ : S → Ŝ′ and α′′ : Ŝ′ → Ŝ are:

• α′(s) =

α(s) if s �∈ Sj

ŝr
j if s ∈ Sr

j ∧ Sr
j �= ∅

ŝc
j if s ∈ Sj \ Sr

j ∧ Sj \ Sr
j �= ∅

• α′′(ŝ′) =
{

ŝj if ŝ′ ∈ {ŝr
j , ŝ

c
j}

α(s) otherwise �

4. VALIDATION METHODS

We now describe the validation methods V1 to
V4 referred to in Sec. 3.3. In the following defi-
nitions, a concrete model C, an abstract model
A, an abstraction function α, and a counterex-
ample σ̂ are given. Let (ŝi, ŝj) denote a transi-
tion between two consecutive states in σ̂, and the
sets of hybrid states corresponding to ŝi and ŝj

are: Si = α−1(ŝi), Sj = α−1(ŝj). Furthermore,
let (zi, zj) ∈ T be a transition of C for which
si = (zi, x) with x ∈ inv(zi) and sj = (zj , x) with
x ∈ inv(zj).

4.1 V1: Set Intersection

Definition 6. Validation V1. The validation method
V1 identifies (ŝi, ŝj) as refuted if: � (zi, zj) ∈ T
such that u((zi, zj), x) ∈ Sj for any x ∈ g(zi, zj).�
The guard set is polyhedral and the update func-
tion linear, such that applying u((zi, zj), x) to
the bounding hyperplanes of g(zi, zj) leads to a
polyhedral set p∗ again. Hence, V 1 reduces to the
simple check if p∗ ∩ Sj is empty.

4.2 V2: Gradient Check

Definition 7. Validation V2. Let g(zi, zj) be the
guard set of a transition (zi, zj) ∈ T . The valida-
tion method V2 identifies (ŝi, ŝj) as refuted if the
following applies for each face q of the polyhedron
g(zi, zj): � x ∈ q with c · f(zi, x) < 0. (c denotes
the normal vector of q and points out of g(zi, zj).)�
This check can be implemented as an optimization
problem min

x
c ·f(zi, x) for each face. The solution

is more costly than applying V1.

4.3 V3: Trajectory Check

Definition 8. Validation V3. Again, let g(zi, zj) be
the guard set of (zi, zj) ∈ T and define g′(zi, zj) =
{x | ∃ u((zi, zj), x) ∈ Sj , x ∈ g(zi, zj)}. Let λ(x) =

‖x − xg‖2 define the distance between x and
the nearest point xg in g′(zi, zj). The validation
method V3 declares (ŝi, ŝj) as refuted if λmin > 0
applies to the solution of:

λmin = min
χ(0)∈Si, t∈[0,τ(χ(0))]

λ(χ(t)) (2)

subject to: ˙χ(t) = f(zi, χ(t)), χ(t) ∈ inv(zi), and
τ = (∃ χ(0) ∈ Si : χ(τ+) /∈ inv(zi)). �
The implementation of V3 comprises a nonlinear
optimization with embedded numerical simula-
tion to compute the trajectories. (An upper time
bound τ ≤ τmax is required for the simulation if
a trajectory does never leave inv(zi).)

4.4 V4: Flowpipe Approximation

Let Reach(Si) = Sr
j denote the operator that

returns Sr
j = {sj | ∃ σ = (. . . , si, sj , . . .), si ∈

Si, sj ∈ Sj}. Applying this operator consists of the
following three steps: (a) determining the reach-
able subset g′(zi, zj) ⊆ g(zi, zj)} of the transition
guard; (b) computing a polyhedron p′ that tightly
envelops g′(zi, zj), e.g., the convex hull; (c) apply-
ing the update function u((zi, zj), x) to the faces
of p′ and intersecting the result with Sj to obtain
Sr

j . The most difficult part of this procedure is
the computation of g′(zi, zj). Our implementation
uses the principle of computing polygonal flow-
pipe approximations as described in (Chutinan
and Krogh, 1999). The idea is to use nonlinear
optimization to get a set of polyhedra that tightly
enclose all trajectories inside of inv(zi) that start
from Si. Since the steps (a) and (b) of the above
procedure yield conservative approximations, the
result is an over-approximation S̃r

j ⊇ Sr
j . Since

the optimization is carried out for each face of a
series of polyhedra, this method is considerably
costlier than V3. This is the reason for preferring
the other methods whenever possible. However,
the implementation also comprises less expensive
methods to compute S̃r

j for the cases that f(z, x)
is linear or describes constant rates.

5. EXAMPLE

The approach is illustrated by an adaptive cruise
control example that is part of a vehicle-to-vehicle
coordination system (Girard et al., 2001). A part
is considered that comprises two modes: the cruise
control (cc-mode) in which a car tries to keep
a constant speed, and an adaptive cruise control
(acc-mode) in which the car aims at keeping a safe
distance to a preceding car. The system includes
also an automatic transmission system with four
gears. The controller switches into the acc-mode
whenever the distance r between the car and a
preceding vehicle is below a desired distance rdes

minus a hysteresis parameter h. The controller

r=0

r=0

r=0

v >29.8 v >29.8

v >14.2v >14.2

v >6.7 v >6.7

2nd gear
cc-modeacc-mode

2nd gear

3rd gear
acc-mode cc-mode

3rd gear

acc-mode
1st gear

cc-mode
1st gear

cc-modeacc-mode
4th gear 4th gear

r=0

r<r - h

des

des

r>r + h

r<r - h

des

des

r>r + h

r<r - h

des

des

r>r + h

r<r - h

des

des

r>r + h

v

v <14.2

v <29.8

v

v <14.2

v <29.8

<6.7 <6.7

collision

Fig. 2. The discrete part of the hybrid automaton.

switches back if r > rdes + h. The distance rdes

depends linearly on the velocity v of the following
car. The overall hybrid automaton has 8 loca-
tions for the normal operation and one additional
unsafe location that is entered in the case of a
collision (Fig. 2). Given the (constant) velocity
of the leading car vlead, the distance changes ac-
cording to ṙ = vlead − v in all locations. The
controller determines the desired acceleration ades

and velocity vdes of the follower according to this
rule: the desired acceleration ades is proportional
to vdes−v in the cc-mode, and equal to k1(vlead−
v) + k2(r − rdes) in the acc-mode (with constants
k1, k2). This sliding mode controller ensures that
the system is asymptotically stable in v = vlead

and r = rdes (if ades can be realized). To assess
the approach presented here, it is compared with
the tool CheckMate (Chutinan and Krogh, 1999).
The latter uses only the validation method V4

and explores the hybrid state space according to
a breadth-first like enlargement of the reachable
set. CheckMate applies the method V4 six times to
verify that the system is safe. This takes 325 CPU-
seconds on a Pentium 3, 600 MHz PC. The shaded
area in Fig 3.a depicts the continuous states that
are found to be reachable. All trajectories even-
tually reach the equilibrium point v = vlead = 25
m/sec and r = rdes = 42.5 m.

First an instance of the procedure for counter-
example-guided verification is applied, in which
complete counterexamples are validated by ap-
plying V1, V2, and V4 in sequential order. Eleven
counterexamples are generated overall, the costli-
est method V4 is applied five times, and 150 CPU-
sec are required. As shown in Fig. 3.b, this pro-
cedure does not require to compute the reachable
set in the location 3rd gear and acc-mode. The
method V3 is sufficient to show that the transition
into the unsafe state cannot occur. Another in-
stance of the procedure uses the following scheme:
First the methods V1 and V3 are applied to each
single transition of a counterexample, then to each
pair of successive transitions of the counterexam-
ple. In a third step, V1, V3, and V4 are applied
to pairs of transitions, and then to the complete
counterexample. This scheme leads to 10 coun-

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

50

distance

ve
lo

ci
ty

(a)
0 50 100 150 200 250 300 350

0

5

10

15

20

25

30

35

40

45

50

distance

ve
lo

ci
ty

(b)
0 50 100 150 200 250 300 350

0

5

10

15

20

25

30

35

40

45

50

distance

ve
lo

ci
ty

(c)

Fig. 3. The shaded areas mark the reached continuous states that were computed by V4 with: (a)
CheckMate, (b) guided verification by validating complete counterexamples, (c) guided verification
using fragments of counterexamples. The diagonal dotted lines are the conditions for switching
between the acc- and the cc-mode. The horizontal lines are the conditions for switching between
gears. The system is initially in location 1st gear and the cc-mode (which corresponds to the lower
right polyhedron), and the distance r is initially below 200 m.

terexamples, and the complete computation took
only 60 seconds. Seven of the 10 counterexamples
could be refuted by applying V1 and/or V3 to a
single transition. V4 was used only once to show
that once the system switches from the 4th gear
and the cc-mode to the acc-mode, it will inevitably
switch to 3rd gear from which collision is not
possible (Fig. 3.c).

6. CONCLUSIONS

This paper combines two new ideas to make hy-
brid system verification more efficient: the guid-
ance of search by using abstract models to iden-
tify runs that potentially violate the specification,
and the use of a hierarchy of validation methods
to refute counterexamples with the least costs
possible. The advantages of the approach can be
summarized as follows: If C fulfills the specifi-
cation, it can happen that no counterexample
exists and the algorithm terminates immediately.
A breadth-first approach with just the validation
method V4 (the procedure that exists in tools like
CheckMate) would compute the complete reach-
able hybrid set to get the same result. Even if
the specification-guided search has to refute a set
of counterexamples, their validation corresponds
in many cases to an exploration of only a small
subset of the complete reachable hybrid set. Ad-
ditionally, some of these counterexamples may be
refutable by using a low-cost validation method.
If C| �= Spec, the first counterexample may be
already one that violates the specification. Then,
again only a small portion of the hybrid state
space is explored. Also note that by the iterative
refinement of the abstract model, the elimination
of a transition can immediately remove a whole
set of counterexamples.

ACKNOWLEDGEMENTS

The authors appreciate thorough discussions with
E. Clarke, J. Ouaknine, and M. Theobald on
various issues of the approach presented.

REFERENCES

Alur, R., T. Dang and F. Ivancic (2002). Reacha-
bility analysis of hybrid systems via predicate
abstraction. In: Hybrid Systems: Comp. and
Control. Vol. 2289 of LNCS. pp. 35–48.

Chutinan, A. and B.H. Krogh (1999). Verifica-
tion of polyhedral-invariant hybrid automata
using polygonal flowpipe-approximation. In:
Hybrid Systems: Comp. and Control. LNCS
1569. Springer. pp. 76–90.

Clarke, E., A. Fehnker, Z. Han, B.H. Krogh,
O. Stursberg and M. Theobald (2003).
Verification of hybrid systems based on
counterexample-guided abstraction refine-
ment. In: Proc. 9th Int. Conf. TACAS. Vol.
2619 of LNCS. Springer. pp. 192–207.

Clarke, E., O. Grumberg, S. Jha, Y. Lu and
H. Veith (2000). Counterexample-guided ab-
straction refinement. In: Computer-Aided
Verification. Vol. 1855 of LNCS. Springer.
pp. 154–169.

Girard, A.R., J.B. Souza, J.A. Misener and J.K.
Hedrick (2001). A control architecture for in-
tegrated cooperative cruise control and col-
lision warning systems. In: Proc. 40th IEEE
Conf. on Decision and Control.

Henzinger, T. A. and H. Wong-Toi (1996). Linear
phase-portrait approximations for nonlinear
hybrid systems. In: Hybrid Systems III. Vol.
1066 of LNCS. Springer. pp. 377–388.

Puri, A. and P. Varaiya (1996). Verification of
hybrid systems using abstractions. In: Proc.
13th IFAC World Congress. pp. 477–482.

Silva, B.I., O. Stursberg, B. Krogh and S. Engell
(2001). An assessment of the current status
of algorithmic approaches to the verification
of hybrid systems. In: Proc. 40th IEEE Conf.
on Decision and Control. pp. 2867–2874.

Stursberg, O., S. Kowalewski, J. Preussig and
H. Treseler (1998). Block-diagram based
modelling and analysis of hybrid processes
under discrete control. J. Europeen des Syst.
Automatises 32(9-10), 1097–1118.

